/** * \file dnn/src/cuda/convolution/opr_impl.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "src/cuda/convolution/opr_impl.h" #include "src/cuda/convolution/helper.h" #include "src/cuda/convolution/backward_data/algo.h" #include "src/cuda/convolution/backward_filter/algo.h" #include "src/cuda/conv_bias/opr_impl.h" #include "src/cuda/utils.h" using namespace megdnn; using namespace cuda; using namespace convolution; #define TO_STRING2(v) #v #define TO_STRING(v) TO_STRING2(v) #define CUDNN_VERSION_STR TO_STRING(CUDNN_MAJOR) "." \ TO_STRING(CUDNN_MINOR) "." TO_STRING(CUDNN_PATCHLEVEL) /* ============== ConvolutionForwardImpl ============== */ ConvolutionForwardImpl::ConvBiasExtraData ConvolutionForwardImpl::conv_bias_extra_data(const TensorLayout& dst) { auto conv_param = param(); ConvBiasExtraData ret = {this->handle()->create_operator(), TensorLayout(dst.dtype), TensorLayout(dst.dtype)}; ret.convbias_opr->param() = {param::ConvBias::NonlineMode::IDENTITY, conv_param.mode, conv_param.sparse, conv_param.format, conv_param.pad_h, conv_param.pad_w, conv_param.stride_h, conv_param.stride_w, conv_param.dilate_h, conv_param.dilate_w, 0, conv_param.compute_mode}; ret.convbias_opr->execution_policy() = {this->execution_policy().algorithm}; return ret; } ConvolutionForwardImpl::Algorithm* ConvolutionForwardImpl::get_algorithm_heuristic(const TensorLayout& src, const TensorLayout& filter, const TensorLayout& dst, size_t workspace_limit_in_bytes, bool reproducible) { auto extra_data = conv_bias_extra_data(dst); return static_cast(extra_data.convbias_opr.get()) ->get_algorithm_heuristic(src, filter, extra_data.bias_layout, extra_data.z_layout, dst, workspace_limit_in_bytes, reproducible); } std::vector ConvolutionForwardImpl::get_all_algorithms(const TensorLayout& src, const TensorLayout& filter, const TensorLayout& dst) { auto extra_data = conv_bias_extra_data(dst); return static_cast(extra_data.convbias_opr.get()) ->get_all_algorithms(src, filter, extra_data.bias_layout, extra_data.z_layout, dst); } size_t ConvolutionForwardImpl::get_workspace_in_bytes( const TensorLayout& src, const TensorLayout& filter, const TensorLayout& dst, const PreprocessedFilter* preprocessed_filter) { auto extra_data = conv_bias_extra_data(dst); return static_cast(extra_data.convbias_opr.get()) ->get_workspace_in_bytes( src, filter, extra_data.bias_layout, extra_data.z_layout, dst, reinterpret_cast::PreprocessedFilter*>( preprocessed_filter)); } void ConvolutionForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst, const PreprocessedFilter* preprocessed_filter, _megdnn_workspace workspace) { auto extra_data = conv_bias_extra_data(dst.layout); TensorND bias(nullptr, extra_data.bias_layout); TensorND z(nullptr, extra_data.z_layout); return static_cast(extra_data.convbias_opr.get()) ->exec(src, filter, bias, z, dst, reinterpret_cast::PreprocessedFilter*>( preprocessed_filter), workspace); } const char* ConvolutionForwardImpl::get_algorithm_set_name() const { return "CUDACONV0+CUDNN" CUDNN_VERSION_STR; } /* ============== ConvolutionBackwardDataImpl ============== */ void ConvolutionBackwardDataImpl::exec(_megdnn_tensor_in filter, _megdnn_tensor_in diff, _megdnn_tensor_out grad, _megdnn_workspace workspace) { AlgoBase::ExecArgs args(this, filter, diff, grad, workspace); auto algo = get_algorithm(this, filter.layout, args.filter_meta, diff.layout, grad.layout); algo->check_workspace(args, workspace).exec(args); } std::vector ConvolutionBackwardDataImpl::get_all_algorithms(const TensorLayout &filter, const TensorLayout &diff, const TensorLayout &grad) { return megdnn::get_all_algorithms( {this, filter, diff, grad}); } ConvolutionBackwardDataImpl::Algorithm* ConvolutionBackwardDataImpl::get_algorithm_heuristic( const TensorLayout& filter, const TensorLayout& diff, const TensorLayout& grad, size_t workspace_limit_in_bytes, bool reproducible) { auto fm = check_layout_fwd(grad, filter, diff); return get_algorithm_heuristic(filter, fm, diff, grad, workspace_limit_in_bytes, reproducible); } ConvolutionBackwardDataImpl::Algorithm* ConvolutionBackwardDataImpl::get_algorithm_heuristic(const TensorLayout& filter, const CanonizedFilterMeta& filter_meta, const TensorLayout& diff, const TensorLayout& grad, size_t workspace_limit_in_bytes, bool reproducible) { AlgoBase::SizeArgs args(this, filter, filter_meta, diff, grad); if (args.filter_meta.group > 1 && sm_algo_pack.chanwise.is_available_reproducible( args, reproducible, workspace_limit_in_bytes)) { // prefer special chanwise impl return &sm_algo_pack.chanwise; } auto get_cudnn_algo = [this, &args, workspace_limit_in_bytes, reproducible]() -> ConvolutionBackwardDataImpl::AlgoBase* { auto cudnn_handle = cuda::cudnn_handle(this->handle()); CUDNNBwdDataDescs desc; args.init_desc(desc); //disable, segfault in megbrain, need further investigate. #if 0 bool is_heuristic_success= convolution:: PerformanceModelBackwardData::get_algo_backward_data_success( args, desc, workspace_limit_in_bytes, &algo); if (is_heuristic_success) { return sm_algo_pack.cudnn_from_enum(algo); } #endif #if CUDNN_MAJOR >= 7 int max_count = 0; cudnn_check(cudnnGetConvolutionBackwardDataAlgorithmMaxCount( cudnn_handle, &max_count)); SmallVector algo_perf(max_count); int ret_count = 0; cudnn_check(cudnnGetConvolutionBackwardDataAlgorithm_v7( cudnn_handle, desc.filter_desc.desc, desc.diff_desc.desc, desc.conv_desc.desc, desc.grad_desc.desc, max_count, &ret_count, algo_perf.data())); for (int i = 0; i < ret_count; ++i) { if (algo_perf[i].memory > workspace_limit_in_bytes) continue; if (reproducible) { if (algo_perf[i].determinism == CUDNN_DETERMINISTIC) { return reinterpret_cast( sm_algo_pack.cudnn_from_enum(algo_perf[i].algo)); } } else { return reinterpret_cast( sm_algo_pack.cudnn_from_enum(algo_perf[i].algo)); } } return nullptr; #else cudnnConvolutionBwdDataAlgo_t algo; cudnn_check(cudnnGetConvolutionBackwardDataAlgorithm( cudnn_handle, desc.filter_desc.desc, desc.diff_desc.desc, desc.conv_desc.desc, desc.grad_desc.desc, CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT, workspace_limit_in_bytes, &algo)); auto&& cast_algo = reinterpret_cast(sm_algo_pack.cudnn_from_enum(algo)); return reinterpret_cast( megdnn::get_reproducible_algo( cast_algo, reproducible)); #endif }; if (is_cudnn_supported(args.as_fwd_args())) { if (auto algo = get_cudnn_algo()) return algo; } if (args.filter_meta.group > 1) { auto orig_args = args; TensorLayout a, b; AlgoGroupConvGeneral::modify_size_args(args, a, b); if (is_cudnn_supported(args.as_fwd_args())) { if (auto algo = get_cudnn_algo()) return sm_algo_pack.algo2gconv.at(algo); } args = orig_args; } if (args.filter_layout->dtype.enumv() != DTypeTrait::enumv) { if (reproducible) { return megdnn::get_reproducible_algo( sm_algo_pack.non_cudnn_algos, args, workspace_limit_in_bytes, "cuda conv bwd_data"); } else { return megdnn::get_usable_algo( sm_algo_pack.non_cudnn_algos, args, workspace_limit_in_bytes, "cuda conv bwd_data"); } } else { if (reproducible) { return megdnn::get_reproducible_algo( sm_algo_pack.bfloat16_algos, args, workspace_limit_in_bytes, "cuda conv bwd_data"); } else { return megdnn::get_usable_algo( sm_algo_pack.bfloat16_algos, args, workspace_limit_in_bytes, "cuda conv bwd_data"); } } } size_t ConvolutionBackwardDataImpl::get_workspace_in_bytes( const TensorLayout &filter, const TensorLayout &diff, const TensorLayout &grad) { AlgoBase::SizeArgs args(this, filter, diff, grad); return get_algorithm(this, filter, args.filter_meta, diff, grad)-> get_workspace_in_bytes(args); } const char* ConvolutionBackwardDataImpl::get_algorithm_set_name() const { return "CUDACONV0+CUDNN" CUDNN_VERSION_STR; } /* ============== ConvolutionBackwardFilterImpl ============== */ void ConvolutionBackwardFilterImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in diff, _megdnn_tensor_out grad, _megdnn_workspace workspace) { AlgoBase::ExecArgs args(this, src, diff, grad, workspace); auto algo = get_algorithm(this, src.layout, diff.layout, grad.layout, args.grad_filter_meta); algo->check_workspace(args, workspace).exec(args); } std::vector ConvolutionBackwardFilterImpl::get_all_algorithms(const TensorLayout &src, const TensorLayout &diff, const TensorLayout &grad) { return megdnn::get_all_algorithms( {this, src, diff, grad}); } ConvolutionBackwardFilterImpl::Algorithm* ConvolutionBackwardFilterImpl::get_algorithm_heuristic( const TensorLayout& src, const TensorLayout& diff, const TensorLayout& grad, size_t workspace_limit_in_bytes, bool reproducible) { auto fm = check_layout_fwd(src, grad, diff); return get_algorithm_heuristic(src, diff, grad, fm, workspace_limit_in_bytes, reproducible); } ConvolutionBackwardFilterImpl::Algorithm* ConvolutionBackwardFilterImpl::get_algorithm_heuristic( const TensorLayout& src, const TensorLayout& diff, const TensorLayout& grad, const CanonizedFilterMeta& grad_meta, size_t workspace_limit_in_bytes, bool reproducible) { AlgoBase::SizeArgs args(this, src, diff, grad, grad_meta); if (args.grad_filter_meta.group > 1 && sm_algo_pack.chanwise.is_available_reproducible( args, reproducible, workspace_limit_in_bytes)) { // prefer special chanwise impl return &sm_algo_pack.chanwise; } auto get_cudnn_algo = [this, &args, workspace_limit_in_bytes, reproducible]() -> ConvolutionBackwardFilterImpl::AlgoBase* { auto cudnn_handle = cuda::cudnn_handle(this->handle()); CUDNNBwdFilterDescs desc; args.init_desc(desc); //disable, segfault in megbrain, need further investigate. #if 0 auto is_heuristic_success = convolution::PerformanceModelBackwardFilter:: get_algo_backward_filter_success( args, desc, workspace_limit_in_bytes, &algo); if (is_heuristic_success) { return sm_algo_pack.cudnn_from_enum(algo); } #endif #if CUDNN_MAJOR >= 7 int max_count = 0; cudnn_check(cudnnGetConvolutionBackwardFilterAlgorithmMaxCount( cudnn_handle, &max_count)); SmallVector algo_perf(max_count); int ret_count = 0; cudnn_check(cudnnGetConvolutionBackwardFilterAlgorithm_v7( cudnn_handle, desc.src_desc.desc, desc.diff_desc.desc, desc.conv_desc.desc, desc.grad_desc.desc, max_count, &ret_count, algo_perf.data())); for (int i = 0; i < ret_count; ++i) { if (algo_perf[i].memory > workspace_limit_in_bytes) continue; if (reproducible) { if (algo_perf[i].determinism == CUDNN_DETERMINISTIC) { return reinterpret_cast( sm_algo_pack.cudnn_from_enum(algo_perf[i].algo)); } } else { return reinterpret_cast( sm_algo_pack.cudnn_from_enum(algo_perf[i].algo)); } } return nullptr; #else cudnnConvolutionBwdFilterAlgo_t algo; cudnn_check(cudnnGetConvolutionBackwardFilterAlgorithm( cudnn_handle, desc.src_desc.desc, desc.diff_desc.desc, desc.conv_desc.desc, desc.grad_desc.desc, CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT, workspace_limit_in_bytes, &algo)); auto&& cast_algo = reinterpret_cast(sm_algo_pack.cudnn_from_enum(algo)); return reinterpret_cast( megdnn::get_reproducible_algo( cast_algo, reproducible)); #endif }; if (is_cudnn_supported(args.as_fwd_args())) { if (auto algo = get_cudnn_algo()) return algo; } if (args.grad_filter_meta.group > 1) { auto orig_args = args; TensorLayout a, b; AlgoGroupConvGeneral::modify_size_args(args, a, b); if (is_cudnn_supported(args.as_fwd_args())) { if (auto algo = get_cudnn_algo()) return sm_algo_pack.algo2gconv.at(algo); } args = orig_args; } if (args.src_layout->dtype.enumv() != DTypeTrait::enumv) { if (reproducible) { return megdnn::get_reproducible_algo( sm_algo_pack.non_cudnn_algos, args, workspace_limit_in_bytes, "cuda conv bwd_filter"); } else { return megdnn::get_usable_algo( sm_algo_pack.non_cudnn_algos, args, workspace_limit_in_bytes, "cuda conv bwd_filter"); } } else { if (reproducible) { return megdnn::get_reproducible_algo( sm_algo_pack.bfloat16_algos, args, workspace_limit_in_bytes, "cuda conv bwd_filter"); } else { return megdnn::get_usable_algo( sm_algo_pack.bfloat16_algos, args, workspace_limit_in_bytes, "cuda conv bwd_filter"); } } } size_t ConvolutionBackwardFilterImpl::get_workspace_in_bytes( const TensorLayout &src, const TensorLayout &diff, const TensorLayout &grad) { AlgoBase::SizeArgs args(this, src, diff, grad); return get_algorithm(this, src, diff, grad, args.grad_filter_meta)-> get_workspace_in_bytes(args); } const char* ConvolutionBackwardFilterImpl::get_algorithm_set_name() const { return "CUDACONV0+CUDNN" CUDNN_VERSION_STR; } // vim: syntax=cpp.doxygen