# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import numpy as np from megengine import Parameter, tensor from megengine.module import ConvTranspose2d, LocalConv2d from megengine.test import assertTensorClose def test_conv_transpose2d(): SH, SW = 3, 1 PH, PW = 2, 0 N, IC, IH, IW = 4, 5, 8, 6 KH, KW = 3, 4 OC = 3 BIAS = False def getsize(inp, kern, stride): return (inp - 1) * stride + kern OH = getsize(IH, KH, SH) OW = getsize(IW, KW, SW) inp = np.random.normal(size=(N, IC, IH, IW)).astype(np.float32) out = np.zeros((N, OC, OH, OW), dtype=np.float32) weight = np.random.normal(size=(IC, OC, KH, KW)).astype(np.float32) bias = np.random.normal(size=(1, OC, 1, 1)).astype(np.float32) # naive calculation use numpy for n, ic, ih, iw in itertools.product(*map(range, [N, IC, IH, IW])): oh, ow = ih * SH, iw * SW out[n, :, oh : oh + KH, ow : ow + KW] += inp[n, ic, ih, iw] * weight[ic] out = out[:, :, PH : OH - PH, PW : OW - PW] if BIAS: out += bias # megengine conv_transpose2d calculation conv_transpose2d = ConvTranspose2d(IC, OC, (KH, KW), (SH, SW), (PH, PW), bias=BIAS) conv_transpose2d.weight = Parameter(weight, dtype=np.float32) if BIAS: conv_transpose2d.bias = Parameter(bias, dtype=np.float32) y = conv_transpose2d(tensor(inp)) assertTensorClose(out, y.numpy(), max_err=2e-6) def test_local_conv2d(): batch_size = 10 in_channels = 4 out_channels = 8 input_height = 8 input_width = 8 kernel_size = 3 stride = 1 padding = 1 dilation = 1 groups = 1 local_conv2d = LocalConv2d( in_channels=in_channels, out_channels=out_channels, input_height=input_height, input_width=input_width, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, ) inputs = np.random.normal( size=(batch_size, in_channels, input_height, input_width) ).astype(np.float32) output_height = (input_height + padding * 2 - kernel_size) // stride + 1 output_width = (input_width + padding * 2 - kernel_size) // stride + 1 weights = np.random.normal( size=( groups, output_height, output_width, in_channels // groups, kernel_size, kernel_size, out_channels // groups, ) ).astype(np.float32) local_conv2d.weight = Parameter(weights) outputs = local_conv2d(tensor(inputs)) # naive calculation use numpy # only test output_height == input_height, output_width == input_width, group == 1 inputs = np.pad(inputs, ((0, 0), (0, 0), (1, 1), (1, 1))) expected = np.zeros( (batch_size, out_channels, output_height, output_width), dtype=np.float32, ) for n, oc, oh, ow in itertools.product( *map(range, [batch_size, out_channels, output_height, output_width]) ): ih, iw = oh * stride, ow * stride expected[n, oc, ih, iw] = np.sum( inputs[n, :, ih : ih + kernel_size, iw : iw + kernel_size] * weights[0, oh, ow, :, :, :, oc] ) assertTensorClose(outputs.numpy(), expected, max_err=1e-5)