/** * \file dnn/test/common/correlation.h * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #pragma once #include "megdnn/basic_types.h" #include "megdnn/opr_param_defs.h" namespace megdnn { namespace test { namespace correlation { struct TestArg { param::Correlation param; TensorShape data1, data2; TestArg(param::Correlation param, TensorShape data1, TensorShape data2) : param(param), data1(data1), data2(data2) {} }; inline static std::vector get_args() { std::vector args; param::Correlation cur_param; for (size_t batch_size : {2}) { for (size_t channel : {2}) { for (size_t height : {160}) { for (size_t width : {160}) { cur_param.is_multiply = true; cur_param.kernel_size = 3; cur_param.max_displacement = 3; cur_param.pad_size = 0; cur_param.stride1 = 1; cur_param.stride2 = 1; cur_param.format = megdnn::param::Correlation::Format::NCHW; args.emplace_back( cur_param, TensorShape{batch_size, channel, height, width}, TensorShape{batch_size, channel, height, width}); // cur_param.is_multiply = false; // cur_param.kernel_size = 1; // cur_param.max_displacement = 2; // cur_param.pad_size = 1; // cur_param.stride1 = 1; // cur_param.stride2 = 1; // cur_param.format = // megdnn::param::Correlation::Format::NCHW; // args.emplace_back( // cur_param, // TensorShape{batch_size, channel, height, width}, // TensorShape{batch_size, channel, height, width}); } } } } return args; } } // namespace correlation } // namespace test } // namespace megdnn // vim: syntax=cpp.doxygen