/** * \file dnn/test/x86/conv_bias.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "src/x86/utils.h" #include "test/x86/fixture.h" #include "megdnn/opr_param_defs.h" #include "megdnn/oprs.h" #include "test/common/benchmarker.h" #include "test/common/checker.h" #include "test/common/conv_bias.h" #include "test/common/rng.h" #include "test/common/tensor.h" #include "test/common/workspace_wrapper.h" namespace megdnn { namespace test { TEST_F(X86, CONV_BIAS_FORWARD) { using namespace conv_bias; std::vector args = get_args(); Checker checker(handle()); NormalRNG default_rng; ConstValue const_val; for (auto&& arg : args) { checker.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_dtype(2, dtype::Float32()) .set_rng(0, &default_rng) .set_rng(1, &default_rng) .set_rng(2, &default_rng) .set_epsilon(1e-3) .set_param(arg.param) .execs({arg.src, arg.filter, arg.bias, {}, {}}); } } TEST_F(X86_MULTI_THREADS, AVX2_CHANWISE_DIRECT_STRIDE1_INT8x8x32) { using namespace conv_bias; std::vector args; auto run = [&](size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; param.sparse = param::ConvBias::Sparse::GROUP; //! no bias args.emplace_back(param, TensorShape{2, ic, h, w}, TensorShape{ic, 1, 1, kernel, kernel}, TensorShape{}); //! bias channel args.emplace_back(param, TensorShape{2, ic, h, w}, TensorShape{ic, 1, 1, kernel, kernel}, TensorShape{1, ic, 1, 1}); }; for (size_t kernel : {2, 3, 5, 7}) for (size_t pad : {0, 1}) for (size_t ic : {1, 5, 17, 20}) for (size_t h : {7, 16, 38, 40}) for (size_t w : {16, 25, 40, 55}) for (NonlineMode nonline_mode : {NonlineMode::IDENTITY}) run(ic, w, h, kernel, pad, nonline_mode); Checker checker(handle()); UniformIntRNG rng{-50, 50}; checker.set_dtype(0, dtype::Int8()) .set_dtype(1, dtype::Int8()) .set_dtype(2, dtype::Int32()) .set_dtype(4, dtype::Int32()) .set_rng(0, &rng) .set_rng(1, &rng) .set_rng(2, &rng) .set_epsilon(1e-3); checker.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker( "X86_CONV_BIAS_CHANWISE_AVX2_INT8_STRIDE1")); for (auto&& arg : args) { checker.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}); } } TEST_F(X86_MULTI_THREADS, AVX2_CHANWISE_DIRECT_STRIDE1_QuantizedS32) { using namespace conv_bias; std::vector args; auto run = [&](size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; param.sparse = param::ConvBias::Sparse::GROUP; //! no bias args.emplace_back(param, TensorShape{2, ic, h, w}, TensorShape{ic, 1, 1, kernel, kernel}, TensorShape{}); //! bias channel args.emplace_back(param, TensorShape{2, ic, h, w}, TensorShape{ic, 1, 1, kernel, kernel}, TensorShape{1, ic, 1, 1}); }; for (size_t kernel : {2, 3, 5, 7}) for (size_t pad : {0, 1}) for (size_t ic : {1, 3, 5, 7, 17}) for (size_t h : {10, 17, 25, 30}) for (size_t w : {19, 28, 58, 168}) for (NonlineMode nonline_mode : {NonlineMode::IDENTITY}) run(ic, w, h, kernel, pad, nonline_mode); Checker checker(handle()); UniformIntRNG rng{-50, 50}; checker.set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.5f)) .set_dtype(2, dtype::QuantizedS32(6.25f)) .set_dtype(4, {}) .set_rng(0, &rng) .set_rng(1, &rng) .set_rng(2, &rng) .set_epsilon(1e-3); checker.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker( "X86_CONV_BIAS_CHANWISE_AVX2_INT8_STRIDE1")); for (auto&& arg : args) { checker.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}); } } TEST_F(X86_MULTI_THREADS, AVX2_CHANWISE_DIRECT_STRIDE1_QuantizedS8x8x8) { using namespace conv_bias; std::vector args; auto run = [&](size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; param.sparse = param::ConvBias::Sparse::GROUP; //! no bias args.emplace_back(param, TensorShape{2, ic, h, w}, TensorShape{ic, 1, 1, kernel, kernel}, TensorShape{}); //! bias channel args.emplace_back(param, TensorShape{2, ic, h, w}, TensorShape{ic, 1, 1, kernel, kernel}, TensorShape{1, ic, 1, 1}); }; for (size_t kernel : {2, 3, 5, 7}) for (size_t pad : {0, 1}) for (size_t ic : {1, 3, 5, 7, 17}) for (size_t h : {10, 15, 17, 30}) for (size_t w : {19, 28, 58, 168}) for (NonlineMode nonline_mode : {NonlineMode::IDENTITY, NonlineMode::H_SWISH, NonlineMode::RELU}) run(ic, w, h, kernel, pad, nonline_mode); Checker checker(handle()); UniformIntRNG rng{-50, 50}; checker.set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.5f)) .set_dtype(2, dtype::QuantizedS32(6.25f)) .set_dtype(4, dtype::QuantizedS8(60.25f)) .set_rng(0, &rng) .set_rng(1, &rng) .set_rng(2, &rng) .set_epsilon(1e-3); checker.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker( "X86_CONV_BIAS_CHANWISE_AVX2_INT8_STRIDE1")); for (auto&& arg : args) { checker.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}); } } TEST_F(X86_MULTI_THREADS, AVX2_CONV_BIAS_DIRECT_STRIDE1_INT8x8x32) { using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; param.sparse = param::ConvBias::Sparse::DENSE; //! no bias args.emplace_back(param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{}); param.sparse = param::ConvBias::Sparse::GROUP; //! no bias args.emplace_back(param, TensorShape{2, 2 * ic, h, w}, TensorShape{2, oc / 2, ic, kernel, kernel}, TensorShape{}); }; for (size_t kernel : {2, 3, 5, 7}) for (size_t pad : {0, 1}) for (size_t oc : {4, 8, 13, 16, 24}) for (size_t ic : {2, 3, 7, 10}) for (size_t h : {10, 11}) for (size_t w : {8, 10}) for (NonlineMode nonline_mode : {NonlineMode::IDENTITY}) run(oc, ic, w, h, kernel, pad, nonline_mode); Checker checker(handle()); UniformIntRNG rng{-50, 50}; checker.set_dtype(0, dtype::Int8()) .set_dtype(1, dtype::Int8()) .set_dtype(2, dtype::Int32()) .set_dtype(4, dtype::Int32()) .set_rng(0, &rng) .set_rng(1, &rng) .set_rng(2, &rng) .set_epsilon(1e-3); checker.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker( "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE1")); for (auto&& arg : args) { checker.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}); } } TEST_F(X86_MULTI_THREADS, AVX2_CONV_BIAS_DIRECT_STRIDE1_QuantizedS32) { using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; param.sparse = param::ConvBias::Sparse::DENSE; //! no bias args.emplace_back(param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{}); param.sparse = param::ConvBias::Sparse::GROUP; //! no bias args.emplace_back(param, TensorShape{2, 2 * ic, h, w}, TensorShape{2, oc / 2, ic, kernel, kernel}, TensorShape{}); }; for (size_t kernel : {2, 3, 5, 7}) for (size_t pad : {0, 1}) for (size_t oc : {4, 8, 13, 16, 24}) for (size_t ic : {2, 3, 7, 10}) for (size_t h : {10, 11}) for (size_t w : {8, 10}) for (NonlineMode nonline_mode : {NonlineMode::IDENTITY}) run(oc, ic, w, h, kernel, pad, nonline_mode); Checker checker(handle()); UniformIntRNG rng{-50, 50}; checker.set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.5f)) .set_dtype(2, dtype::QuantizedS32(6.25f)) .set_dtype(4, {}) .set_rng(0, &rng) .set_rng(1, &rng) .set_rng(2, &rng) .set_epsilon(1e-3); checker.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker( "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE1")); for (auto&& arg : args) { checker.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}); } } TEST_F(X86_MULTI_THREADS, AVX2_CONV_BIAS_DIRECT_STRIDE1_S8S8S8) { using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; param.sparse = param::ConvBias::Sparse::DENSE; //! no bias args.emplace_back(param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{}); //! bias channel args.emplace_back(param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{1, oc, 1, 1}); param.sparse = param::ConvBias::Sparse::GROUP; //! no bias args.emplace_back(param, TensorShape{2, 2 * ic, h, w}, TensorShape{2, oc / 2, ic, kernel, kernel}, TensorShape{}); //! bias channel args.emplace_back(param, TensorShape{2, 2 * ic, h, w}, TensorShape{2, oc / 2, ic, kernel, kernel}, TensorShape{1, oc, 1, 1}); }; for (size_t kernel : {2, 3, 5, 7}) for (size_t pad : {0, 1}) for (size_t oc : {4, 8, 14, 16, 24}) for (size_t ic : {2, 3, 7, 10}) for (size_t h : {10, 11}) for (size_t w : {8, 10}) for (NonlineMode nonline_mode : {NonlineMode::IDENTITY, NonlineMode::RELU, NonlineMode::H_SWISH}) run(oc, ic, w, h, kernel, pad, nonline_mode); Checker checker(handle()); UniformIntRNG rng{-50, 50}; checker.set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.5f)) .set_dtype(2, dtype::QuantizedS32(6.25f)) .set_dtype(4, dtype::QuantizedS8(60.25f)) .set_rng(0, &rng) .set_rng(1, &rng) .set_rng(2, &rng) .set_epsilon(1e-3); checker.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker( "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE1")); for (auto&& arg : args) { checker.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}); } } TEST_F(X86_MULTI_THREADS, AVX2_CONV_BIAS_DIRECT_STRIDE2_INT8x8x32) { using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 2; param.stride_w = 2; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; param.sparse = param::ConvBias::Sparse::DENSE; //! no bias args.emplace_back(param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{}); param.sparse = param::ConvBias::Sparse::GROUP; //! no bias args.emplace_back(param, TensorShape{2, 2 * ic, h, w}, TensorShape{2, oc / 2, ic, kernel, kernel}, TensorShape{}); }; for (size_t kernel : {2, 3, 5, 7}) for (size_t pad : {0, 1, 2, 5}) for (size_t oc : {4, 8, 13, 16, 24}) for (size_t ic : {2, 3, 7, 10}) for (size_t h : {10, 11}) for (size_t w : {8, 10, 20}) for (NonlineMode nonline_mode : {NonlineMode::IDENTITY}) run(oc, ic, w, h, kernel, pad, nonline_mode); Checker checker(handle()); UniformIntRNG rng{-50, 50}; checker.set_dtype(0, dtype::Int8()) .set_dtype(1, dtype::Int8()) .set_dtype(2, dtype::Int32()) .set_dtype(4, dtype::Int32()) .set_rng(0, &rng) .set_rng(1, &rng) .set_rng(2, &rng) .set_epsilon(1e-3); checker.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker( "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE2")); for (auto&& arg : args) { checker.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}); } } TEST_F(X86_MULTI_THREADS, AVX2_CONV_BIAS_DIRECT_STRIDE2_QuantizedS32) { using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 2; param.stride_w = 2; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; param.sparse = param::ConvBias::Sparse::DENSE; //! no bias args.emplace_back(param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{}); param.sparse = param::ConvBias::Sparse::GROUP; //! no bias args.emplace_back(param, TensorShape{2, 2 * ic, h, w}, TensorShape{2, oc / 2, ic, kernel, kernel}, TensorShape{}); }; for (size_t kernel : {2, 3, 5, 7}) for (size_t pad : {0, 1, 3, 5}) for (size_t oc : {4, 8, 13, 16, 24}) for (size_t ic : {2, 3, 7, 10}) for (size_t h : {10, 11}) for (size_t w : {8, 10, 19}) for (NonlineMode nonline_mode : {NonlineMode::IDENTITY}) run(oc, ic, w, h, kernel, pad, nonline_mode); Checker checker(handle()); UniformIntRNG rng{-50, 50}; checker.set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.5f)) .set_dtype(2, dtype::QuantizedS32(6.25f)) .set_dtype(4, {}) .set_rng(0, &rng) .set_rng(1, &rng) .set_rng(2, &rng) .set_epsilon(1e-3); checker.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker( "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE2")); for (auto&& arg : args) { checker.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}); } } TEST_F(X86_MULTI_THREADS, AVX2_CONV_BIAS_DIRECT_STRIDE2_S8S8S8) { using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 2; param.stride_w = 2; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; param.sparse = param::ConvBias::Sparse::DENSE; //! no bias args.emplace_back(param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{}); //! bias channel args.emplace_back(param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{1, oc, 1, 1}); param.sparse = param::ConvBias::Sparse::GROUP; //! no bias args.emplace_back(param, TensorShape{2, 2 * ic, h, w}, TensorShape{2, oc / 2, ic, kernel, kernel}, TensorShape{}); //! bias channel args.emplace_back(param, TensorShape{2, 2 * ic, h, w}, TensorShape{2, oc / 2, ic, kernel, kernel}, TensorShape{1, oc, 1, 1}); }; for (size_t kernel : {2, 3, 5, 7}) for (size_t pad : {0, 1, 3, 5}) for (size_t oc : {4, 8, 14, 16, 24}) for (size_t ic : {2, 3, 7, 10}) for (size_t h : {10, 11}) for (size_t w : {8, 10, 18}) for (NonlineMode nonline_mode : {NonlineMode::IDENTITY, NonlineMode::RELU, NonlineMode::H_SWISH}) run(oc, ic, w, h, kernel, pad, nonline_mode); Checker checker(handle()); UniformIntRNG rng{-50, 50}; checker.set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.5f)) .set_dtype(2, dtype::QuantizedS32(6.25f)) .set_dtype(4, dtype::QuantizedS8(60.25f)) .set_rng(0, &rng) .set_rng(1, &rng) .set_rng(2, &rng) .set_epsilon(1e-3); checker.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker( "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE2")); for (auto&& arg : args) { checker.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}); } } TEST_F(X86_MULTI_THREADS, CONV_BIAS_DIRECT_STRIDE1_SMALL_GROUP) { using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; //! no bias args.emplace_back(param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{}); //! bias channel args.emplace_back(param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{1, oc, 1, 1}); //! bias args.emplace_back(param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{2, oc, (h + param.pad_h * 2 - kernel) + 1, (w + param.pad_w * 2 - kernel) + 1}); }; for (size_t kernel : {1, 2, 3, 4, 5, 6, 7}) for (size_t ic : {1, 4, 8, 16}) for (size_t oc : {1, 4, 8}) for (size_t p : {0, 2}) for (size_t size : {20, 21, 24}) for (NonlineMode nonline_mode : {NonlineMode::RELU, NonlineMode::SIGMOID, NonlineMode::H_SWISH, NonlineMode::IDENTITY}) { run(oc, ic, size, size, kernel, p, nonline_mode); } Checker checker(handle()); UniformIntRNG rng{-50, 50}; checker.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_dtype(2, dtype::Float32()) .set_rng(0, &rng) .set_rng(1, &rng) .set_rng(2, &rng); checker.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker( "X86_CONV_BIAS_DIRECT_STRIDE1_SMALL_GROUP")); for (auto&& arg : args) { checker.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}); } } TEST_F(X86_MULTI_THREADS, CONV_BIAS_DIRECT_STRIDE1_LARGE_GROUP) { using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; //! no bias args.emplace_back(param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{}); //! bias channel args.emplace_back(param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{1, oc, 1, 1}); //! bias args.emplace_back(param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{2, oc, (h + param.pad_h * 2 - kernel) + 1, (w + param.pad_w * 2 - kernel) + 1}); }; for (size_t kernel : {1, 2, 3, 4, 5, 6, 7}) for (size_t ic : {1, 4, 8, 16}) for (size_t oc : {1, 4, 8}) for (size_t p : {0, 2}) for (size_t size : {20, 21, 24}) for (NonlineMode nonline_mode : {NonlineMode::RELU, NonlineMode::SIGMOID, NonlineMode::H_SWISH, NonlineMode::IDENTITY}) { run(oc, ic, size, size, kernel, p, nonline_mode); } Checker checker(handle()); UniformIntRNG rng{-50, 50}; checker.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_dtype(2, dtype::Float32()) .set_rng(0, &rng) .set_rng(1, &rng) .set_rng(2, &rng); checker.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker( "X86_CONV_BIAS_DIRECT_STRIDE1_LARGE_GROUP")); for (auto&& arg : args) { checker.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}); } } TEST_F(X86_MULTI_THREADS, CONV_BIAS_DIRECT_STRIDE2) { using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 2; param.stride_w = 2; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; //! no bias args.emplace_back(param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{}); }; for (size_t kernel : {2, 3, 5, 7}) for (size_t ic : {1, 4, 8, 16}) for (size_t oc : {1, 4, 8}) for (size_t p : {0, 2}) for (size_t size : {20, 21, 24}) for (NonlineMode nonline_mode : {NonlineMode::RELU, NonlineMode::SIGMOID, NonlineMode::H_SWISH, NonlineMode::IDENTITY}) { run(oc, ic, size, size, kernel, p, nonline_mode); } Checker checker(handle()); UniformIntRNG rng{-50, 50}; checker.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_dtype(2, dtype::Float32()) .set_rng(0, &rng) .set_rng(1, &rng) .set_rng(2, &rng); checker.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker( "X86_CONV_BIAS_DIRECT_STRIDE2_SMALL_GROUP")); for (auto&& arg : args) { checker.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}); } checker.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker( "X86_CONV_BIAS_DIRECT_STRIDE2_LARGE_GROUP")); for (auto&& arg : args) { checker.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}); } } TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32) { using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; //! no bias args.emplace_back(param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{}); }; for (size_t kernel : {2, 3, 4, 5, 6, 7}) for (size_t ic : {1, 4, 8, 16}) for (size_t oc : {1, 4, 8}) for (size_t p : {0, 2}) for (size_t size : {20, 21, 24}) for (NonlineMode nonline_mode : {NonlineMode::IDENTITY}) { run(oc, ic, size, size, kernel, p, nonline_mode); } //! test OC block run(2046, 1, 8, 8, 2, 0, NonlineMode::IDENTITY); Checker checker(handle()); UniformIntRNG rng{-50, 50}; #define cb(algo_name) \ checker.set_before_exec_callback( \ conv_bias::ConvBiasAlgoChecker(algo_name)); \ checker.set_dtype(0, dtype::Int8()); \ checker.set_dtype(1, dtype::Int8()); \ checker.set_dtype(2, dtype::Int32()); \ checker.set_dtype(4, dtype::Int32()); \ for (auto&& arg : args) { \ checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}}); \ } \ for (auto&& arg : args) { \ checker.set_dtype(0, dtype::QuantizedS8(2.5f)) \ .set_dtype(1, dtype::QuantizedS8(2.5f)) \ .set_dtype(2, dtype::QuantizedS32(6.25f)) \ .set_dtype(4, {}) \ .set_rng(0, &rng) \ .set_rng(1, &rng) \ .set_rng(2, &rng) \ .set_param(arg.param) \ .execs({arg.src, arg.filter, {}, {}, {}}); \ } #if MEGDNN_X86_WITH_MKL_DNN if (megdnn::x86::is_supported(x86::SIMDType::VNNI)) { cb("IM2COLMATMUL:X86_INT8X8X32_MKLDNN"); } #endif #if MEGDNN_X86_WITH_VNNI if (megdnn::x86::is_supported(x86::SIMDType::VNNI)) { cb("IM2COLMATMUL:X86_INT8X8X32_VNNI"); } #endif if (megdnn::x86::is_supported(x86::SIMDType::AVX2)) { cb("IM2COLMATMUL:X86_INT8X8X32_AVX2_2X4X16"); cb("IM2COLMATMUL:X86_INT8X8X32_AVX2_4X16X2"); } if (::megdnn::x86::is_supported(::megdnn::x86::SIMDType::SSE4_2)) { cb("IM2COLMATMUL:X86_INT8X8X32_SSE_4X8X2"); } #undef cb } TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_FP32) { using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; //! no bias args.emplace_back(param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{}); args.emplace_back(param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{1, oc, 1, 1}); args.emplace_back( param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{1, oc, (h + 2 * p - kernel) / param.stride_h + 1, (w + 2 * p - kernel) / param.stride_w + 1}); }; for (size_t kernel : {2, 3, 4, 5, 6, 7}) for (size_t ic : {1, 4, 8, 16}) for (size_t oc : {1, 4, 8, 16, 300}) for (size_t p : {0, 2}) for (size_t size : {8, 24}) for (NonlineMode nonline_mode : {NonlineMode::IDENTITY, NonlineMode::RELU}) { run(oc, ic, size, size, kernel, p, nonline_mode); } run(2046, 8, 20, 20, 3, 1, NonlineMode::IDENTITY); Checker checker(handle()); #define cb(algo_name) \ checker.set_before_exec_callback( \ conv_bias::ConvBiasAlgoChecker(algo_name)); \ for (auto&& arg : args) { \ checker.set_param(arg.param).execs( \ {arg.src, arg.filter, arg.bias, {}, {}}); \ } #if MEGDNN_X86_WITH_MKL || MEGDNN_X86_WITH_OPENBLAS cb("IM2COLMATMUL:X86_F32_BLAS"); #endif #undef cb } #if MEGDNN_X86_WITH_MKL && SUPPORT_MKL_PACKED_GEMM TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_FP32_PACKA) { using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; //! no bias args.emplace_back(param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{}); args.emplace_back(param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{1, oc, 1, 1}); args.emplace_back( param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{1, oc, (h + 2 * p - kernel) / param.stride_h + 1, (w + 2 * p - kernel) / param.stride_w + 1}); param.sparse = param::ConvBias::Sparse::GROUP; args.emplace_back(param, TensorShape{1, 2 * ic, h, w}, TensorShape{2, oc, ic, kernel, kernel}, TensorShape{}); args.emplace_back(param, TensorShape{1, 2 * ic, h, w}, TensorShape{2, oc, ic, kernel, kernel}, TensorShape{1, oc * 2, 1, 1}); args.emplace_back( param, TensorShape{1, 2 * ic, h, w}, TensorShape{2, oc, ic, kernel, kernel}, TensorShape{1, 2 * oc, (h + 2 * param.pad_h - kernel) / 1 + 1, (w + 2 * param.pad_w - kernel) / 1 + 1}); }; for (size_t kernel : {2, 3, 4, 5, 6, 7}) for (size_t ic : {1, 4, 8, 16}) for (size_t oc : {1, 4, 8, 16}) for (size_t p : {0, 1}) for (size_t size : {8, 24}) for (NonlineMode nonline_mode : {NonlineMode::IDENTITY, NonlineMode::RELU}) { run(oc, ic, size, size, kernel, p, nonline_mode); } run(2046, 8, 20, 20, 3, 1, NonlineMode::IDENTITY); Checker checker(handle()); #define cb(algo_name) \ checker.set_before_exec_callback( \ conv_bias::ConvBiasAlgoChecker(algo_name)); \ for (auto&& arg : args) { \ checker.set_param(arg.param).execs( \ {arg.src, arg.filter, arg.bias, {}, {}}); \ } cb("IM2COLMATMUL:X86_F32_MKL_PACKA:192"); #undef cb } /**************************** Conv1x1 PackA *************************/ namespace { void checker_conv_bias(std::vector args, Handle* handle, RNG* rng, float epsilon, DType type0, DType type1, DType type2, DType type3, const char* algo_name) { using namespace conv_bias; Checker checker(handle); checker.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker(algo_name)); checker.set_dtype(0, type0); checker.set_dtype(1, type1); checker.set_dtype(2, type2); checker.set_dtype(4, type3); checker.set_epsilon(epsilon); if (NULL != rng) { checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng).set_rng(3, rng); } for (auto&& arg : args) { checker.set_param(arg.param).execs( {arg.src, arg.filter, arg.bias, {}, {}}); } } } // namespace #if MEGDNN_X86_WITH_MKL TEST_F(X86_MULTI_THREADS, CONV_BIAS_CONV1X1_S1_FP32_PACKA) { using namespace conv_bias; std::vector args = get_conv_bias_1x1_args(false, false); check_conv_bias(args, handle(), "CONV1x1:X86_F32_MKL_PACKA:24"); } TEST_F(X86_MULTI_THREADS, CONV_BIAS_CONV1X1_S1_FP32_BLAS) { using namespace conv_bias; std::vector args = get_conv_bias_1x1_args(false, false); check_conv_bias(args, handle(), "CONV1x1:X86_F32_BLAS:48"); } #endif TEST_F(X86_MULTI_THREADS, CONV_BIAS_CONV1X1_S1_INT8X8X32) { using namespace conv_bias; UniformIntRNG rng{-50, 50}; float epsilon = 0.001; std::vector args = get_conv_bias_1x1_args(true, true); #if MEGDNN_X86_WITH_MKL_DNN if (x86::is_supported(x86::SIMDType::VNNI)) { checker_conv_bias(args, handle(), &rng, epsilon, dtype::Int8{}, dtype::Int8{}, dtype::Int32{}, dtype::Int32{}, "CONV1x1:X86_INT8X8X32_MKLDNN:24"); } #endif #if MEGDNN_X86_WITH_VNNI if (x86::is_supported(x86::SIMDType::VNNI)) { checker_conv_bias(args, handle(), &rng, epsilon, dtype::Int8{}, dtype::Int8{}, dtype::Int32{}, dtype::Int32{}, "CONV1x1:X86_INT8X8X32_VNNI:24"); } #endif if (x86::is_supported(x86::SIMDType::AVX2)) { checker_conv_bias(args, handle(), &rng, epsilon, dtype::Int8{}, dtype::Int8{}, dtype::Int32{}, dtype::Int32{}, "CONV1x1:X86_INT8X8X32_AVX2_4X16X2:24"); checker_conv_bias(args, handle(), &rng, epsilon, dtype::Int8{}, dtype::Int8{}, dtype::Int32{}, dtype::Int32{}, "CONV1x1:X86_INT8X8X32_AVX2_2X4X16:24"); } checker_conv_bias(args, handle(), &rng, epsilon, dtype::Int8{}, dtype::Int8{}, dtype::Int32{}, dtype::Int32{}, "CONV1x1:X86_INT8X8X32_SSE_4X8X2:48"); } /************************* End Conv1x1 PackA ************************/ #endif TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QINT8) { using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; //! no bias args.emplace_back(param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{}); //! bias channel args.emplace_back(param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{1, oc, 1, 1}); }; for (size_t kernel : {2, 3, 4, 5, 6, 7}) for (size_t ic : {1, 4, 8, 16}) for (size_t oc : {1, 4, 8}) for (size_t p : {0, 2}) for (size_t size : {20, 21, 24}) for (NonlineMode nonline_mode : {NonlineMode::IDENTITY, NonlineMode::RELU, NonlineMode::H_SWISH}) { run(oc, ic, size, size, kernel, p, nonline_mode); } run(2046, 8, 20, 20, 3, 1, NonlineMode::IDENTITY); Checker checker(handle()); #define cb(algo_name) \ checker.set_before_exec_callback( \ conv_bias::ConvBiasAlgoChecker(algo_name)); \ UniformIntRNG rng{-50, 50}; \ for (auto&& arg : args) { \ checker.set_dtype(0, dtype::QuantizedS8(2.5f)) \ .set_dtype(1, dtype::QuantizedS8(2.5f)) \ .set_dtype(2, dtype::QuantizedS32(6.25f)) \ .set_dtype(4, dtype::QuantizedS8(60.25)) \ .set_rng(0, &rng) \ .set_rng(1, &rng) \ .set_rng(2, &rng) \ .set_param(arg.param) \ .execs({arg.src, arg.filter, {}, {}, {}}); \ } #if MEGDNN_X86_WITH_MKL_DNN if (x86::is_supported(x86::SIMDType::VNNI)) { cb("IM2COLMATMUL:X86_INT8X8X32_MKLDNN"); } #endif #if MEGDNN_X86_WITH_VNNI if (x86::is_supported(x86::SIMDType::VNNI)) { cb("IM2COLMATMUL:X86_INT8X8X32_VNNI"); } #endif if (x86::is_supported(x86::SIMDType::AVX2)) { cb("IM2COLMATMUL:X86_INT8X8X32_AVX2_2X4X16"); } #undef cb } TEST_F(X86, CONV_BIAS_MATMUL) { using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; //! no bias param.sparse = param::ConvBias::Sparse::DENSE; args.emplace_back(param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{}); //! bias channel args.emplace_back(param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{1, oc, 1, 1}); //! bias args.emplace_back(param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{2, oc, (h + param.pad_h * 2 - kernel) + 1, (w + param.pad_w * 2 - kernel) + 1}); //! gruop param.sparse = param::ConvBias::Sparse::GROUP; args.emplace_back( param, TensorShape{2, 2 * ic, h, w}, TensorShape{2, oc, ic, kernel, kernel}, TensorShape{2, 2 * oc, (h + param.pad_h * 2 - kernel) + 1, (w + param.pad_w * 2 - kernel) + 1}); }; for (size_t kernel : {2, 3, 5, 7}) for (size_t ic : {1, 2, 3, 4}) for (size_t oc : {1, 2, 3, 4}) for (size_t p : {0, 2}) for (size_t size : {20, 21, 22, 23, 24}) for (NonlineMode nonline_mode : {NonlineMode::RELU, NonlineMode::SIGMOID, NonlineMode::H_SWISH, NonlineMode::IDENTITY}) { run(oc, ic, size, size, kernel, p, nonline_mode); } Checker checker(handle()); checker.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker( "X86_CONV_BIAS_MATMUL")); checker.set_epsilon(1); UniformIntRNG rng{-50, 50}; checker.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_dtype(2, dtype::Float32()) .set_rng(0, &rng) .set_rng(1, &rng) .set_rng(2, &rng); for (auto&& arg : args) { checker.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}); } } #if MEGDNN_WITH_BENCHMARK #if MEGDNN_X86_WITH_MKL_DNN static void x86_benchmark_fp32_mkldnn(Handle* handle) { constexpr size_t RUNS = 30; param::ConvBias param; Benchmarker benchmarker_mkldnn(handle); benchmarker_mkldnn.set_display(false).set_times(RUNS); benchmarker_mkldnn.set_before_exec_callback( AlgoChecker("MKLDNN_CONV_FP32")); Benchmarker benchmarker_im2col(handle); benchmarker_im2col.set_display(false).set_times(RUNS); benchmarker_im2col.set_before_exec_callback( AlgoChecker("IM2COLMATMUL.+")); auto run = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS, size_t SZ, size_t GROUP = 1) { TensorShape src({N, IC, H, W}), filter({OC, IC, FS, FS}), bias({1, OC, 1, 1}), z({}), dst({N, OC, H / SZ, W / SZ}); param.pad_h = FS / 2; param.pad_w = FS / 2; param.stride_h = SZ; param.stride_w = SZ; param.format = param::ConvBias::Format::NCHW; param.sparse = param::ConvBias::Sparse::DENSE; if (GROUP > 1) { param.sparse = param::ConvBias::Sparse::GROUP; filter = {GROUP, OC / GROUP, IC / GROUP, FS, FS}; } auto im2col_used = benchmarker_im2col.set_param(param).exec( {src, filter, bias, z, dst}) / RUNS; src = IC < 8 ? TensorShape{N, IC, H, W} : TensorShape{N, IC / 8, H, W, 8}; filter = IC < 8 ? TensorShape{OC / 8, FS, FS, IC, 8} : TensorShape{OC / 8, IC / 8, FS, FS, 8, 8}; if (GROUP > 1 && OC == GROUP && IC == GROUP) { filter = {GROUP / 8, 1, 1, FS, FS, 8}; } else if (GROUP > 1 && OC / GROUP % 8 == 0 && IC / GROUP % 8 == 0) { filter = {GROUP, OC / GROUP / 8, IC / GROUP / 8, FS, FS, 8, 8}; } bias = {1, OC / 8, 1, 1, 8}; z = {}; dst = {N, OC / 8, H / SZ, W / SZ, 8}; param.format = param::ConvBias::Format::NCHW88; auto mkldnn_used = benchmarker_mkldnn.set_param(param).exec( {src, filter, bias, z, dst}) / RUNS; float computations = (IC / GROUP * FS * FS + 1) * dst.total_nr_elems() * 2 * 1e-6; std::cout << "run " << src.to_string() << " " << filter.to_string() << " " << bias.to_string() << " " << dst.to_string() << std::endl; std::cout << "im2col: " << im2col_used << " ms, " << (computations / im2col_used) << " Gops, "; std::cout << "mkldnn: " << mkldnn_used << " ms, " << (computations / mkldnn_used) << " Gops, " << "spped up: " << (im2col_used / mkldnn_used) << ", "; std::cout << std::endl; }; run(1, 64, 64, 56, 56, 3, 1); run(1, 3, 64, 224, 224, 3, 1); run(1, 3, 64, 224, 224, 7, 2); run(1, 64, 64, 56, 56, 3, 1); run(1, 128, 128, 28, 28, 3, 1); run(1, 256, 256, 14, 14, 3, 1); run(1, 512, 512, 7, 7, 3, 1); run(1, 256, 64, 56, 56, 1, 1); run(1, 512, 128, 28, 28, 1, 1); run(1, 1024, 256, 14, 14, 1, 1); run(1, 2048, 512, 7, 7, 1, 1); run(1, 32, 32, 112, 112, 3, 1, 32); run(1, 144, 144, 56, 56, 3, 1, 144); run(1, 192, 192, 28, 28, 3, 1, 192); run(1, 384, 384, 28, 28, 3, 1, 384); run(1, 576, 576, 14, 14, 3, 1, 576); run(1, 960, 960, 7, 7, 3, 1, 960); run(1, 256, 128, 56, 56, 1, 2, 1); run(1, 512, 256, 28, 28, 1, 2, 1); run(1, 1024, 512, 14, 14, 1, 2, 1); run(1, 96, 96, 112, 112, 3, 2, 96); run(1, 144, 144, 56, 56, 3, 2, 144); run(1, 384, 384, 28, 28, 3, 2, 384); run(1, 576, 576, 14, 14, 3, 2, 576); } TEST_F(X86, BENCHMARK_CONVBIAS_FP32_MKLDNN) { x86_benchmark_fp32_mkldnn(handle()); } TEST_F(X86_MULTI_THREADS, BENCHMARK_CONVBIAS_FP32_MKLDNN) { x86_benchmark_fp32_mkldnn(handle()); } #endif #endif /************************* Winograd ****************************/ namespace{ std::vector get_winograd_mk_nchw88_args() { std::vector args; param::ConvBias cur_param; cur_param.format = param::ConvBias::Format::NCHW88; using NLMode = param::ConvBias::NonlineMode; // clang-format off for (auto nlmode : {NLMode::IDENTITY, NLMode::RELU, NLMode::SIGMOID, NLMode::H_SWISH}) { for (size_t ic : {1, 2}) { for (size_t oc : {1, 2}) { for (size_t i : {9, 63}) { cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION; cur_param.nonlineMode = nlmode; cur_param.sparse = param::ConvBias::Sparse::DENSE; cur_param.pad_h = cur_param.pad_w = 1; args.emplace_back(cur_param, TensorShape{1, ic, i, i, 8}, TensorShape{oc, ic, 3, 3, 8, 8}, TensorShape{1, oc, 1, 1, 8}); args.emplace_back(cur_param, TensorShape{1, ic, i, i, 8}, TensorShape{oc, ic, 3, 3, 8, 8},TensorShape{}); //! bias args.emplace_back(cur_param, TensorShape{2, ic, i, i, 8}, TensorShape{oc, ic, 3, 3, 8, 8}, TensorShape{2, oc, i, i, 8}); /*cur_param.sparse = param::ConvBias::Sparse::GROUP; args.emplace_back(cur_param, TensorShape{2, 2 * ic, i, i, 8}, TensorShape{2, oc, ic, 3, 3, 8, 8}, TensorShape{1, 2 * oc, 1, 1, 8});*/ }}} // clang-format on //! test for multi-thread OC parallel cur_param.sparse = param::ConvBias::Sparse::DENSE; cur_param.pad_h = cur_param.pad_w = 1; args.emplace_back(cur_param, TensorShape{2, 1, 9, 9, 8}, TensorShape{128, 1, 3, 3, 8, 8}, TensorShape{1, 128, 1, 1, 8}); /*cur_param.sparse = param::ConvBias::Sparse::GROUP; args.emplace_back(cur_param, TensorShape{2, 2, 9, 9, 8}, TensorShape{2, 128, 1, 3, 3, 8, 8}, TensorShape{1, 2 * 128, 1, 1, 8});*/ } return args; } } // namespace TEST_F(X86_MULTI_THREADS, CONV_BIAS_WINOGRAD_NCHW88_F63) { using namespace conv_bias; std::vector args = get_winograd_mk_nchw88_args(); Checker checker(handle()); checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker( ssprintf("WINOGRAD:X86_F32MK8_8X8:8:6").c_str())); for (auto&& arg : args) { checker.set_param(arg.param).execs( {arg.src, arg.filter, arg.bias, {}, {}}); } } TEST_F(X86_MULTI_THREADS, CONV_BIAS_WINOGRAD_NCHW88_F23) { using namespace conv_bias; std::vector args = get_winograd_mk_nchw88_args(); Checker checker(handle()); checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker( ssprintf("WINOGRAD:X86_F32MK8_8X8:8:2").c_str())); for (auto&& arg : args) { checker.set_param(arg.param).execs( {arg.src, arg.filter, arg.bias, {}, {}}); } } TEST_F(X86_MULTI_THREADS, CONV_BIAS_WINOGRAD_WEIGHT_PREPROCESS) { using namespace conv_bias; std::vector args = get_winograd_mk_nchw88_args(); Checker checker(handle()); auto extra_impl = [](const TensorNDArray& tensors, uint32_t m, param::ConvBias param, Handle* handle) { megdnn_assert(param.format == param::ConvBias::Format::NCHW88); auto winograd_preprocess_opr = handle->create_operator(); winograd_preprocess_opr->param().output_block_size = m; winograd_preprocess_opr->param().format = param::MatrixMul::Format::MK8; TensorLayout filter_transform_layout; winograd_preprocess_opr->deduce_layout(tensors[1].layout, filter_transform_layout); size_t winograd_preprocess_workspace_in_bytes = winograd_preprocess_opr->get_workspace_in_bytes( tensors[1].layout, filter_transform_layout); auto conv_bias_opr = handle->create_operator(); conv_bias_opr->param() = param; conv_bias_opr->param().format = param::ConvBias::Format::NCHW88_WINOGRAD; conv_bias_opr->param().output_block_size = m; size_t conv_bias_workspace_in_bytes = conv_bias_opr->get_workspace_in_bytes( tensors[0].layout, filter_transform_layout, tensors[2].layout, tensors[3].layout, tensors[4].layout); WorkspaceBundle wb(nullptr, {filter_transform_layout.span().dist_byte(), conv_bias_workspace_in_bytes, winograd_preprocess_workspace_in_bytes}); wb.set(malloc(wb.total_size_in_bytes())); TensorND filter_transform_tensor(wb.get(0), std::move(filter_transform_layout)); winograd_preprocess_opr->exec(tensors[1], filter_transform_tensor, wb.get_workspace(2)); conv_bias_opr->exec(tensors[0], filter_transform_tensor, tensors[2], tensors[3], tensors[4], wb.get_workspace(1)); free(wb.ptr()); }; auto run = [&checker, &extra_impl]( Handle* handle, const std::vector& args, const std::vector& out_size, DType A_dtype, DType B_dtype, DType C_dtype, DType D_dtype, const float eps) { for (auto&& arg : args) { for (uint32_t m : out_size) { checker.set_extra_opr_impl(std::bind(extra_impl, std::placeholders::_1, m, arg.param, handle)); checker.set_dtype(0, A_dtype) .set_dtype(1, B_dtype) .set_dtype(2, C_dtype) .set_dtype(4, D_dtype) .set_epsilon(eps) .set_param(arg.param) .execs({arg.src, arg.filter, arg.bias, {}, {}}); } } }; run(handle(), args, {2, 6}, dtype::Float32(), dtype::Float32(), dtype::Float32(), dtype::Float32(), 1e-3f); } /*********************************** End winograd ************************/ #if MEGDNN_X86_WITH_MKL_DNN static void x86_correctness_fp32_mkldnn_run( Checker& checker, UniformIntRNG& rng, Handle* handle, ConvBiasForward::BiasMode bias_mode, param::ConvBias::NonlineMode noline_mode, size_t n, size_t stride, size_t kernel, size_t oc, size_t ic, size_t h, size_t w, size_t group) { auto oc_per_group = oc / group; auto ic_per_group = ic / group; bool ok_group = oc_per_group % 8 == 0 && oc_per_group > 0 && (ic_per_group % 8 == 0 || ic_per_group == 3) && ic_per_group > 0; bool ok_depthwise = oc == ic && oc == group; if (!(ok_group || ok_depthwise)) { return; } size_t pad = kernel / 2; size_t kernel_h = kernel; size_t kernel_w = kernel; param::ConvBias param; param.format = param::ConvBias::Format::NCHW88; param.stride_h = stride; param.stride_w = stride; param.pad_h = pad; param.pad_w = pad; param.nonlineMode = noline_mode; auto src_tensor_shape = TensorShape{n, ic / 8, h, w, 8}; if (ic == 3) { src_tensor_shape = TensorShape{n, ic, h, w}; } auto weight_tensor_shape = TensorShape{oc / 8, ic / 8, kernel_h, kernel_w, 8, 8}; if (ic == 3) { weight_tensor_shape = TensorShape{oc / 8, kernel_h, kernel_w, ic, 8}; } auto bias_tensor_shape = TensorShape{}; if (bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) { bias_tensor_shape = {1, oc / 8, 1, 1, 8}; } else if (bias_mode == megdnn::BiasMode::BIAS) { TensorLayout dst_layout; auto ConvBiasOp = handle->create_operator(); ConvBiasOp->param() = param; ConvBiasOp->deduce_layout({src_tensor_shape, dtype::Float32()}, {weight_tensor_shape, dtype::Float32()}, {}, {}, dst_layout); bias_tensor_shape = dst_layout; } if (group == 1) { param.sparse = param::ConvBias::Sparse::DENSE; } else if (group > 1 && ic / group == 1 && oc / group == 1) { param.sparse = param::ConvBias::Sparse::GROUP; weight_tensor_shape = TensorShape{group / 8, 1, 1, kernel_h, kernel_w, 8}; } else if (group > 1 && oc / group % 8 == 0 && oc / group > 0 && ic / group % 8 == 0 && ic / group > 0) { param.sparse = param::ConvBias::Sparse::GROUP; weight_tensor_shape = TensorShape{ group, oc / group / 8, ic / group / 8, kernel_h, kernel_w, 8, 8}; } checker.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_dtype(2, dtype::Float32()) .set_dtype(4, dtype::Float32()) .set_rng(0, &rng) .set_rng(1, &rng) .set_rng(2, &rng) .set_epsilon(1e-3) .set_param(param) .execs({src_tensor_shape, weight_tensor_shape, bias_tensor_shape, {}, {}}); } static void x86_correctness_fp32_mkldnn(Handle* handle) { Checker checker(handle); UniformIntRNG rng{-127, 127}; checker.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker( "MKLDNN_CONV_FP32")); for (auto bias_mode : {megdnn::BiasMode::NO_BIAS, megdnn::BiasMode::BROADCAST_CHANNEL_BIAS, megdnn::BiasMode::BIAS}) for (auto noline_mode : {param::ConvBias::NonlineMode::IDENTITY, param::ConvBias::NonlineMode::SIGMOID, param::ConvBias::NonlineMode::H_SWISH}) for (size_t n : {1, 2}) for (size_t stride : {1, 2}) for (size_t kernel : {3, 5, 7}) for (size_t oc : {8, 16}) for (size_t ic : {3, 8, 16}) for (size_t h : {22, 33}) for (size_t w : {22, 33}) { for (size_t group = 1; group <= std::min(oc, ic); ++group) { x86_correctness_fp32_mkldnn_run( checker, rng, handle, bias_mode, noline_mode, n, stride, kernel, oc, ic, h, w, group); } } } TEST_F(X86, CONV_BIAS_DIRECT_MKLDNN_C8) { x86_correctness_fp32_mkldnn(handle()); } TEST_F(X86_MULTI_THREADS, CONV_BIAS_DIRECT_MKLDNN_C8) { x86_correctness_fp32_mkldnn(handle()); } TEST_F(X86, CONV_BIAS_MKL_DNN_MATMUL_INT8) { using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; //! no bias args.emplace_back(param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{}); }; for (size_t kernel : {2, 3, 5, 7}) for (size_t ic : {1, 2, 3, 4}) for (size_t oc : {1, 2, 4}) for (size_t p : {0, 2}) for (size_t size : {20, 21, 22, 23, 24}) for (NonlineMode nonline_mode : {NonlineMode::IDENTITY}) { run(oc, ic, size, size, kernel, p, nonline_mode); } Checker checker(handle()); checker.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker( "MKLDNN_MATMUL_INT8")); checker.set_epsilon(1); UniformIntRNG rng{-50, 50}; checker.set_dtype(0, dtype::Int8()) .set_dtype(1, dtype::Int8()) .set_dtype(2, dtype::Int32()) .set_dtype(4, dtype::Int32()) .set_rng(0, &rng) .set_rng(1, &rng) .set_rng(2, &rng); for (auto&& arg : args) { checker.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}); } } TEST_F(X86, CONV_BIAS_MKL_DNN_INT8) { using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; //! no bias args.emplace_back(param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{}); }; for (size_t kernel : {2, 3, 5, 7}) for (size_t ic : {1, 2, 3, 4}) for (size_t oc : {1, 2, 4}) for (size_t p : {0, 2}) for (size_t size : {20, 22, 24}) for (NonlineMode nonline_mode : {NonlineMode::IDENTITY}) { run(oc, ic, size, size, kernel, p, nonline_mode); } Checker checker(handle()); checker.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker("MKLDNN_INT8")); checker.set_epsilon(1); UniformIntRNG rng{-50, 50}; checker.set_dtype(0, dtype::Int8()) .set_dtype(1, dtype::Int8()) .set_dtype(2, dtype::Int32()) .set_dtype(4, dtype::Int32()) .set_rng(0, &rng) .set_rng(1, &rng) .set_rng(2, &rng); for (auto&& arg : args) { checker.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}); } } TEST_F(X86_MULTI_THREADS, CONV_BIAS_MKL_DNN_INT8) { using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; //! no bias args.emplace_back(param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{}); }; for (size_t kernel : {2, 3, 5, 7}) for (size_t ic : {1, 2, 3, 4}) for (size_t oc : {1, 2, 4}) for (size_t p : {0, 2}) for (size_t size : {20, 22, 24}) for (NonlineMode nonline_mode : {NonlineMode::IDENTITY}) { run(oc, ic, size, size, kernel, p, nonline_mode); } Checker checker(handle()); checker.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker("MKLDNN_INT8")); checker.set_epsilon(1); UniformIntRNG rng{-50, 50}; checker.set_dtype(0, dtype::Int8()) .set_dtype(1, dtype::Int8()) .set_dtype(2, dtype::Int32()) .set_dtype(4, dtype::Int32()) .set_rng(0, &rng) .set_rng(1, &rng) .set_rng(2, &rng); for (auto&& arg : args) { checker.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}); } } #endif #if MEGDNN_WITH_BENCHMARK namespace { void benchmark_impl(const param::ConvBias param, std::vector, float>>& shapes_and_computation, const std::string algo_name, size_t RUNS, TaskExecutorConfig&& multi_thread_config, TaskExecutorConfig&& single_thread_config, std::vector dtype_v) { std::vector data_type = {dtype::Float32(), dtype::Float32(), dtype::Float32(), dtype::Float32()}; std::vector multi_thread_times, single_thread_times; { auto multi_thread_hanle = create_cpu_handle(0, true, &multi_thread_config); auto benchmarker = Benchmarker(multi_thread_hanle.get()); benchmarker.set_times(RUNS) .set_display(false) .set_dtype(0, dtype_v[0]) .set_dtype(1, dtype_v[1]) .set_dtype(2, dtype_v[2]) .set_dtype(4, dtype_v[3]) .set_param(param) .set_before_exec_callback( conv_bias::ConvBiasAlgoChecker( algo_name.c_str())); for (auto shape : shapes_and_computation) { multi_thread_times.push_back(benchmarker.exec(shape.first) / RUNS); } } { auto single_thread_handle = create_cpu_handle(0, true, &single_thread_config); auto benchmarker = Benchmarker(single_thread_handle.get()); benchmarker.set_times(RUNS) .set_display(false) .set_dtype(0, dtype_v[0]) .set_dtype(1, dtype_v[1]) .set_dtype(2, dtype_v[2]) .set_dtype(4, dtype_v[3]) .set_param(param) .set_before_exec_callback( conv_bias::ConvBiasAlgoChecker( algo_name.c_str())); for (auto shape : shapes_and_computation) { single_thread_times.push_back(benchmarker.exec(shape.first) / RUNS); } } printf("Benchmark : Multi threads %zu, ", multi_thread_config.nr_thread); printf("core_ids:"); for (size_t i = 0; i < multi_thread_config.affinity_core_set.size(); i++) { printf("%zu ", multi_thread_config.affinity_core_set[i]); } printf(", Single thread core_id %zu\n", single_thread_config.affinity_core_set[0]); for (size_t i = 0; i < shapes_and_computation.size(); i++) { auto shapes = shapes_and_computation[i]; printf("Bench case: "); for (auto&& shape : shapes.first) { printf("%s ", shape.to_string().c_str()); } float computations = shapes.second; printf("%zu threads gflops: %f,\n single thread gflops: " "%f. spead up = %f, speedup/cores=%f\n", multi_thread_config.nr_thread, computations / multi_thread_times[i], computations / single_thread_times[i], single_thread_times[i] / multi_thread_times[i], single_thread_times[i] / multi_thread_times[i] / multi_thread_config.nr_thread); } } void benchmark_impl_comp(const param::ConvBias param, std::vector, float>>& shapes_and_computation, const std::string algo_name, const std::string algo_name1,size_t RUNS, TaskExecutorConfig&& multi_thread_config, TaskExecutorConfig&& single_thread_config,std::vector dtype_v) { std::vector data_type = {dtype::Float32(), dtype::Float32(), dtype::Float32(), dtype::Float32()}; std::vector multi_thread_times, single_thread_times; { auto multi_thread_hanle = create_cpu_handle(0, true, &multi_thread_config); auto benchmarker = Benchmarker(multi_thread_hanle.get()); benchmarker.set_times(RUNS) .set_display(false) .set_dtype(0,dtype_v[0]) .set_dtype(1,dtype_v[1]) .set_dtype(2,dtype_v[2]) .set_dtype(4,dtype_v[3]) .set_param(param) .set_before_exec_callback( conv_bias::ConvBiasAlgoChecker( algo_name.c_str())); for (auto shape : shapes_and_computation) { multi_thread_times.push_back(benchmarker.exec(shape.first) / RUNS); } } { auto single_thread_handle = create_cpu_handle(0, true, &single_thread_config); auto benchmarker = Benchmarker(single_thread_handle.get()); benchmarker.set_times(RUNS) .set_display(false) .set_dtype(0,dtype_v[0]) .set_dtype(1,dtype_v[1]) .set_dtype(2,dtype_v[2]) .set_dtype(4,dtype_v[3]) .set_param(param) .set_before_exec_callback( conv_bias::ConvBiasAlgoChecker( algo_name1.c_str())); for (auto shape : shapes_and_computation) { single_thread_times.push_back(benchmarker.exec(shape.first) / RUNS); } } printf("Benchmark : Multi threads %zu, ", multi_thread_config.nr_thread); printf("core_ids:"); for (size_t i = 0; i < multi_thread_config.affinity_core_set.size(); i++) { printf("%zu ", multi_thread_config.affinity_core_set[i]); } for (size_t i = 0; i < shapes_and_computation.size(); i++) { auto shapes = shapes_and_computation[i]; printf("Bench case: "); for (auto&& shape : shapes.first) { printf("%s ", shape.to_string().c_str()); } float computations = shapes.second; printf("algo:%s gflops: %f,\n algo:%s gflops: " "%f. spead up = %f\n", algo_name.c_str(), computations / multi_thread_times[i], algo_name1.c_str(), computations / single_thread_times[i], single_thread_times[i] / multi_thread_times[i]); } } } // namespace TEST_F(X86_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_CHANWISE_AVX2_INT8) { constexpr size_t RUNS = 50; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.sparse = param::ConvBias::Sparse::GROUP; std::vector data_type = {dtype::Int8(), dtype::Int8(), dtype::Int32(), dtype::Int32()}; std::vector, float>> shapes_and_computation; auto bench_case = [&](size_t N, size_t IC, size_t H, size_t W, size_t FS) { param.pad_h = FS / 2; param.pad_w = FS / 2; SmallVector shapes{ {N, IC, H, W}, {IC, 1, 1, FS, FS}, {}, {}, {}}; TensorShape dst{N, IC, (H + 2 * param.pad_h - FS) + 1, (W + 2 * param.pad_w - FS) + 1}; float computations = (FS * FS * dst.total_nr_elems() * 2) * 1e-6; shapes_and_computation.push_back(std::make_pair(shapes, computations)); }; bench_case(1, 32, 112, 112, 7); bench_case(1, 144, 56, 56, 7); bench_case(1, 192, 28, 28, 7); bench_case(1, 384, 28, 28, 7); bench_case(1, 576, 14, 14, 7); bench_case(1, 960, 7, 7, 7); bench_case(1, 32, 112, 112, 5); bench_case(1, 144, 56, 56, 5); bench_case(1, 192, 28, 28, 5); bench_case(1, 384, 28, 28, 5); bench_case(1, 576, 14, 14, 5); bench_case(1, 960, 7, 7, 5); bench_case(1, 32, 112, 112, 3); bench_case(1, 144, 56, 56, 3); bench_case(1, 192, 28, 28, 3); bench_case(1, 384, 28, 28, 3); bench_case(1, 576, 14, 14, 3); bench_case(1, 960, 7, 7, 3); bench_case(1, 32, 112, 112, 2); bench_case(1, 144, 56, 56, 2); bench_case(1, 192, 28, 28, 2); bench_case(1, 384, 28, 28, 2); bench_case(1, 576, 14, 14, 2); bench_case(1, 960, 7, 7, 2); std::string algo_name = "X86_CONV_BIAS_CHANWISE_AVX2_INT8_STRIDE1"; printf("Benchmark X86_CONV_BIAS_CHANWISE_AVX2_INT8_STRIDE1\n"); benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}}, data_type); benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}}, data_type); shapes_and_computation.clear(); } TEST_F(X86_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_DIRECT_AVX2_INT8) { constexpr size_t RUNS = 50; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.sparse = param::ConvBias::Sparse::DENSE; std::vector data_type = {dtype::Int8(), dtype::Int8(), dtype::Int32(), dtype::Int32()}; std::vector, float>> shapes_and_computation; auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS) { param.pad_h = FS / 2; param.pad_w = FS / 2; SmallVector shapes{ {N, IC, H, W}, {OC, IC, FS, FS}, {}, {}, {}}; TensorShape dst{N, OC, (H + 2 * param.pad_h - FS) + 1, (W + 2 * param.pad_w - FS) + 1}; float computations = (IC * FS * FS * dst.total_nr_elems() * 2) * 1e-6; shapes_and_computation.push_back(std::make_pair(shapes, computations)); }; bench_case(1, 32, 32, 200, 200, 7); bench_case(1, 32, 64, 200, 200, 7); bench_case(1, 32, 32, 128, 128, 7); bench_case(1, 32, 64, 128, 128, 7); bench_case(1, 32, 32, 100, 100, 7); bench_case(1, 32, 64, 100, 100, 7); bench_case(1, 32, 32, 80, 80, 7); bench_case(1, 32, 64, 80, 80, 7); bench_case(1, 32, 32, 200, 200, 5); bench_case(1, 32, 64, 200, 200, 5); bench_case(1, 32, 32, 128, 128, 5); bench_case(1, 32, 64, 128, 128, 5); bench_case(1, 32, 32, 100, 100, 5); bench_case(1, 32, 64, 100, 100, 5); bench_case(1, 32, 32, 80, 80, 5); bench_case(1, 32, 64, 80, 80, 5); bench_case(1, 32, 32, 200, 200, 3); bench_case(1, 32, 64, 200, 200, 3); bench_case(1, 32, 32, 128, 128, 3); bench_case(1, 32, 64, 128, 128, 3); bench_case(1, 32, 32, 100, 100, 3); bench_case(1, 32, 64, 100, 100, 3); bench_case(1, 32, 32, 80, 80, 3); bench_case(1, 32, 64, 80, 80, 3); bench_case(1, 32, 32, 200, 200, 2); bench_case(1, 32, 64, 200, 200, 2); bench_case(1, 32, 32, 128, 128, 2); bench_case(1, 32, 64, 128, 128, 2); bench_case(1, 32, 32, 100, 100, 2); bench_case(1, 32, 64, 100, 100, 2); bench_case(1, 32, 32, 80, 80, 2); bench_case(1, 32, 64, 80, 80, 2); std::string algo_name = "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE1"; printf("Benchmark X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE1 algo\n"); benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}}, data_type); benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}}, data_type); benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}}, data_type); shapes_and_computation.clear(); } TEST_F(X86_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_DIRECT_AVX2_INT8_STRIDE2) { constexpr size_t RUNS = 50; param::ConvBias param; param.stride_h = 2; param.stride_w = 2; param.sparse = param::ConvBias::Sparse::DENSE; std::vector data_type = {dtype::Int8(), dtype::Int8(), dtype::Int32(), dtype::Int32()}; std::vector, float>> shapes_and_computation; auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS) { param.pad_h = FS / 2; param.pad_w = FS / 2; SmallVector shapes{ {N, IC, H, W}, {OC, IC, FS, FS}, {}, {}, {}}; TensorShape dst{N, OC, (H + 2 * param.pad_h - FS) / param.stride_h + 1, (W + 2 * param.pad_w - FS) / param.pad_w + 1}; float computations = (IC * FS * FS * dst.total_nr_elems() * 2) * 1e-6; shapes_and_computation.push_back(std::make_pair(shapes, computations)); }; bench_case(1, 32, 32, 200, 200, 7); bench_case(1, 32, 64, 200, 200, 7); bench_case(1, 32, 32, 128, 128, 7); bench_case(1, 32, 64, 128, 128, 7); bench_case(1, 32, 32, 100, 100, 7); bench_case(1, 32, 64, 100, 100, 7); bench_case(1, 32, 32, 80, 80, 7); bench_case(1, 32, 64, 80, 80, 7); bench_case(1, 32, 32, 200, 200, 5); bench_case(1, 32, 64, 200, 200, 5); bench_case(1, 32, 32, 128, 128, 5); bench_case(1, 32, 64, 128, 128, 5); bench_case(1, 32, 32, 100, 100, 5); bench_case(1, 32, 64, 100, 100, 5); bench_case(1, 32, 32, 80, 80, 5); bench_case(1, 32, 64, 80, 80, 5); bench_case(1, 32, 32, 200, 200, 3); bench_case(1, 32, 64, 200, 200, 3); bench_case(1, 32, 32, 128, 128, 3); bench_case(1, 32, 64, 128, 128, 3); bench_case(1, 32, 32, 100, 100, 3); bench_case(1, 32, 64, 100, 100, 3); bench_case(1, 32, 32, 80, 80, 3); bench_case(1, 32, 64, 80, 80, 3); bench_case(1, 32, 32, 200, 200, 2); bench_case(1, 32, 64, 200, 200, 2); bench_case(1, 32, 32, 128, 128, 2); bench_case(1, 32, 64, 128, 128, 2); bench_case(1, 32, 32, 100, 100, 2); bench_case(1, 32, 64, 100, 100, 2); bench_case(1, 32, 32, 80, 80, 2); bench_case(1, 32, 64, 80, 80, 2); std::string algo_name = "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE2"; printf("Benchmark X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE2 algo\n"); benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}}, data_type); benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}}, data_type); benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}}, data_type); shapes_and_computation.clear(); } TEST_F(X86_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_DIRECTF32) { constexpr size_t RUNS = 50; param::ConvBias param; param.nonlineMode = param::ConvBias::NonlineMode::RELU; param.pad_h = 1; param.pad_w = 1; param.stride_h = 1; param.stride_w = 1; param.sparse = param::ConvBias::Sparse::GROUP; std::vector data_type = {dtype::Float32(), dtype::Float32(), dtype::Float32(), dtype::Float32()}; std::vector, float>> shapes_and_computation; auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS, size_t group) { SmallVector shapes{{N, IC, H, W}, {group, OC / group, IC / group, FS, FS}, {1, OC, 1, 1}, {}, {N, OC, H, W}}; TensorShape dst{N, OC, H, W}; float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 + dst.total_nr_elems()) * 1e-6; shapes_and_computation.push_back(std::make_pair(shapes, computations)); }; bench_case(1, 32, 32, 200, 200, 3, 4); bench_case(1, 32, 32, 200, 200, 3, 32); bench_case(1, 32, 32, 128, 128, 3, 4); bench_case(1, 32, 32, 128, 128, 3, 32); bench_case(1, 32, 32, 100, 100, 3, 4); bench_case(1, 32, 32, 100, 100, 3, 32); bench_case(1, 32, 32, 80, 80, 3, 4); bench_case(1, 32, 32, 80, 80, 3, 32); std::string algo_name = "X86_CONV_BIAS_DIRECT_STRIDE1_LARGE_GROUP"; printf("Benchmark X86_CONV_BIAS_DIRECT_STRIDE1_LARGE_GROUP algo\n"); benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}}, data_type); benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}}, data_type); benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}}, data_type); shapes_and_computation.clear(); algo_name = "X86_CONV_BIAS_DIRECT_STRIDE1_SMALL_GROUP"; printf("Benchmark X86_CONV_BIAS_DIRECT_STRIDE1_SMALL_GROUP algo\n"); bench_case(1, 32, 32, 200, 200, 3, 1); bench_case(1, 32, 32, 128, 128, 3, 1); bench_case(1, 32, 32, 100, 100, 3, 1); bench_case(1, 32, 32, 80, 80, 3, 1); benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}}, data_type); benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}}, data_type); benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}}, data_type); } TEST_F(X86_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_IM2COL_F32) { constexpr size_t RUNS = 50; param::ConvBias param; param.nonlineMode = param::ConvBias::NonlineMode::RELU; param.pad_h = 1; param.pad_w = 1; param.stride_h = 1; param.stride_w = 1; std::vector data_type = {dtype::Float32(), dtype::Float32(), dtype::Float32(), dtype::Float32()}; std::vector, float>> shapes_and_computation; auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS, size_t group) { SmallVector shapes{{N, IC, H, W}, {OC / group, IC / group, FS, FS}, {1, OC, 1, 1}, {}, {N, OC, H, W}}; TensorShape dst{N, OC, H, W}; float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 + dst.total_nr_elems()) * 1e-6; shapes_and_computation.push_back(std::make_pair(shapes, computations)); }; bench_case(1, 32, 32, 200, 200, 3, 1); bench_case(1, 32, 32, 200, 200, 3, 1); bench_case(1, 32, 32, 128, 128, 3, 1); bench_case(1, 32, 32, 128, 128, 3, 1); bench_case(1, 32, 32, 100, 100, 3, 1); bench_case(1, 32, 32, 100, 100, 3, 1); bench_case(1, 32, 32, 80, 80, 3, 1); bench_case(1, 32, 32, 80, 80, 3, 1); bench_case(1, 64, 32, 7, 7, 3, 1); bench_case(1, 64, 64, 7, 7, 3, 1); bench_case(1, 64, 128, 7, 7, 3, 1); bench_case(1, 64, 256, 7, 7, 3, 1); bench_case(1, 64, 512, 7, 7, 3, 1); bench_case(1, 64, 1024, 7, 7, 3, 1); bench_case(1, 64, 32, 14, 14, 3, 1); bench_case(1, 64, 64, 14, 14, 3, 1); bench_case(1, 64, 128, 14, 14, 3, 1); bench_case(1, 64, 256, 14, 14, 3, 1); bench_case(1, 64, 512, 14, 14, 3, 1); bench_case(1, 64, 1024, 14, 14, 3, 1); bench_case(1, 128, 128, 14, 14, 3, 1); bench_case(1, 128, 256, 14, 14, 3, 1); bench_case(1, 512, 512, 14, 14, 3, 1); bench_case(1, 256, 512, 14, 14, 3, 1); bench_case(1, 512, 1024, 14, 14, 3, 1); bench_case(1, 1024, 1024, 14, 14, 3, 1); std::string algo_name = "IM2COLMATMUL:X86_F32_BLAS:192"; printf("Benchmark IM2COLMATMUL:X86_F32_BLAS algo\n"); benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}}, data_type); benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}}, data_type); benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}}, data_type); shapes_and_computation.clear(); } TEST_F(X86_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_IM2COL_F32_single_thread) { constexpr size_t RUNS = 50; param::ConvBias param; param.nonlineMode = param::ConvBias::NonlineMode::RELU; param.pad_h = 1; param.pad_w = 1; param.stride_h = 1; param.stride_w = 1; std::vector data_type = {dtype::Float32(), dtype::Float32(), dtype::Float32(), dtype::Float32()}; std::vector, float>> shapes_and_computation; auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS, size_t group) { SmallVector shapes{{N, IC, H, W}, {OC / group, IC / group, FS, FS}, {1, OC, 1, 1}, {}, {N, OC, H, W}}; TensorShape dst{N, OC, H, W}; float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 + dst.total_nr_elems()) * 1e-6; shapes_and_computation.push_back(std::make_pair(shapes, computations)); }; bench_case(1, 32, 32, 200, 200, 3, 1); bench_case(1, 32, 32, 200, 200, 3, 1); bench_case(1, 32, 32, 128, 128, 3, 1); bench_case(1, 32, 32, 128, 128, 3, 1); bench_case(1, 32, 32, 100, 100, 3, 1); bench_case(1, 32, 32, 100, 100, 3, 1); bench_case(1, 32, 32, 80, 80, 3, 1); bench_case(1, 32, 32, 80, 80, 3, 1); bench_case(1, 64, 32, 7, 7, 3, 1); bench_case(1, 64, 64, 7, 7, 3, 1); bench_case(1, 64, 128, 7, 7, 3, 1); bench_case(1, 64, 256, 7, 7, 3, 1); bench_case(1, 64, 512, 7, 7, 3, 1); bench_case(1, 64, 1024, 7, 7, 3, 1); bench_case(1, 64, 32, 14, 14, 3, 1); bench_case(1, 64, 64, 14, 14, 3, 1); bench_case(1, 64, 128, 14, 14, 3, 1); bench_case(1, 64, 256, 14, 14, 3, 1); bench_case(1, 64, 512, 14, 14, 3, 1); bench_case(1, 64, 1024, 14, 14, 3, 1); bench_case(1, 128, 128, 14, 14, 3, 1); bench_case(1, 128, 256, 14, 14, 3, 1); bench_case(1, 512, 512, 14, 14, 3, 1); bench_case(1, 256, 512, 14, 14, 3, 1); bench_case(1, 512, 1024, 14, 14, 3, 1); bench_case(1, 1024, 1024, 14, 14, 3, 1); std::string algo_name = "IM2COLMATMUL:X86_F32_MKL_PACKA:192"; std::string algo_name1 = "IM2COLMATMUL:X86_F32_BLAS:192"; printf("Benchmark IM2COLMATMUL:X86_F32_BLAS algo\n"); benchmark_impl_comp(param, shapes_and_computation, algo_name,algo_name1, RUNS, {1, {4}}, {1, {4}},data_type); benchmark_impl_comp(param, shapes_and_computation, algo_name,algo_name1, RUNS, {1, {7}}, {1, {7}},data_type); shapes_and_computation.clear(); } TEST_F(X86_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_IM2COL_INT8X8X32) { constexpr size_t RUNS = 50; param::ConvBias param; param.pad_h = 1; param.pad_w = 1; param.stride_h = 1; param.stride_w = 1; std::vector, float>> shapes_and_computation; auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS, size_t group) { SmallVector shapes{{N, IC, H, W}, {OC / group, IC / group, FS, FS}, {1, OC, 1, 1}, {}, {N, OC, H, W}}; TensorShape dst{N, OC, H, W}; float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 + dst.total_nr_elems()) * 1e-6; shapes_and_computation.push_back(std::make_pair(shapes, computations)); }; bench_case(1, 32, 32, 200, 200, 3, 1); bench_case(1, 32, 32, 200, 200, 3, 1); bench_case(1, 32, 32, 128, 128, 3, 1); bench_case(1, 32, 32, 128, 128, 3, 1); bench_case(1, 32, 32, 100, 100, 3, 1); bench_case(1, 32, 32, 100, 100, 3, 1); bench_case(1, 32, 32, 80, 80, 3, 1); bench_case(1, 32, 32, 80, 80, 3, 1); bench_case(1, 64, 32, 7, 7, 3, 1); bench_case(1, 64, 64, 7, 7, 3, 1); bench_case(1, 64, 128, 7, 7, 3, 1); bench_case(1, 64, 256, 7, 7, 3, 1); bench_case(1, 64, 512, 7, 7, 3, 1); bench_case(1, 64, 1024, 7, 7, 3, 1); bench_case(1, 64, 32, 14, 14, 3, 1); bench_case(1, 64, 64, 14, 14, 3, 1); bench_case(1, 64, 128, 14, 14, 3, 1); bench_case(1, 64, 256, 14, 14, 3, 1); bench_case(1, 64, 512, 14, 14, 3, 1); bench_case(1, 64, 1024, 14, 14, 3, 1); bench_case(1, 128, 128, 14, 14, 3, 1); bench_case(1, 128, 256, 14, 14, 3, 1); bench_case(1, 512, 512, 14, 14, 3, 1); bench_case(1, 256, 512, 14, 14, 3, 1); bench_case(1, 512, 1024, 14, 14, 3, 1); bench_case(1, 1024, 1024, 14, 14, 3, 1); std::vector data_type = {dtype::Int8(), dtype::Int8(), dtype::Int32(), dtype::Int32()}; std::string algo_name = "IM2COLMATMUL:X86_INT8X8X32_AVX2_4X16X2:192"; // std::string algo_name = "IM2COLMATMUL:X86_INT8X8X32_AVX2_2X4X16"; // printf("Benchmark IM2COLMATMUL:X86_INT8X8X32_AVX2_4X16X2 algo\n"); benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}}, data_type); benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}}, data_type); benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}}, data_type); shapes_and_computation.clear(); } namespace{ std::vector get_winograd_benchmark_args(size_t kernel, size_t pack_size) { std::vector args; auto pack = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p) { if (ic % pack_size != 0 || oc % pack_size != 0) return; if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.mode = param::ConvBias::Mode::CROSS_CORRELATION; param.format = param::ConvBias::Format::NCHW88; param.sparse = param::ConvBias::Sparse::DENSE; param.nonlineMode = param::ConvBias::NonlineMode::RELU; param.stride_h = 1; param.stride_w = 1; param.pad_h = p; param.pad_w = p; args.push_back(conv_bias::TestArg{param, TensorShape{1, ic/8, h, w, 8}, TensorShape{oc/8, ic/8, kernel, kernel, 8, 8}, {1, oc/8, 1, 1, 8}}); }; for (size_t ic : {64, 128, 256}) { for (size_t oc : {64,128,256}) { pack(oc, ic, 56, 56, kernel, kernel / 2); pack(oc, ic, 14, 14, kernel, kernel / 2); pack(oc, ic, 28, 28, kernel, kernel / 2); } } //! conv in vgg16 pack(512, 512, 15, 15, kernel, kernel / 2); pack(512, 256, 15, 15, kernel, kernel / 2); pack(256, 256, 29, 29, kernel, kernel / 2); pack(256, 128, 29, 29, kernel, kernel / 2); pack(128, 128, 57, 57, kernel, kernel / 2); pack(128, 64, 57, 57, kernel, kernel / 2); pack(64, 64, 56, 56, kernel, kernel / 2); pack(128, 128, 28, 28, kernel, kernel / 2); pack(512, 512, 14, 14, kernel, kernel / 2); return args; } void benchmark_winograd(const char* algo_name, Handle* handle, size_t kernel, size_t pack_size) { auto&& args = get_winograd_benchmark_args(kernel, pack_size); using namespace conv_bias; constexpr size_t RUN = 10; Benchmarker benchmark(handle); benchmark.set_display(false); benchmark.set_times(RUN); Benchmarker benchmark_winograd(handle); benchmark_winograd.set_display(false); benchmark_winograd.set_times(RUN); for (auto&& arg : args) { TensorLayout dst_layout; auto opr = handle->create_operator(); opr->param() = arg.param; opr->deduce_layout({arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()}, {arg.bias, dtype::Float32()}, {}, dst_layout); //! dst.nr_elems * IC * FH * FW * 2 float computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] * arg.filter[3] * 2.0 * 8.0 / (1024 * 1024 * 1024) * 1e3; auto used = benchmark.set_param(arg.param).exec( {arg.src, arg.filter, {}, {}, {}}) / RUN; benchmark_winograd.set_param(arg.param); auto used_winograd = algo_benchmark(benchmark_winograd, {arg.src, arg.filter, {}, {}, {}}, algo_name) / RUN; printf("%s %s: normal: %f ms %f Gflops winograd: %f ms %f GFlops " "speedup: " "%f\n", arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used, computations / used, used_winograd, computations / used_winograd, used / used_winograd); } } } TEST_F(X86, BENCHMARK_CONVBIAS_WINOGRAD_F63_8x8) { benchmark_winograd("WINOGRAD:X86_F32MK8_8X8:8:6:8", handle(), 3, 8); } TEST_F(X86, BENCHMARK_CONVBIAS_WINOGRAD_F23_8x8) { benchmark_winograd("WINOGRAD:X86_F32MK8_8X8:8:2:8", handle(), 3, 8); } #endif } // namespace test } // namespace megdnn // vim: syntax=cpp.doxygen