/** * \file dnn/src/cuda/convolution3d/backward_data/algo.h * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #pragma once #include #include "src/cuda/convolution3d/helper.h" #include "src/common/algo_base.h" #include "src/common/metahelper.h" namespace megdnn { namespace cuda { /*! * \brief base class for convolution3d algos * * All the algo impls should try to support non-contiguous batch dim, for group * conv execution. */ class Convolution3DBackwardDataImpl::AlgoBase : public Algorithm { protected: ~AlgoBase() = default; public: enum class AlgoType : uint32_t { CUDA_GROUP_CONV_GENERAL, CUDA_CUDNN, CUDA_CHANWISE, }; using Mapper = std::unordered_map; AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::CUDA; } struct SizeArgs { HandleImpl* handle; CanonizedFilterMeta filter_meta; const TensorLayout *diff_layout, *grad_layout; Convolution3DBackwardDataImpl* opr; std::string to_string() const; void init_desc(convolution3d::CUDNNBwdDataDescs& desc) const { desc.set(filter_meta, *diff_layout, *grad_layout, opr->param()); } SizeArgs(Convolution3DBackwardDataImpl* opr, const TensorLayout& filter, const TensorLayout& diff, const TensorLayout& grad); SizeArgs(Convolution3DBackwardDataImpl* opr, const CanonizedFilterMeta& filter, const TensorLayout& diff, const TensorLayout& grad); convolution3d::ForwardSizeArgs as_fwd_args() const { return {handle, grad_layout, filter_meta, diff_layout, opr->param().data_type}; } }; struct ExecArgs : public SizeArgs { const TensorND *filter_tensor, *diff_tensor, *grad_tensor; Workspace workspace; ExecArgs(Convolution3DBackwardDataImpl* opr, _megdnn_tensor_in filter, _megdnn_tensor_in diff, _megdnn_tensor_out grad, _megdnn_workspace workspace); }; virtual bool is_available(const SizeArgs& args) const = 0; virtual size_t get_workspace_in_bytes(const SizeArgs& args) const = 0; virtual void exec(const ExecArgs& args) const = 0; bool is_available_wk(const SizeArgs& args, size_t limit) { return is_available(args) && get_workspace_in_bytes(args) <= limit; } bool is_available_attribute( const SizeArgs& args, const AlgoAttribute& positive_attr = AlgoAttribute::REPRODUCIBLE, const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT, size_t limit = std::numeric_limits::max()) { return contain_attribute_all(positive_attr) && !contain_attribute_any(negative_attr) && is_available_wk(args, limit); } AlgoBase& check_workspace(const SizeArgs& args, const Workspace& workspace) { auto req = get_workspace_in_bytes(args); megdnn_assert(req <= workspace.size, "conv bwd data algo %s: " "required workspace %zu bytes, got %zu", name(), req, workspace.size); return *this; } virtual bool is_cudnn() const { return false; } }; class Convolution3DBackwardDataImpl::AlgoCUDNN final : public AlgoBase { cudnnConvolutionBwdDataAlgo_t m_cudnn_enum; CudnnAlgoPack::Attr m_attr; public: AlgoCUDNN(cudnnConvolutionBwdDataAlgo_t cudnn_enum) : m_cudnn_enum(cudnn_enum) { megdnn_assert(CudnnAlgoPack::conv3d_bwd_data_algos().find(cudnn_enum) != CudnnAlgoPack::conv3d_bwd_data_algos().end()); m_attr = CudnnAlgoPack::conv3d_bwd_data_algos().at(cudnn_enum); } bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& args) const override; void exec(const ExecArgs& args) const override; const char* name() const override { return m_attr.name.c_str(); } AlgoAttribute attribute() const override { auto ret = static_cast(0); if (m_attr.is_reproducible) { ret |= AlgoAttribute::REPRODUCIBLE; } if (m_attr.accuracy_depend_on_batch) { ret |= AlgoAttribute::ACCURACY_DEPEND_ON_BATCH; } return ret; } cudnnConvolutionBwdDataAlgo_t cudnn_enum() const { return m_cudnn_enum; } bool is_cudnn() const override { return true; } MEGDNN_DECL_ALGO_TYPE(CUDA_CUDNN) std::string param() const override { std::string ret; serialize_write_pod(m_cudnn_enum, ret); return ret; } }; class Convolution3DBackwardDataImpl::AlgoChanwise final : public AlgoBase { public: bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& args) const override; void exec(const ExecArgs& args) const override; const char* name() const override { return "CHANNEL_WISE"; } MEGDNN_DECL_ALGO_TYPE(CUDA_CHANWISE) AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } }; //! implement group conv by another algo class Convolution3DBackwardDataImpl::AlgoGroupConvGeneral final : public AlgoBase { AlgoBase* m_impl; std::string m_name; public: AlgoGroupConvGeneral(AlgoBase* impl); bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& args) const override; void exec(const ExecArgs& args) const override; const char* name() const override { return m_name.c_str(); } static void modify_size_args(SizeArgs& args, TensorLayout& diff_pg, TensorLayout& grad_pg); AlgoAttribute attribute() const override { auto ret = static_cast(0); if (m_impl->contain_attribute_all(AlgoAttribute::REPRODUCIBLE)) { ret |= AlgoAttribute::REPRODUCIBLE; } return ret; } MEGDNN_DECL_ALGO_TYPE(CUDA_GROUP_CONV_GENERAL) }; class Convolution3DBackwardDataImpl::AlgoPack : NonCopyableObj { // defined in cudnn.cpp void fill_cudnn_algos(); AlgoBase::Mapper m_all_algos_map; public: AlgoPack(); std::vector cudnn; AlgoChanwise chanwise; std::vector gconv; std::unordered_map algo2gconv; std::vector //! all algorithms all_algos, //! non-cudnn algos, used for heuristic if cudnn is not supported non_cudnn_algos; AlgoCUDNN* cudnn_from_enum(cudnnConvolutionBwdDataAlgo_t algo); const AlgoBase::Mapper& all_algos_map() const { return m_all_algos_map; } }; } // namespace cuda } // namespace megdnn // vim: syntax=cpp.doxygen