# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import collections import contextlib import functools import itertools import json import os import typing import warnings import weakref import numpy as np from ..core._imperative_rt import GraphProfiler, common from ..core._imperative_rt.core2 import Tensor as RawTensor from ..core._imperative_rt.core2 import ( TensorWeakRef, apply, set_compiled, set_tracing, skip_tracing, unset_compiled, unset_tracing, ) from ..core._imperative_rt.ops import CollectiveComm, RemoteRecv, RemoteSend from ..core._trace_option import set_symbolic_shape from ..core._wrap import device as as_device from ..core.ops.builtin import BackwardGraph, OpDef from ..core.ops.special import Const from ..core.tensor import megbrain_graph as G from ..core.tensor.utils import setscalar from .sublinear_memory_config import SublinearMemoryConfig def _input_node_use_static_shape(): return os.environ.get("MEGENGINE_INPUT_NODE_USE_STATIC_SHAPE") is not None class TraceMismatchError(RuntimeError): pass active_trace = None def is_tracing(): if active_trace is None: return False else: return not skip_tracing @contextlib.contextmanager def exclude_from_trace(): global skip_tracing if skip_tracing: yield return try: skip_tracing = True unset_tracing() if active_trace is not None: active_trace._begin_excluded_region() yield finally: skip_tracing = False set_tracing() class TensorInfo: __slots__ = ( # collected attributes "external", "data_read", "shape_read", "value_read", "exported", "device", "dtype", "shape", "is_const", "bound_data", # resources for execution "varnode", "data_setter", "shape_reader", "value_reader", "data_reader", ) def __init__(self): self.exported = None self.data_read = None self.shape_read = None self.value_read = None self.bound_data = None self.data_setter = None self.shape_reader = None self.value_reader = None self.data_reader = None _io_op_types = {CollectiveComm, RemoteSend, RemoteRecv} class trace: """ Wraps a callable and provide: * tracing via :meth:`.trace` and :meth:`.dump` * accelerated evalutaion via :meth:`.__call__` :param function: the function will be traced. :param symbolic: whether to apply symbolic execution for tracing. Default: False :param capture_as_const: capture global vars or closures as const value. Default: False :param sublinear_memory_config: configuration for sublinear memory optimization. If not None, it enables sublinear memory optimization with given setting. :param profiling: whether to profile compiled trace. Default: False :param opt_level: optimization level for compiling trace. :param symbolic_shape: whether to use symbolic shape for tracing. Default: True """ def __new__(cls, *args, **kwargs): if not args: return functools.partial(cls, **kwargs) return super().__new__(cls) def __init__( self, function, symbolic=False, capture_as_const=False, sublinear_memory_config: SublinearMemoryConfig = None, profiling: bool = False, opt_level: int = None, symbolic_shape: bool = True, ): self.__wrapped__ = function self._symbolic = symbolic self._capture_as_const = capture_as_const self._sublinear_memory_config = sublinear_memory_config self._profiling = profiling self._profiler = None self._graph_opt_level = opt_level self._symbolic_shape = symbolic_shape self._output_handles = set() self._reset() def _reset(self): self._untraced = True self._tinfo = [] # handle -> TensorInfo self._seq = [] self._pc = 0 self._graph = None self._need_reset_nodes = None self._lazy_eval_graph = None self._lazy_eval_tensors = {} self._lazy_eval_links = None self._active_tensors = {} self._tensor_remaps = None self._inputs_to_restore = None self._arg_bindings = None self._kwarg_bindings = None self._output_bindings = None self._output_names = None def _new_handle(self): handle = len(self._tinfo) info = TensorInfo() self._tinfo.append(info) return handle, info def _apply_op(self, op, args): assert not self._untraced # check against trace if self._pc >= len(self._seq): raise TraceMismatchError("trace should end here, but more op observed") record = self._seq[self._pc] op_, ihandles, ohandles = record if (isinstance(op_, str) and op_ == "Const") or (op != op_): raise TraceMismatchError("op different from last time") if len(ihandles) != len(args): raise TraceMismatchError("op input size different from last time") # check all inputs of crrent op for h, x in zip(ihandles, args): info = self._tinfo[h] if info.external: if ( x._compiled_info is not None and not self._tinfo[x._mixin_handle].exported ): raise TraceMismatchError( "failed to capture: input was an external tensor " "last time, got an internal tensor this time" ) if info.bound_data: if x._compiled_info is not None: raise TraceMismatchError( "const capture violated: was an external tensor " "last time, got an internal tensor this time" ) if x._handle != info.bound_data._handle: if not np.array_equal(x.numpy(), info.bound_data.numpy()): raise TraceMismatchError( "const capture violated: got " "a different tensor this time" ) else: if info.dtype != x.dtype: raise TraceMismatchError( "failed to capture: different dtype from last time" ) if info.device != x.device: raise TraceMismatchError( "failed to capture: different device from last time" ) info.data_setter.set_value(x._dev_tensor()) else: if x._mixin_handle == -1: if x._handle not in self._tensor_remaps: raise TraceMismatchError( "unexpected capture: trying to use an external tensor as " "input, but that input was an internal tensor last time" ) else: x._mixin_handle = self._tensor_remaps[ x._handle ]._CompiledTensorProxy__handle if x._mixin_handle != h: raise TraceMismatchError( "mis-wiring: input edge to an data flow " "graph node is different from last time" ) self._pc += 1 outputs = [] for h in ohandles: info = self._tinfo[h] # generate output tensor and create compied info y = RawTensor(info.varnode) y._compiled_info = CompiledTensorProxy(h) y._mixin_handle = h outputs += [y] self._active_tensors[h] = TensorWeakRef(y) self._output_handles.update(ohandles) return outputs def _apply_const(self, value, dtype, device): assert not self._untraced # check against trace if self._pc >= len(self._seq): raise TraceMismatchError("trace should end here, but more op observed") record = self._seq[self._pc] op_, ihandles, ohandles = record # Const op is represented by a str assert isinstance(op_, str) and op_ == "Const" eq = np.all(np.atleast_1d(value) == self._tinfo[ohandles[0]].bound_data.numpy()) if not eq: raise TraceMismatchError( "const tensor violated: got a different tensor this time" ) self._pc += 1 (h,) = ohandles outputs = [self._tinfo[h].bound_data] return outputs # run in first step, record information for trace def _record_op(self, op, inputs, outputs): if skip_tracing: for x in inputs: h = getattr(x, "_mixin_handle", -1) if h >= 0: self._tinfo[h].data = True return ihandles = [] for x in inputs: h = getattr(x, "_mixin_handle", -1) if h < 0 or (not self._capture_as_const and self._tinfo[h].exported): h, info = self._new_handle() info.external = True info.device = x.device info.dtype = x.dtype info.shape = x.shape if self._capture_as_const: info.bound_data = RawTensor(x.numpy(), x.dtype, x.device, False) ihandles.append(h) ohandles = [] for x in outputs: h, info = self._new_handle() ohandles.append(h) info.external = False x._mixin_handle = h x._recording = True x._trace_mixin_info = info self._active_tensors[h] = TensorWeakRef(x) if self._symbolic: self._lazy_eval_tensors[h] = TensorWeakRef(x) self._seq.append((op, tuple(ihandles), tuple(ohandles))) def _record_const(self, outputs): if skip_tracing: (x,) = outputs h = getattr(x, "_mixin_handle", -1) if h >= 0: self._tinfo[h].data_read = True return (x,) = outputs h, info = self._new_handle() ohandles = [h] info.external = True info.device = x.device info.dtype = x.dtype info.shape = x.shape info.bound_data = x info.is_const = True x._mixin_handle = h x._recording = True x._trace_mixin_info = info if self._symbolic: self._lazy_eval_tensors[h] = TensorWeakRef(x) self._seq.append(("Const", tuple(), tuple(ohandles))) def _set_active(self, active: bool): global active_trace if active: if active_trace: raise NotImplementedError("sorry, not implemented: nested trace") active_trace = self else: assert active_trace is self active_trace = None def _init_trace(self, symbolic: bool): if symbolic: self._lazy_eval_graph = G.Graph() self._apply_graph_options(self._lazy_eval_graph) self._lazy_eval_links = () def _take_escaped_tensors(self): escaped_tensors = tuple( filter(lambda x: x() is not None, self._active_tensors.values()) ) self._active_tensors.clear() return escaped_tensors def _lazy_eval(self, lazy_eval_graph, lazy_eval_tensors, lazy_eval_links): lazy_eval_tensors = list( filter(lambda x: x() is not None, lazy_eval_tensors.values()) ) readers = [G.OutputNode(x()._varnode).outputs[0] for x in lazy_eval_tensors] self._apply_graph_options(lazy_eval_graph) # FIXME if self._graph_opt_level is not None: lazy_eval_graph.options.graph_opt_level = self._graph_opt_level else: lazy_eval_graph.options.graph_opt_level = 2 lazy_eval_graph._set_priority_to_id([*lazy_eval_links, *readers]) lazy_eval_graph.compile(*lazy_eval_links, *readers) lazy_eval_graph() for r, x in zip(readers, lazy_eval_tensors): # get values from lazy_eval_graph and assign to lazy_eval tensor x()._handle = RawTensor(r.op.get_value())._handle x()._reset_varnode() @contextlib.contextmanager def _setup(self): interrupted = False def do_enter(): set_tracing() self._save_symbolic_shape = set_symbolic_shape(self._symbolic_shape) self._set_active(True) if self._untraced: self._init_trace(self._symbolic) else: set_compiled() if self._graph is None: self._compile() self._graph.execute() def do_finalize(): escaped_tensors = self._take_escaped_tensors() if self._untraced: for x in escaped_tensors: if x(): info = self._tinfo[x()._mixin_handle] info.data_read = True x()._mixin_handle = -1 x()._recording = False if self._inputs_to_restore: for x in self._inputs_to_restore: x._mixin_handle = -1 x._recording = False if self._symbolic and ( self._lazy_eval_tensors or self._lazy_eval_links ): # eval lazy eval tensors self._lazy_eval( self._lazy_eval_graph, self._lazy_eval_tensors, self._lazy_eval_links, ) self._lazy_eval_graph = None self._lazy_eval_tensors = None self._lazy_eval_links = None self._untraced = False else: # compiled_tensor leaks if self._pc == len(self._seq): for x in escaped_tensors: try: assign_raw_tensor(x(), RawTensor(x()._dev_tensor())) except RuntimeError: # TraceMismatchError thrown in do_exit pass self._graph.wait() self._reset_exec_env() # reset status self._pc = 0 self._tensor_remaps = None self._set_active(False) set_symbolic_shape(self._save_symbolic_shape) unset_compiled() unset_tracing() def do_exit(): unset_tracing() if not self._untraced and self._pc != len(self._seq): raise TraceMismatchError("premature end") if not self._symbolic or not self._untraced: # reset output tensors for x in self._active_tensors.values(): if x() is not None: x()._dev_tensor() x()._reset_varnode() x()._mixin_handle = -1 x()._recording = False x()._trace_mixin_info = None try: do_enter() yield do_exit() except: interrupted = True raise finally: do_finalize() if interrupted: self._reset() def _begin_excluded_region(self): if self._capture_as_const: raise RuntimeError( "exclude_from_trace cannot be used with capture_as_const" ) if self._untraced: # conditionally reading a compiled tensor in excluded region # is permitted, so we have to assume every tensor might be read for x in self._active_tensors.values(): if x(): info = self._tinfo[x()._mixin_handle] info.exported = True info.data_read = True else: for x in self._active_tensors.values(): if x(): x()._dev_tensor() def _apply_graph_options(self, graph): graph.options.no_force_inplace = True graph.options.seq_opt.enable_seq_comp_node_opt = False # graph opt level # if self._graph_opt_level is not None: # graph.options.graph_opt_level = self._graph_opt_level # FIXME graph.options.graph_opt_level = 0 # sublinear if self._sublinear_memory_config is not None: graph.options.enable_sublinear_memory_opt = True sublinear_config = graph.options.sublinear_mem_config sublinear_config.lb_memory = self._sublinear_memory_config.lb_memory sublinear_config.genetic_nr_iter = ( self._sublinear_memory_config.genetic_nr_iter ) sublinear_config.genetic_pool_size = ( self._sublinear_memory_config.genetic_pool_size ) sublinear_config.thresh_nr_try = self._sublinear_memory_config.thresh_nr_try sublinear_config.num_worker = self._sublinear_memory_config.num_worker # profile if self._profiling: self._profiler = GraphProfiler(graph) if int(os.getenv("MEGENGINE_INPLACE_UPDATE", "0")): graph.options.var_sanity_check_first_run = False def _compile(self): graph = self._graph = G.Graph() graph.options.async_exec_level = 0b100 self._apply_graph_options(graph) # graph.options.graph_opt_level = 0 need_reset_nodes = self._need_reset_nodes = [] # links enforce ordering of I/O nodes in_out_links = () io_links = () readers = [] if self._capture_as_const: for h in itertools.chain(self._arg_bindings, self._kwarg_bindings.values()): info = self._tinfo[h] opnode = info.data_setter = G.InputNode( device=info.device, dtype=info.dtype, shape=info.shape or (1,), graph=graph, use_static_shape=_input_node_use_static_shape(), ) need_reset_nodes.append(opnode) info.varnode = opnode.outputs[0] in_out_links += opnode.outputs[1:] for op, ihandles, ohandles in self._seq: if isinstance(op, str) and op == "Const": assert len(ihandles) == 0 (h,) = ohandles info = self._tinfo[h] if not hasattr(info, "varnode"): assert info.external assert info.bound_data info.varnode = graph.make_const( info.bound_data.numpy(), info.bound_data.dtype, info.bound_data.device, ) continue require_links = type(op) in _io_op_types ivars = [] for i, h in enumerate(ihandles): info = self._tinfo[h] if not hasattr(info, "varnode"): assert info.external if info.bound_data: if hasattr(info, "is_const") and info.is_const: info.varnode = graph.make_const( info.bound_data.numpy(), info.bound_data.dtype, info.bound_data.device, ) else: info.varnode = graph.make_const( info.bound_data._dev_tensor() # info.bound_data.numpy() ) else: opnode = info.data_setter = G.InputNode( *in_out_links, device=info.device, dtype=info.dtype, shape=info.shape or (1,), graph=graph, use_static_shape=_input_node_use_static_shape(), ) need_reset_nodes.append(opnode) info.varnode, *in_out_links = opnode.outputs if require_links and i == 0 and len(io_links) > 0: opnode = G.VirtualDepNode( [info.varnode, *io_links], str(io_links[0].device) ) info.varnode = opnode.outputs[0] io_links = (info.varnode,) ivars.append(info.varnode) if isinstance(op, BackwardGraph): ovars = G.apply_backward_varnode(op, *ivars) else: ovars = G.apply_normal_varnode(op, *ivars) if require_links and len(ovars) > 0: io_links = (ovars[0],) assert len(ovars) == len(ohandles) for h, v in zip(ohandles, ovars): info = self._tinfo[h] info.varnode = v def add_reader(opnode): nonlocal in_out_links need_reset_nodes.append(opnode) readers.append(opnode.outputs[0]) in_out_links = opnode.outputs if info.data_read: # Shape can be obtained from data so doesn't need its own # output node. On the other hand, value is read separately # to leverage eager h2d copy info.shape_read = False opnode = info.data_reader = G.OutputNode(v, *in_out_links) add_reader(opnode) if info.value_read: opnode = info.value_reader = G.ValueOutputNode(v, *in_out_links) add_reader(opnode) if info.shape_read: opnode = info.shape_reader = G.AttrOutputNode(v, *in_out_links) add_reader(opnode) # FIXME if self._graph_opt_level is not None: graph.options.graph_opt_level = self._graph_opt_level else: graph.options.graph_opt_level = 2 graph._set_priority_to_id([*readers, *in_out_links, *io_links]) graph.compile(*readers, *in_out_links, *io_links) def _reset_exec_env(self): for opnode in self._need_reset_nodes: opnode.reset() def __call__(self, *args, **kwargs): if is_tracing(): return self.__wrapped__(*args, **kwargs) with self._setup(): if self._capture_as_const: self._process_inputs(*args, **kwargs) outputs = self.__wrapped__(*args, **kwargs) if self._capture_as_const: self._process_outputs(outputs) # outputs could be None if outputs is not None: list_outputs = outputs if isinstance(outputs, collections.abc.Mapping): _, list_outputs = zip(*sorted(outputs.items())) elif not isinstance(outputs, collections.abc.Sequence): list_outputs = (outputs,) for o in list_outputs: # if outputs are copied, then use the newest info in trace data structure if o._copied: self._active_tensors[o._mixin_handle] = TensorWeakRef(o) if self._untraced and self._symbolic: self._lazy_eval_tensors[o._mixin_handle] = TensorWeakRef(o) return outputs def dump( self, file, *, arg_names=None, output_names=None, append=False, optimize_for_inference=True, **kwargs ): r""" Serializes trace to file system. :param file: output file, could be file object or filename. :param arg_names: names of the input tensors in the traced function. :param output_names: names of the output tensors in the traced function, use the default name if not specified. :param append: whether output is appended to ``file``. Only works when ``file`` is str. :param optimize_for_inference: enbale optmizations, will skip all optimize options if this is False. Default: True :Keyword Arguments: * enable_io16xc32 -- whether to use float16 for I/O between oprs and use float32 as internal computation precision. Note the output var would be changed to float16. * enable_ioc16 -- whether to use float16 for both I/O and computation precision. * enable_hwcd4 -- whether to use NHWCD4 data layout. This is faster on some OpenCL backend. * enable_nchw88 -- whether to use NCHW88 data layout, currently used in X86 AVX backend. * enable_nchw44 -- whether to use NCHW44 data layout, currently used in arm backend. * enable_nchw44_dot -- whether to use NCHW44_dot data layout, currently used in armv8.2+dotprod backend. * enable_nchw4 -- whether to use NCHW4 data layout, currently used in nvidia backend(based on cudnn). * enable_nchw32 -- whether to use NCHW32 data layout, currently used in nvidia backend with tensorcore(based on cudnn). * enable_chwn4 -- whether to use CHWN4 data layout, currently used in nvidia backend with tensorcore. * enable_fuse_conv_bias_nonlinearity: whether to fuse conv+bias+nonlinearty into one opr. * enable_fuse_conv_bias_with_z: whether to fuse conv_bias with z input for inference on nvidia backend(this optimization pass will result in mismatch of the precision of output of training and inference) """ if not self._capture_as_const: raise ValueError( "you must specify capture_as_const=True at __init__ to use dump" ) if self._untraced: raise RuntimeError("should run at least once before calling dump") if self._output_names and output_names: raise TypeError( "cannot specify output_names when output is already in dict format" ) if output_names and not isinstance(output_names, collections.abc.Sequence): output_names = (output_names,) if output_names and len(output_names) != len(self._output_bindings): raise ValueError( "wrong number of output_names, should be {} values".format( len(self._output_bindings) ) ) if arg_names is None: arg_names = ["arg_%d" % i for i in range(len(self._arg_bindings))] if arg_names and not isinstance(arg_names, collections.abc.Sequence): arg_names = (arg_names,) if arg_names and len(arg_names) != len(self._arg_bindings): raise ValueError( "wrong number of arg_names, should be {} values".format( len(self._arg_bindings) ) ) output_names = output_names or self._output_names dumped_device = as_device("xpux") h2v = {} graph = G.Graph() # apply graph_opt_level in dump if self._graph_opt_level is not None: graph.options.graph_opt_level = self._graph_opt_level for i, h in enumerate(self._arg_bindings): info = self._tinfo[h] h2v[h] = graph.make_h2d( dtype=info.dtype, device=dumped_device, shape=info.shape or (1,), name=arg_names[i] if arg_names else None, ) for k, h in self._kwarg_bindings.items(): info = self._tinfo[h] h2v[h] = graph.make_h2d( dtype=info.dtype, device=dumped_device, shape=info.shape or (1,), name=k ) for op, ihandles, ohandles in self._seq: if isinstance(op, str) and op == "Const": assert len(ihandles) == 0 (h,) = ohandles info = self._tinfo[h] if h not in h2v: assert info.external assert info.bound_data h2v[h] = graph.make_const( info.bound_data.numpy(), dtype=info.dtype, device=info.device, ) continue ivars = [] for h in ihandles: info = self._tinfo[h] if h not in h2v: assert info.external assert info.bound_data h2v[h] = graph.make_const( info.bound_data.numpy(), dtype=info.dtype, device=dumped_device ) ivars.append(h2v[h]) ovars = G.apply_normal_varnode(op, *ivars) assert len(ovars) == len(ohandles) h2v.update(zip(ohandles, ovars)) dest_vars = [] for i, h in enumerate(self._output_bindings): v = h2v[h] if output_names: v.name = output_names[i] dest_vars.append(v) if optimize_for_inference: dest_vars = G.optimize_for_inference(dest_vars, **kwargs) if isinstance(file, str): permission = "wb" if append == False else "ab" file = open(file, permission) dump_content, dump_info = G.dump_graph(dest_vars) file.write(dump_content) return dump_info def _process_inputs(self, *args, **kwargs): if self._untraced: self._inputs_to_restore = [] def record_input(x): if x is None: return h, info = self._new_handle() info.external = False info.device = x.device info.dtype = x.dtype info.shape = x.numpy().shape x._mixin_handle = h x._recording = True x._trace_mixin_info = info self._inputs_to_restore.append(x) return h self._arg_bindings = [] for i, x in enumerate(args): if not isinstance(x, RawTensor): raise TypeError( "positional arguments should all be tensor " "but args[%d] cannot be recognized as one" % i ) self._arg_bindings.append(record_input(x)) self._kwarg_bindings = {} for k, x in kwargs.items(): if isinstance(x, RawTensor): self._kwarg_bindings[k] = record_input(x) else: if len(args) != len(self._arg_bindings): raise TraceMismatchError("positional argument length mismatch") self._tensor_remaps = {} for i, (h, x) in enumerate(zip(self._arg_bindings, args)): if not isinstance(x, RawTensor): raise TypeError( "positional arguments should all be tensor " "but args[%d] cannot be recognized as one" % i ) info = self._tinfo[h] if x.dtype != info.dtype: raise TypeError("args[%d].dtype different from last time" % i) if x.device != info.device: raise TypeError("args[%d].device different from last time" % i) info.data_setter.set_value(x._dev_tensor()) self._tensor_remaps[x._handle] = CompiledTensorProxy(h) kwargs_tensors = {} for k, x in kwargs.items(): if isinstance(x, RawTensor): kwargs_tensors[k] = x if set(kwargs_tensors) != set(self._kwarg_bindings): too_many = set(kwargs_tensors) - set(self._kwarg_bindings) too_few = set(self._kwarg_bindings) - set(kwargs_tensors) if too_many: raise TraceMismatchError( "keyword arguments found to be tensor this time " "but were non-tensor previously: %s" % " ".join(too_many) ) if too_few: raise TraceMismatchError( "keyword arguments found to be non-tensor this time " "but were tensor previously: %s" % " ".join(too_few) ) for k, h in self._kwarg_bindings.items(): x = kwargs_tensors[k] info = self._tinfo[h] if x.dtype != info.dtype: raise TypeError("kwargs[%s].dtype different from last time" % k) if x.device != info.device: raise TypeError("kwargs[%s].device different from last time" % k) info.data_setter.set_value(x._dev_tensor()) self._tensor_remaps[x._handle] = CompiledTensorProxy(h) def _process_outputs(self, outputs): output_names = None if isinstance(outputs, collections.abc.Mapping): output_names, outputs = zip(*sorted(outputs.items())) elif not isinstance(outputs, collections.abc.Sequence): outputs = (outputs,) if not self._untraced: if output_names != self._output_names: too_many = set(output_names) - set(self._output_names) too_few = set(self._output_names) - set(output_names) if too_many: raise TraceMismatchError( "output has more keys than last time: %s" % " ".join(too_many) ) if too_few: raise TraceMismatchError( "output has less keys than last time: %s" % " ".join(too_few) ) if len(outputs) != len(self._output_bindings): raise TraceMismatchError("output size differs from last time") else: self._output_names = output_names self._output_bindings = [] for i, x in enumerate(outputs): if not isinstance(x, RawTensor): raise TypeError("every item of return value should be tensor") if self._untraced: h = x._mixin_handle if h < 0: raise RuntimeError("output is not computed from inputs") self._output_bindings.append(h) else: h = x._mixin_handle if h not in self._output_handles: raise RuntimeError("output is not computed from inputs") if h != self._output_bindings[i]: raise TraceMismatchError( "retval[%s] is a different tensor than last time" % (output_names and output_names[i] or i) ) def get_profile(self): """ Get profiling result for compiled trace. :return: a json compatible object. """ if not self._profiler: raise RuntimeError("trace is not set with profiling=True") return json.loads(self._profiler.get()) def __del__(self): for x in self._tinfo: if getattr(x, "bound_data", None): x.bound_data = None def trace(self, *args, **kwargs): raise NotImplementedError( "trace is deemed unbeneficial with the new " "tracing mechanism. You should alwasy use __call__." ) class CompiledTensorProxy: """ Duck-typed RawTensor """ def __init__(self, handle): self.__handle = handle self._isscalar = False self.__info = active_trace._tinfo[handle] self.__shape = None self.__data = None self.__value = None @property def dtype(self): return self.__info.varnode.dtype @property def device(self): return self.__info.varnode.device @property def shape(self): if self._isscalar: return () if self.__shape is None: if self.__info.shape_read: self.__shape = self.__info.shape_reader.get_value().shape elif self.__info.data_read: self.__shape = self._dev_tensor().shape else: # c++ will throw TraceReadError return None return self.__shape def numpy(self): if self.__value is None: if self.__info.value_read: self.__value = self.__info.value_reader.get_value() elif self.__info.data_read: self.__value = self._dev_tensor().numpy() else: # c++ will throw TraceReadError return None # c++ side will handle scalar case return self.__value def _dev_tensor(self): if self.__data is None: if not self.__info.data_read: # c++ will throw TraceReadError return None self.__data = self.__info.data_reader.get_value() return self.__data def __del__(self): if self.__info.shape_read and self.__shape is not None: self.__info.shape_reader.drop_value() if self.__info.value_read and self.__value is not None: self.__info.value_reader.drop_value() if self.__info.data_read and self.__data is not None: self.__info.data_reader.drop_value() def assign_raw_tensor(lhs, rhs): lhs.__init__(rhs) def apply_symbolic_mode(op: OpDef, *args: RawTensor): graph = active_trace._lazy_eval_graph ivars = [] for x in args: var = getattr(x, "_varnode", None) if var: ivars.append(var) else: data_setter = G.InputNode( device=x.device, dtype=x.dtype, shape=x.numpy().shape or (1,), graph=graph, use_static_shape=True, ) var = data_setter.outputs[0] ivars.append(var) data_setter.set_value(x._dev_tensor()) require_links = type(op) in _io_op_types if require_links and active_trace._lazy_eval_links: assert len(ivars) > 0, "op should has at least one input" opnode = G.VirtualDepNode( [ivars[0], *active_trace._lazy_eval_links], str(active_trace._lazy_eval_links[0].device), ) ivars[0] = opnode.outputs[0] active_trace._lazy_eval_links = (ivars[0],) if isinstance(op, BackwardGraph): ovars = G.apply_backward_varnode(op, *ivars) else: ovars = G.apply_normal_varnode(op, *ivars) outputs = [RawTensor(o) for o in ovars] if require_links: active_trace._lazy_eval_links = (G.VarNode(outputs[0]._varnode),) return outputs def apply_const_symbolic_mode(value, dtype, device): graph = active_trace._lazy_eval_graph # don't need to unset tracing # because varnode construction will ignore tracing flag ret = RawTensor(graph.make_const(value, dtype=dtype, device=device)) if np.array(value).ndim == 0: setscalar(ret) return (ret,) def apply_compiled_mode(op: OpDef, *args: RawTensor): if skip_tracing: args = [ RawTensor(x._dev_tensor()) if x.__class__ is CompiledTensorProxy else x for x in args ] unset_tracing() ret = apply(op, *args) set_tracing() return ret return active_trace._apply_op(op, args) def apply_const_compiled_mode(value, dtype, device, is_const, no_cache): if skip_tracing: args = [ RawTensor(x._dev_tensor()) if x.__class__ is CompiledTensorProxy else x for x in args ] unset_tracing() ret = RawTensor(value, dtype, device, False) set_tracing() return ret return active_trace._apply_const(value, dtype, device) def apply_with_tracing(op: OpDef, *args: RawTensor): if active_trace._symbolic: outputs = apply_symbolic_mode(op, *args) else: unset_tracing() outputs = apply(op, *args) set_tracing() active_trace._record_op(op, args, outputs) return list(outputs) def apply_const_with_tracing(value, dtype, device, is_const, no_cache): if active_trace._symbolic: outputs = apply_const_symbolic_mode(value, dtype, device) else: unset_tracing() outputs = (RawTensor(value, dtype, device, False),) set_tracing() active_trace._record_const(outputs) return list(outputs)