/** * \file test/test_network.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "lite_build_config.h" #if LITE_BUILD_WITH_MGE #include "./test_common.h" #include "megbrain/tensor.h" #ifndef WIN32 #include #include #endif #include #include #include #include using namespace lite; namespace { class CheckAllocator : public lite::Allocator { public: //! allocate memory of size in the given device with the given align void* allocate(LiteDeviceType device, int, size_t size, size_t align) override { LITE_ASSERT(device == LiteDeviceType::LITE_CPU); m_nr_left++; m_nr_allocated++; #ifdef WIN32 return _aligned_malloc(size, align); #elif defined(__ANDROID__) || defined(ANDROID) return memalign(align, size); #else void* ptr = nullptr; auto err = posix_memalign(&ptr, align, size); mgb_assert(!err, "failed to malloc %zubytes with align %zu", size, align); return ptr; #endif }; //! free the memory pointed by ptr in the given device void free(LiteDeviceType device, int, void* ptr) override { m_nr_left--; LITE_ASSERT(device == LiteDeviceType::LITE_CPU); #ifdef WIN32 _aligned_free(ptr); #else ::free(ptr); #endif }; std::atomic_size_t m_nr_left{0}; std::atomic_size_t m_nr_allocated{0}; }; } // namespace TEST(TestNetWork, Basic) { Config config; auto lite_tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; auto result_lite = mgelite_lar(model_path, config, "data", lite_tensor); auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor); compare_lite_tensor(result_lite, result_mgb); } TEST(TestNetWork, SetDeviceId) { Config config; auto lite_tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; std::shared_ptr network = std::make_shared(config); network->set_device_id(4); network->load_model(model_path); std::shared_ptr input_tensor = network->get_input_tensor(0); std::shared_ptr output_tensor = network->get_output_tensor(0); network->forward(); network->wait(); ASSERT_EQ(input_tensor->get_device_id(), 4); ASSERT_EQ(output_tensor->get_device_id(), 4); } TEST(TestNetWork, GetAllName) { Config config; auto lite_tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; std::shared_ptr network = std::make_shared(config); network->load_model(model_path); auto input_names = network->get_all_input_name(); auto output_names = network->get_all_output_name(); auto output_tensor = network->get_output_tensor(0); auto out_layout = output_tensor->get_layout(); ASSERT_EQ(out_layout.ndim, 2); ASSERT_EQ(out_layout.shapes[0], 1); ASSERT_EQ(out_layout.shapes[1], 1000); ASSERT_EQ(input_names.size(), 1); ASSERT_EQ(output_names.size(), 1); ASSERT_TRUE(input_names[0] == "data"); ASSERT_TRUE(output_names[0] == "TRUE_DIV(EXP[12065],reduce0[12067])[12077]"); } TEST(TestNetWork, LoadFBSModel) { Config config; std::string model_path = "./ax.mge"; std::shared_ptr network = std::make_shared(config); network->load_model(model_path); auto output_tensor = network->get_output_tensor(0); auto out_layout = output_tensor->get_layout(); ASSERT_EQ(out_layout.ndim, 4); ASSERT_EQ(out_layout.shapes[0], 1); ASSERT_EQ(out_layout.shapes[1], 1); ASSERT_EQ(out_layout.shapes[2], 40); ASSERT_EQ(out_layout.shapes[3], 180); } TEST(TestNetWork, BasicInplaceAndSingleThreadAffinity) { Config config; auto lite_tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor); std::shared_ptr network = std::make_shared(config); Runtime::set_cpu_inplace_mode(network); network->load_model(model_path); std::shared_ptr input_tensor = network->get_input_tensor(0); int affinity_set = false; Runtime::set_runtime_thread_affinity(network, [&affinity_set](int id) { ASSERT_EQ(id, 0); affinity_set = true; }); auto src_ptr = lite_tensor->get_memory_ptr(); auto src_layout = lite_tensor->get_layout(); input_tensor->reset(src_ptr, src_layout); //! inplace mode not support async mode ASSERT_THROW(network->set_async_callback([]() {}), std::exception); network->forward(); network->wait(); std::shared_ptr output_tensor = network->get_output_tensor(0); ASSERT_EQ(affinity_set, true); compare_lite_tensor(output_tensor, result_mgb); } TEST(TestNetWork, NetworkShareWeights) { Config config; auto lite_tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor); std::shared_ptr network = std::make_shared(config); network->load_model(model_path); std::shared_ptr input_tensor = network->get_input_tensor(0); std::shared_ptr network2 = std::make_shared(config); Runtime::set_cpu_inplace_mode(network2); Runtime::shared_weight_with_network(network2, network); std::shared_ptr input_tensor2 = network2->get_input_tensor(0); auto src_ptr = lite_tensor->get_memory_ptr(); auto src_layout = lite_tensor->get_layout(); input_tensor->reset(src_ptr, src_layout); input_tensor2->reset(src_ptr, src_layout); ASSERT_NE(input_tensor, input_tensor2); network->forward(); network->wait(); network2->forward(); network2->wait(); std::shared_ptr output_tensor = network->get_output_tensor(0); std::shared_ptr output_tensor2 = network2->get_output_tensor(0); ASSERT_NE(output_tensor->get_memory_ptr(), output_tensor2->get_memory_ptr()); compare_lite_tensor(output_tensor, result_mgb); compare_lite_tensor(output_tensor2, result_mgb); } TEST(TestNetWork, SharedRuntimeMem) { Config config; auto lite_tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor); std::shared_ptr network_src = std::make_shared(config); std::shared_ptr network_dst = std::make_shared(config); Runtime::share_runtime_memory_with(network_dst, network_src); network_src->load_model(model_path); network_dst->load_model(model_path); } TEST(TestNetWork, UserAllocator) { auto allocator = std::make_shared(); { Config config; auto lite_tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor); std::shared_ptr network = std::make_shared(config); Runtime::set_memory_allocator(network, allocator); network->load_model(model_path); std::shared_ptr input_tensor = network->get_input_tensor(0); auto src_ptr = lite_tensor->get_memory_ptr(); auto src_layout = lite_tensor->get_layout(); input_tensor->reset(src_ptr, src_layout); network->forward(); network->wait(); ASSERT_GE(allocator->m_nr_allocated, 1); std::shared_ptr output_tensor = network->get_output_tensor(0); compare_lite_tensor(output_tensor, result_mgb); } ASSERT_EQ(allocator->m_nr_left, 0); } TEST(TestNetWork, BasicMultiThread) { Config config; auto lite_tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor); std::shared_ptr network = std::make_shared(config); Runtime::set_cpu_threads_number(network, 2); network->load_model(model_path); std::shared_ptr input_tensor = network->get_input_tensor(0); auto src_ptr = lite_tensor->get_memory_ptr(); auto src_layout = lite_tensor->get_layout(); input_tensor->reset(src_ptr, src_layout); network->forward(); network->wait(); std::shared_ptr output_tensor = network->get_output_tensor(0); compare_lite_tensor(output_tensor, result_mgb); } TEST(TestNetWork, ThreadAffinity) { size_t nr_threads = 4; Config config; auto lite_tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor); std::shared_ptr network = std::make_shared(config); Runtime::set_cpu_threads_number(network, nr_threads); ASSERT_THROW( Runtime::set_runtime_thread_affinity(network, [](int) {}), std::exception); network->load_model(model_path); std::vector thread_ids(nr_threads); auto affinity = [&](int id) { thread_ids[id] = std::this_thread::get_id(); }; Runtime::set_runtime_thread_affinity(network, affinity); std::shared_ptr input_tensor = network->get_input_tensor(0); auto src_ptr = lite_tensor->get_memory_ptr(); auto src_layout = lite_tensor->get_layout(); input_tensor->reset(src_ptr, src_layout); network->forward(); network->wait(); for (size_t i = 0; i < nr_threads; i++) { for (size_t j = i + 1; j < nr_threads; j++) { ASSERT_NE(thread_ids[i], thread_ids[j]); } } std::shared_ptr output_tensor = network->get_output_tensor(0); compare_lite_tensor(output_tensor, result_mgb); } TEST(TestNetWork, BasicCryptAes) { Config config; auto lite_tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; std::string model_crypt_path = "./shufflenet_crypt_aes.mge"; auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor); config.bare_model_cryption_name = "AES_default"; auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor); compare_lite_tensor(result_lite, result_mgb); } TEST(TestNetWork, BasicCryptRc4) { Config config; auto lite_tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; std::string model_crypt_path = "./shufflenet_crypt_rc4.mge"; auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor); config.bare_model_cryption_name = "RC4_default"; auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor); compare_lite_tensor(result_lite, result_mgb); } TEST(TestNetWork, PackedCryptRc4) { Config config; auto lite_tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; std::string model_crypt_path = "./test_packed_model_rc4.lite"; auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor); auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor); compare_lite_tensor(result_lite, result_mgb); } TEST(TestNetWork, BasicCryptSfRc4) { Config config; auto lite_tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; std::string model_crypt_path = "./shufflenet_crypt_sfrc4.mge"; auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor); config.bare_model_cryption_name = "SIMPLE_FAST_RC4_default"; auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor); compare_lite_tensor(result_lite, result_mgb); } TEST(TestNetWork, ResetInput) { Config config; auto tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; std::string input_name = "data"; auto result_mgb = mgb_lar(model_path, config, input_name, tensor); std::shared_ptr network = std::make_shared(config); network->load_model(model_path); std::shared_ptr input_tensor = network->get_io_tensor(input_name); auto src_ptr = tensor->get_memory_ptr(); auto src_layout = tensor->get_layout(); input_tensor->reset(src_ptr, src_layout); network->forward(); network->wait(); std::shared_ptr output_tensor = network->get_output_tensor(0); compare_lite_tensor(output_tensor, result_mgb); } TEST(TestNetWork, ChangeInputShape) { Config config; auto tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; std::string input_name = "data"; auto result_mgb = mgb_lar(model_path, config, input_name, tensor); std::shared_ptr network = std::make_shared(config); network->load_model(model_path); std::shared_ptr input_tensor = network->get_io_tensor(input_name); auto src_layout = Layout{{2, 3, 200, 200}, 4, LiteDataType::LITE_FLOAT}; input_tensor->set_layout(src_layout); std::shared_ptr input_tensor2 = network->get_io_tensor(input_name); //! Check memory is equal ASSERT_EQ(input_tensor->get_memory_ptr(), input_tensor2->get_memory_ptr()); network->forward(); network->wait(); std::shared_ptr output_tensor = network->get_output_tensor(0); auto output_layout = output_tensor->get_layout(); ASSERT_EQ(output_layout.shapes[0], 2); ASSERT_EQ(output_layout.shapes[1], 1000); } TEST(TestNetWork, ResetOutput) { Config config; auto tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; std::string input_name = "data"; auto result_mgb = mgb_lar(model_path, config, input_name, tensor); std::shared_ptr network = std::make_shared(config); network->load_model(model_path); std::shared_ptr input_tensor = network->get_io_tensor(input_name); auto src_ptr = tensor->get_memory_ptr(); auto src_layout = tensor->get_layout(); input_tensor->reset(src_ptr, src_layout); std::shared_ptr output_tensor = network->get_output_tensor(0); auto result_tensor = std::make_shared( LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT}); void* out_data = result_tensor->get_memory_ptr(); output_tensor->reset(out_data, result_tensor->get_layout()); network->forward(); network->wait(); compare_lite_tensor(output_tensor, result_mgb); } namespace { void test_output_no_copy(int record) { Config config; config.options.force_output_use_user_specified_memory = true; config.options.comp_node_seq_record_level = record; auto tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; std::string input_name = "data"; auto result_mgb = mgb_lar(model_path, config, input_name, tensor); std::shared_ptr network = std::make_shared(config); network->load_model(model_path); std::shared_ptr input_tensor = network->get_io_tensor(input_name); auto src_ptr = tensor->get_memory_ptr(); auto src_layout = tensor->get_layout(); input_tensor->reset(src_ptr, src_layout); std::shared_ptr output_tensor = network->get_output_tensor(0); size_t times = 5; std::vector> result_tensors; for (size_t i = 0; i < times; i++) { auto tmp = std::make_shared( LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT}); result_tensors.push_back(tmp); } for (size_t i = 0; i < times; i++) { void* out_data = result_tensors[i]->get_memory_ptr(); output_tensor->reset(out_data, result_tensors[i]->get_layout()); network->forward(); network->wait(); ASSERT_EQ(output_tensor->get_memory_ptr(), out_data); compare_lite_tensor(output_tensor, result_mgb); } for (size_t i = 0; i < times; i++) { compare_lite_tensor(result_tensors[i], result_mgb); } } void test_input_no_copy(int record) { Config config; config.options.force_output_use_user_specified_memory = true; config.options.comp_node_seq_record_level = record; std::string model_path = "./shufflenet.mge"; std::string input_name = "data"; Layout layout_in{{1, 3, 224, 224}, 4}; std::vector> inputs; std::vector> outputs; for (int i = 0; i < 3; i++) { auto tmp_in = std::make_shared(LiteDeviceType::LITE_CPU, layout_in); auto ptr = static_cast(tmp_in->get_memory_ptr()); for (size_t id = 0; id < 2 * 224 * 224; id++) { ptr[id] = i + 1; } inputs.push_back(tmp_in); outputs.push_back(mgb_lar(model_path, config, input_name, tmp_in)); } std::shared_ptr network = std::make_shared(config); network->load_model(model_path); std::shared_ptr input_tensor = network->get_io_tensor(input_name); std::shared_ptr output_tensor = network->get_output_tensor(0); for (int i = 0; i < 3; i++) { auto ptr = inputs[i]->get_memory_ptr(); input_tensor->reset(ptr, layout_in); auto tmp_out = std::make_shared( LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT}); output_tensor->reset(tmp_out->get_memory_ptr(), output_tensor->get_layout()); network->forward(); network->wait(); compare_lite_tensor(output_tensor, outputs[i]); } } void test_io_no_copy_ax(std::string model_name, int record = 1) { std::string model_path = model_name; std::vector input_names, output_names; std::vector>> inputs; std::vector>> outputs; std::shared_ptr network = std::make_shared(); network->load_model(model_path); input_names = network->get_all_input_name(); output_names = network->get_all_output_name(); // prepare test data for (int i = 0; i < 3; i++) { std::vector> net_inputs; std::vector> net_outputs; for (size_t j = 0; j < input_names.size(); j++) { auto in_tesnor = network->get_io_tensor(input_names[j]); auto in_layout = in_tesnor->get_layout(); auto tmp_in = std::make_shared(LiteDeviceType::LITE_CPU, in_layout); auto size = in_tesnor->get_tensor_total_size_in_byte() / in_layout.get_elem_size(); if (in_layout.data_type == LiteDataType::LITE_INT16) { auto ptr = static_cast(tmp_in->get_memory_ptr()); for (size_t id = 0; id < size; id++) { ptr[id] = i + 1; } } else if (in_layout.data_type == LiteDataType::LITE_UINT8) { auto ptr = static_cast(tmp_in->get_memory_ptr()); for (size_t id = 0; id < size; id++) { ptr[id] = i + 1; } } net_inputs.push_back(tmp_in); in_tesnor->copy_from(*tmp_in); } inputs.push_back(net_inputs); network->forward(); network->wait(); for (size_t j = 0; j < output_names.size(); j++) { auto out_tesnor = network->get_io_tensor(output_names[j]); auto out_layout = out_tesnor->get_layout(); auto tmp_out = std::make_shared(LiteDeviceType::LITE_CPU, out_layout); tmp_out->copy_from(*out_tesnor); net_outputs.push_back(tmp_out); } outputs.push_back(net_outputs); } Config config; config.options.force_output_use_user_specified_memory = true; config.options.comp_node_seq_record_level = record; config.options.const_shape = true; std::shared_ptr network_record = std::make_shared(config); network_record->load_model(model_path); for (int i = 0; i < 3; i++) { for (size_t j = 0; j < inputs[i].size(); j++) { auto input_tensor = network_record->get_io_tensor(input_names[j]); input_tensor->reset( inputs[i][j]->get_memory_ptr(), inputs[i][j]->get_layout()); } std::vector> net_outputs; for (size_t j = 0; j < outputs[i].size(); j++) { auto output_tensor = network_record->get_io_tensor(output_names[j]); auto tmp_out = std::make_shared( LiteDeviceType::LITE_CPU, output_tensor->get_layout()); output_tensor->reset( tmp_out->get_memory_ptr(), output_tensor->get_layout()); net_outputs.push_back(tmp_out); } network_record->forward(); network_record->wait(); for (size_t j = 0; j < outputs[i].size(); j++) { auto output_tensor = network_record->get_io_tensor(output_names[j]); compare_lite_tensor(output_tensor, outputs[i][j]); } } printf("profile the model %s run\n", model_path.c_str()); std::vector> net_outputs; for (size_t j = 0; j < outputs[0].size(); j++) { auto output_tensor = network_record->get_io_tensor(output_names[j]); auto tmp_out = std::make_shared( LiteDeviceType::LITE_CPU, output_tensor->get_layout()); output_tensor->reset(tmp_out->get_memory_ptr(), output_tensor->get_layout()); net_outputs.push_back(tmp_out); } lite::Timer timer("profile"); for (int i = 0; i < 10; i++) { network_record->forward(); network_record->wait(); } auto sum_time = timer.get_used_time(); printf("model %s used time average %f ms\n", model_path.c_str(), sum_time / 10); } } // namespace TEST(TestNetWork, OutputNoCopy) { test_output_no_copy(0); } TEST(TestNetWork, OutputNoCopyRecord) { test_output_no_copy(1); } TEST(TestNetWork, IONoCopy) { test_input_no_copy(0); } TEST(TestNetWork, IONoCopyRecord) { test_input_no_copy(1); } TEST(TestNetWork, IONoCopyRecordAx) { std::vector file_names; #ifndef WIN32 DIR* dirptr = NULL; struct dirent* dirp; std::string model_dir = "./ax_models"; dirptr = opendir(model_dir.c_str()); while (dirptr != NULL && (dirp = readdir(dirptr)) != NULL) { std::string file_name(dirp->d_name); if (file_name.find(".axe", 0) != std::string::npos) { file_names.push_back(model_dir + "/" + file_name); } } closedir(dirptr); #endif for (auto file_name : file_names) { printf("test model: %s\n", file_name.c_str()); test_io_no_copy_ax(file_name); } } TEST(TestNetWork, OutputDynamicAlloc) { Config config; config.options.force_output_dynamic_alloc = true; auto tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; std::string input_name = "data"; auto result_mgb = mgb_lar(model_path, config, input_name, tensor); std::shared_ptr network = std::make_shared(config); network->load_model(model_path); std::shared_ptr input_tensor = network->get_io_tensor(input_name); auto src_ptr = tensor->get_memory_ptr(); auto src_layout = tensor->get_layout(); input_tensor->reset(src_ptr, src_layout); std::shared_ptr output_tensor = network->get_output_tensor(0); size_t times = 5; for (size_t i = 0; i < times; i++) { network->forward(); network->wait(); compare_lite_tensor(output_tensor, result_mgb); } } TEST(TestNetWork, AsyncExec) { Config config; config.options.var_sanity_check_first_run = false; auto tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; std::string input_name = "data"; auto result_mgb = mgb_lar(model_path, config, input_name, tensor); std::shared_ptr network = std::make_shared(config); network->load_model(model_path); std::shared_ptr input_tensor = network->get_io_tensor(input_name); auto src_ptr = tensor->get_memory_ptr(); auto src_layout = tensor->get_layout(); input_tensor->reset(src_ptr, src_layout); std::shared_ptr output_tensor = network->get_output_tensor(0); auto result_tensor = std::make_shared( LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT}); void* out_data = result_tensor->get_memory_ptr(); output_tensor->reset(out_data, result_tensor->get_layout()); //! set async mode and callback volatile bool finished = false; network->set_async_callback([&finished]() { finished = true; }); network->forward(); size_t count = 0; while (finished == false) { count++; } ASSERT_GT(count, 0); compare_lite_tensor(output_tensor, result_mgb); } TEST(TestNetWork, CPUDeviceInput) { auto tensor = get_input_data("./input_data.npy"); Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT}; std::string model_path = "./shufflenet.mge"; std::string input_name = "data"; auto result_mgb = mgb_lar(model_path, {}, input_name, tensor); NetworkIO IO; bool is_host = false; IO.inputs.push_back({input_name, is_host}); std::shared_ptr network = std::make_shared(IO); network->load_model(model_path); std::shared_ptr input_tensor = network->get_io_tensor(input_name); auto src_ptr = tensor->get_memory_ptr(); input_tensor->reset(src_ptr, layout); network->forward(); network->wait(); std::shared_ptr output_tensor = network->get_output_tensor(0); compare_lite_tensor(output_tensor, result_mgb); } TEST(TestNetWork, ShareTensorWith) { auto tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; std::string input_name = "data"; auto result_mgb = mgb_lar(model_path, {}, input_name, tensor); std::shared_ptr network = std::make_shared(); network->load_model(model_path); std::shared_ptr input_tensor = network->get_io_tensor(input_name); input_tensor->share_memory_with(*tensor); network->forward(); network->wait(); std::shared_ptr output_tensor = network->get_output_tensor(0); compare_lite_tensor(output_tensor, result_mgb); } TEST(TestNetWork, InputCallBack) { auto tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; std::string input_name = "data"; auto result_mgb = mgb_lar(model_path, {}, input_name, tensor); NetworkIO ios; bool is_host = false; ios.inputs.push_back({input_name, is_host}); std::shared_ptr network = std::make_shared(ios); network->load_model(model_path); volatile bool finised_check_input = false; auto input_callback = [&tensor, &finised_check_input, input_name](const std::unordered_map< std::string, std::pair>>& input_map) { ASSERT_EQ(input_map.size(), 1); auto tensor_input = input_map.at(input_name).second; compare_lite_tensor(tensor_input, tensor); finised_check_input = true; }; network->set_start_callback(input_callback); std::shared_ptr input_tensor = network->get_io_tensor(input_name); input_tensor->share_memory_with(*tensor); network->forward(); network->wait(); ASSERT_TRUE(finised_check_input); std::shared_ptr output_tensor = network->get_output_tensor(0); compare_lite_tensor(output_tensor, result_mgb); } TEST(TestNetWork, OutputCallBack) { auto tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; std::string input_name = "data"; auto result_mgb = mgb_lar(model_path, {}, input_name, tensor); std::shared_ptr network = std::make_shared(); network->load_model(model_path); auto output_name = network->get_output_name(0); volatile bool finised_check_output = false; auto output_callback = [&result_mgb, &finised_check_output, output_name](const std::unordered_map< std::string, std::pair>>& output_map) { ASSERT_EQ(output_map.size(), 1); auto tensor_output = output_map.at(output_name).second; compare_lite_tensor(tensor_output, result_mgb); finised_check_output = true; }; network->set_finish_callback(output_callback); std::shared_ptr input_tensor = network->get_io_tensor(input_name); input_tensor->share_memory_with(*tensor); network->forward(); network->wait(); ASSERT_TRUE(finised_check_output); std::shared_ptr output_tensor = network->get_output_tensor(0); compare_lite_tensor(output_tensor, result_mgb); } TEST(TestNetWork, OutputShapeOnly) { auto tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; std::string input_name = "data"; std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]"; NetworkIO IO; bool is_host = true; IO.outputs.push_back({output_name, is_host, LiteIOType::LITE_IO_SHAPE}); Config config; std::shared_ptr network = std::make_shared(config, IO); network->load_model(model_path); std::shared_ptr input_tensor = network->get_io_tensor(input_name); std::shared_ptr output_tensor = network->get_io_tensor(output_name); auto src_ptr = tensor->get_memory_ptr(); auto src_layout = tensor->get_layout(); input_tensor->reset(src_ptr, src_layout); network->forward(); network->wait(); ASSERT_EQ(output_tensor->get_tensor_total_size_in_byte() / sizeof(float), 1000); } TEST(TestNetWork, ProfileIOdump) { auto tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; std::string input_name = "data"; NetworkIO IO; Config config; std::shared_ptr network = std::make_shared(config, IO); network->enable_profile_performance("./profile.json"); network->load_model(model_path); std::shared_ptr input_tensor = network->get_io_tensor(input_name); auto src_ptr = tensor->get_memory_ptr(); auto src_layout = tensor->get_layout(); input_tensor->reset(src_ptr, src_layout); network->forward(); network->wait(); ASSERT_TRUE(fopen("./profile.json", "r")); Runtime::enable_io_txt_dump(network, "./io_txt_dump.txt"); network->forward(); network->wait(); ASSERT_TRUE(fopen("./io_txt_dump.txt", "r")); } TEST(TestNetWork, LoadPackedModel) { auto tensor = get_input_data("./input_data.npy"); std::string model_path = "./test_packed_model.lite"; std::string input_name = "data"; NetworkIO IO; Config config; std::shared_ptr network = std::make_shared(config, IO); network->load_model(model_path); std::shared_ptr input_tensor = network->get_io_tensor(input_name); auto src_ptr = tensor->get_memory_ptr(); auto src_layout = tensor->get_layout(); input_tensor->reset(src_ptr, src_layout); network->forward(); network->wait(); } TEST(TestNetWork, GetDeviceType) { auto tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; Config config; std::shared_ptr network = std::make_shared(config); network->load_model(model_path); ASSERT_TRUE(network->get_device_type() == LiteDeviceType::LITE_CPU); } TEST(TestNetWork, GetModelExtraInfo) { std::string model_path = "./track_640_320_pack_model_rc4_with_info.lite"; Config config; std::shared_ptr network = std::make_shared(config); network->load_model(model_path); auto& extra_info = network->get_model_extra_info(); ASSERT_TRUE(extra_info.size() > 0); printf("extra_info %s \n", extra_info.c_str()); } #ifndef __IN_TEE_ENV__ #if MGB_ENABLE_JSON TEST(TestNetWork, GetMemoryInfo) { Config config; auto lite_tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor); std::shared_ptr network = std::make_shared(config); Runtime::set_cpu_threads_number(network, 2); network->load_model(model_path); network->get_static_memory_alloc_info(); std::shared_ptr input_tensor = network->get_input_tensor(0); auto src_ptr = lite_tensor->get_memory_ptr(); auto src_layout = lite_tensor->get_layout(); input_tensor->reset(src_ptr, src_layout); network->forward(); network->wait(); std::shared_ptr output_tensor = network->get_output_tensor(0); compare_lite_tensor(output_tensor, result_mgb); } #endif #endif #if LITE_WITH_CUDA TEST(TestNetWork, BasicDevice) { auto lite_tensor = get_input_data("./input_data.npy"); Config config; config.device_type = LiteDeviceType::LITE_CUDA; std::string model_path = "./shufflenet.mge"; auto result_lite = mgelite_lar(model_path, config, "data", lite_tensor); auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor); compare_lite_tensor(result_lite, result_mgb); } TEST(TestNetWork, DeviceInput) { auto tensor = get_input_data("./input_data.npy"); Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT}; std::string model_path = "./shufflenet.mge"; std::string input_name = "data"; auto result_mgb = mgb_lar(model_path, {}, input_name, tensor); NetworkIO IO; bool is_host = false; IO.inputs.push_back({input_name, is_host}); Config config; config.device_type = LiteDeviceType::LITE_CUDA; std::shared_ptr network = std::make_shared(config, IO); network->load_model(model_path); std::shared_ptr input_tensor = network->get_io_tensor(input_name); auto tensor_cuda = Tensor(LiteDeviceType::LITE_CUDA, layout); tensor_cuda.copy_from(*tensor); auto src_ptr = tensor_cuda.get_memory_ptr(); input_tensor->reset(src_ptr, layout); network->forward(); network->wait(); std::shared_ptr output_tensor = network->get_output_tensor(0); compare_lite_tensor(output_tensor, result_mgb); } TEST(TestNetWork, ChangeInputShapeDevice) { Config config; auto tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; std::string input_name = "data"; auto result_mgb = mgb_lar(model_path, config, input_name, tensor); config.device_type = LiteDeviceType::LITE_CUDA; std::shared_ptr network = std::make_shared(config); network->load_model(model_path); std::shared_ptr input_tensor = network->get_io_tensor(input_name); auto src_layout = Layout{{2, 3, 200, 200}, 4, LiteDataType::LITE_FLOAT}; input_tensor->set_layout(src_layout); std::shared_ptr input_tensor2 = network->get_io_tensor(input_name); //! Check memory is equal ASSERT_EQ(input_tensor->get_memory_ptr(), input_tensor2->get_memory_ptr()); network->forward(); network->wait(); std::shared_ptr output_tensor = network->get_output_tensor(0); auto output_layout = output_tensor->get_layout(); ASSERT_EQ(output_layout.shapes[0], 2); ASSERT_EQ(output_layout.shapes[1], 1000); } TEST(TestNetWork, DeviceOutput) { auto tensor = get_input_data("./input_data.npy"); std::string model_path = "./shufflenet.mge"; std::string input_name = "data"; std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]"; auto result_mgb = mgb_lar(model_path, {}, input_name, tensor); NetworkIO IO; bool is_host = false; IO.outputs.push_back({output_name, is_host}); Config config; config.device_type = LiteDeviceType::LITE_CUDA; std::shared_ptr network = std::make_shared(config, IO); network->load_model(model_path); std::shared_ptr input_tensor = network->get_io_tensor(input_name); std::shared_ptr output_tensor_cuda = network->get_io_tensor(output_name); auto src_ptr = tensor->get_memory_ptr(); auto src_layout = tensor->get_layout(); input_tensor->reset(src_ptr, src_layout); network->forward(); network->wait(); auto output_tensor = std::make_shared(); output_tensor->copy_from(*output_tensor_cuda); compare_lite_tensor(output_tensor, result_mgb); } TEST(TestNetWork, WrongIONameDevice) { auto tensor = get_input_data("./input_data.npy"); Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT}; std::string model_path = "./shufflenet.mge"; std::string input_name = "data"; std::string input_name_wrong = "data0"; std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]"; std::string output_name_wrong = "w_TRUE_DIV(EXP[12065],reduce0[12067])[12077]"; auto result_mgb = mgb_lar(model_path, {}, input_name, tensor); NetworkIO IO; bool is_host = false; IO.inputs.push_back({input_name, is_host}); IO.outputs.push_back({output_name, is_host}); IO.outputs.push_back({output_name_wrong, is_host}); Config config; config.device_type = LiteDeviceType::LITE_CUDA; std::shared_ptr network = std::make_shared(config, IO); network->load_model(model_path); auto tensor_cuda = Tensor(LiteDeviceType::LITE_CUDA, layout); tensor_cuda.copy_from(*tensor); std::shared_ptr input_tensor = network->get_io_tensor(input_name); auto src_ptr = tensor_cuda.get_memory_ptr(); auto src_layout = tensor_cuda.get_layout(); input_tensor->reset(src_ptr, src_layout); std::shared_ptr output_tensor_cuda = network->get_io_tensor(output_name); network->forward(); network->wait(); auto output_tensor = std::make_shared(); output_tensor->copy_from(*output_tensor_cuda); compare_lite_tensor(output_tensor, result_mgb); } TEST(TestNetWork, ConfigIONameDevice) { std::string model_path = "./model.mgb"; NetworkIO IO; bool is_host = false; IO.outputs.push_back({"clsfy", is_host}); Config config; config.device_type = LiteDeviceType::LITE_CUDA; std::shared_ptr network = std::make_shared(config, IO); network->compute_only_configured_output(); network->load_model(model_path); ASSERT_EQ(network->get_all_output_name().size(), 1); ASSERT_EQ(network->get_all_output_name()[0], "clsfy"); std::shared_ptr network2 = std::make_shared(config, IO); network2->load_model(model_path); ASSERT_EQ(network2->get_all_output_name().size(), 2); } TEST(TestNetWork, SetDeviceIdDeviceTest) { #if LITE_WITH_CUDA if (get_device_count(LITE_CUDA) <= 1) return; #endif std::string model_path = "./model.mgb"; NetworkIO IO; bool is_host = false; IO.inputs.push_back({"data", is_host}); IO.outputs.push_back({"clsfy", is_host}); Config config; config.device_type = LiteDeviceType::LITE_CUDA; std::shared_ptr network = std::make_shared(config, IO); network->set_device_id(1); network->load_model(model_path); auto inputs_names = network->get_all_input_name(); for (auto name : inputs_names) { auto tensor = network->get_io_tensor(name); ASSERT_EQ(tensor->get_device_id(), 1); if (name == "idx") { int* index_ptr = static_cast(tensor->get_memory_ptr()); for (int i = 0; i < 23; i++) { index_ptr[i] = i % 3; } } if (name == "landmark") { float* landmakrk_ptr = static_cast(tensor->get_memory_ptr()); for (int i = 0; i < 23 * 18 * 2; i++) { landmakrk_ptr[i] = 0.1f; } } } auto outputs_names = network->get_all_output_name(); for (auto name : outputs_names) { auto tensor = network->get_io_tensor(name); ASSERT_EQ(tensor->get_device_id(), 1); } network->forward(); network->wait(); } TEST(TestNetWork, SetStreamIdDeviceTest) { std::string model_path = "./model.mgb"; NetworkIO IO; bool is_host = false; IO.inputs.push_back({"data", is_host}); IO.outputs.push_back({"clsfy", is_host}); Config config; config.device_type = LiteDeviceType::LITE_CUDA; std::shared_ptr network = std::make_shared(config, IO); network->set_stream_id(1); network->load_model(model_path); auto inputs_names = network->get_all_input_name(); for (auto name : inputs_names) { auto tensor = network->get_io_tensor(name); if (name == "idx") { int* index_ptr = static_cast(tensor->get_memory_ptr()); for (int i = 0; i < 23; i++) { index_ptr[i] = i % 3; } } if (name == "landmark") { float* landmakrk_ptr = static_cast(tensor->get_memory_ptr()); for (int i = 0; i < 23 * 18 * 2; i++) { landmakrk_ptr[i] = 0.1f; } } } network->forward(); network->wait(); } #if CUDART_VERSION >= 10000 TEST(TestNetWork, DeviceAsyncExec) { auto tensor = get_input_data("./input_data.npy"); Config config; config.device_type = LiteDeviceType::LITE_CUDA; config.options.var_sanity_check_first_run = false; std::string model_path = "./shufflenet.mge"; std::string input_name = "data"; auto result_mgb = mgb_lar(model_path, config, input_name, tensor); std::shared_ptr network = std::make_shared(config); network->load_model(model_path); std::shared_ptr input_tensor = network->get_io_tensor(input_name); auto src_ptr = tensor->get_memory_ptr(); auto src_layout = tensor->get_layout(); input_tensor->reset(src_ptr, src_layout); std::shared_ptr output_tensor = network->get_output_tensor(0); auto result_tensor = std::make_shared( LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT}); void* out_data = result_tensor->get_memory_ptr(); output_tensor->reset(out_data, result_tensor->get_layout()); //! set async mode and callback volatile bool finished = false; network->set_async_callback([&finished]() { finished = true; }); network->forward(); size_t count = 0; while (finished == false) { count++; } ASSERT_GT(count, 0); compare_lite_tensor(output_tensor, result_mgb); } #endif #endif #if MGB_ATLAS TEST(TestNetWork, AtlasLoadNoDevice) { lite::Config config; config.device_type = LiteDeviceType::LITE_DEVICE_DEFAULT; auto network = std::make_shared(config); network->load_model("./model_atlas.mgb"); network->forward(); network->wait(); } TEST(TestNetWork, AtlasLoadDeviceInput) { lite::NetworkIO networkio; lite::IO input_data_io = {}; input_data_io.name = "data"; input_data_io.is_host = false; networkio.inputs.emplace_back(input_data_io); lite::IO input_input0_io = {}; input_input0_io.name = "input0"; input_input0_io.is_host = false; networkio.inputs.emplace_back(input_input0_io); lite::Config config; config.device_type = LiteDeviceType::LITE_DEVICE_DEFAULT; auto network = std::make_shared(config, networkio); network->load_model("./model_atlas.mgb"); network->forward(); network->wait(); } TEST(TestNetWork, AtlasLoadAtlas) { lite::Config config; config.device_type = LiteDeviceType::LITE_ATLAS; auto network = std::make_shared(config); network->load_model("./model_atlas.mgb"); network->forward(); network->wait(); } TEST(TestNetWork, AtlasLoadAtlasDeviceInput) { lite::NetworkIO networkio; lite::IO input_data_io = {}; input_data_io.name = "data"; input_data_io.is_host = false; networkio.inputs.emplace_back(input_data_io); lite::IO input_input0_io = {}; input_input0_io.name = "input0"; input_input0_io.is_host = false; networkio.inputs.emplace_back(input_input0_io); lite::Config config; config.device_type = LiteDeviceType::LITE_ATLAS; auto network = std::make_shared(config, networkio); network->load_model("./model_atlas.mgb"); network->forward(); network->wait(); } TEST(TestNetWork, AtlasDeviceID) { lite::Config config; config.device_type = LiteDeviceType::LITE_ATLAS; auto network = std::make_shared(config); network->set_device_id(1); network->load_model("./model_atlas.mgb"); std::shared_ptr input_tensor = network->get_input_tensor(0); std::shared_ptr output_tensor = network->get_output_tensor(0); network->forward(); network->wait(); ASSERT_EQ(output_tensor->get_device_id(), 1); } #endif #endif // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}