From fb2329e9db83f5c9ab99745442669db3b5936aff Mon Sep 17 00:00:00 2001 From: wangxiang Date: Mon, 29 Aug 2022 09:59:38 +0800 Subject: [PATCH] feat(dnn) add nchw44 deconv --- dnn/src/common/convolution.cpp | 11 +- dnn/src/fallback/convolution/algos.cpp | 135 +++++++++++++++++- dnn/src/fallback/convolution/algos.h | 14 ++ dnn/src/fallback/convolution/col2img_helper.h | 67 +++++++++ dnn/src/fallback/convolution/opr_impl.cpp | 11 +- dnn/src/fallback/convolution/opr_impl.h | 2 + dnn/test/fallback/convolution.cpp | 123 ++++++++++++++++ 7 files changed, 351 insertions(+), 12 deletions(-) diff --git a/dnn/src/common/convolution.cpp b/dnn/src/common/convolution.cpp index 0441f4388..15f5ff3c3 100644 --- a/dnn/src/common/convolution.cpp +++ b/dnn/src/common/convolution.cpp @@ -1156,7 +1156,7 @@ void ConvolutionBackwardData::deduce_layout( MEGDNN_MARK_USED_VAR(errmsg); megdnn_assert_contiguous(filter); megdnn_assert_contiguous(diff); - megdnn_assert(filter.ndim == 4_z || filter.ndim == 5_z, "%s", errmsg().c_str()); + megdnn_assert(filter.ndim >= 4_z && filter.ndim <= 7_z, "%s", errmsg().c_str()); megdnn_assert(diff.ndim == 4_z || diff.ndim == 5_z, "%s", errmsg().c_str()); deduce_dtype(filter.dtype, diff.dtype, grad.dtype); @@ -1193,11 +1193,12 @@ void ConvolutionBackwardData::deduce_layout( deduce(diff[i + src_or_dst_spatial_start], cflt.dilated_spatial[i], cflt.stride[i], cflt.padding[i]); } - } else if (param().format == Param::Format::NCHW4) { + } else if ( + param().format == Param::Format::NCHW4 || + param().format == Param::Format::NCHW44) { megdnn_assert( - diff.ndim == 5, "valid diff ndim for NCHW4, expected=5, got=%zu", - diff.ndim); - megdnn_assert(cflt.group == 1, "%s", errmsg().c_str()); + diff.ndim == 5, + "valid diff ndim for NCHW4 and NCHW44, expected=5, got=%zu", diff.ndim); megdnn_assert(cflt.ocpg * cflt.group == diff[1] * 4, "%s", errmsg().c_str()); grad.ndim = diff.ndim; grad[0] = diff[0]; diff --git a/dnn/src/fallback/convolution/algos.cpp b/dnn/src/fallback/convolution/algos.cpp index 014dfb555..a85bf02c1 100644 --- a/dnn/src/fallback/convolution/algos.cpp +++ b/dnn/src/fallback/convolution/algos.cpp @@ -29,14 +29,19 @@ Relayout* get_relayout_opr() { MatrixMul* get_matmul_opr(const NCBKernSizeParam& param) { using ConvCM = param::Convolution::ComputeMode; using MmCM = param::MatrixMul::ComputeMode; - static CpuOprDelegationStorage<2> storage; + static CpuOprDelegationStorage<3> storage; + if (param.filter_meta.format == param::Convolution::Format::NCHW44) { + MatrixMul::Param p; + p.format = param::MatrixMul::Format::MK4; + return storage.get(p); + } switch (param.compute_mode) { default: - return storage.get({}); + return storage.get({}); case ConvCM::FLOAT32: { MatrixMul::Param p; p.compute_mode = MmCM::FLOAT32; - return storage.get(p); + return storage.get(p); } } } @@ -58,7 +63,14 @@ WorkspaceBundle get_bundle(const NCBKernSizeParam& param) { part0 = (IC * FH * FW * IH * IW) * param.grad_type.size(); } part2 = (OC * IC * FH * FW) * param.filter_type.size(); - { + if (param.filter_meta.format == param::Convolution::Format::NCHW44) { + TensorLayout A_, B_, C_; + A_ = TensorLayout({IC / 4 * FH * FW, OC / 4, 4, 4}, param.filter_type); + B_ = TensorLayout({OC / 4, IH * IW}, param.diff_type); + C_ = TensorLayout({IC / 4 * FH * FW, IH * IW, 4}, param.grad_type); + auto matmul_algo = get_matmul_opr(param); + part1 = matmul_algo->get_workspace_in_bytes(A_, B_, C_); + } else { TensorLayout A_, B_, C_; A_ = TensorLayout({IC * FH * FW, OC}, param.filter_type); B_ = TensorLayout({OC, IH * IW}, param.diff_type); @@ -573,4 +585,119 @@ bool ConvolutionBackwardDataImpl::AlgoMatrixMul::is_preferred( return is_matrix_mul_preferred(param); } +/* ===================== Matrix mul nchw44 algo ===================== */ +namespace{ +void kern_matmul_nchw44(const NCBKernParam& param) { + bool is_xcorr = !param.filter_meta.should_flip; + UNPACK_CONV_F32_NCB_KERN_SIZES(param); + auto bundle = get_bundle(param); + bundle.set(param.workspace_ptr); + bool is1X1 = (FH == 1 && FW == 1 && SH == 1 && SW == 1 && PH == 0 && PW == 0); + + typedef void (*Func1)(const float*, float*, int, int, int, int, int, int, int); + typedef void (*Func2)( + const float*, float*, int, int, int, int, int, int, int, int, int, int, + int); + Func1 f1 = nullptr; + Func2 f2 = nullptr; + if (is_xcorr) { + f1 = col2img_nchw44; + f2 = col2img_stride_padding_nchw44; + } else { + f1 = col2img_nchw44; + f2 = col2img_stride_padding_nchw44; + } + float* filter = const_cast(param.filter()); + TensorND A_src, A_dst; + { + A_src.layout = TensorLayout( + {IC / 4 * FH * FW, OC / 4, 4, 4}, + { + static_cast(16), + static_cast(IC * FH * FW * 4), + static_cast(1), + static_cast(4), + }, + param.filter_type); + A_src.reset_ptr(static_cast(filter)); + A_dst.layout = + TensorLayout({IC / 4 * FH * FW, OC / 4, 4, 4}, param.filter_type); + A_dst.reset_ptr(static_cast(bundle.get(2))); + // TODO Should be removed once armv8 convolution support transpose. + get_relayout_opr()->exec(A_src, A_dst, inplace_cpu_handle().get()); + } + TensorND B_, C_; + for (size_t n = 0; n < N; ++n) { + float*C_src, *C_dst; + float* diff = const_cast(param.diff() + n * param.inp_bs); + float* grad = param.grad() + n * param.out_bs; + if (is1X1) { + C_src = grad; + } else { + C_src = static_cast(bundle.get(0)); + } + { + B_.layout = TensorLayout({OC/4, IH * IW, 4}, param.diff_type); + B_.reset_ptr(static_cast(diff)); + C_.layout = TensorLayout({IC / 4 * FH * FW, IH * IW, 4}, param.grad_type); + C_.reset_ptr(C_src); + Workspace workspace( + static_cast(bundle.get(1)), bundle.get_size(1)); + auto matmul_opr =get_matmul_opr(param); + matmul_opr->exec(A_dst, B_, C_, workspace); + } + + if (!is1X1) { + C_dst = grad; + std::memset(C_dst, 0, param.grad_type.size() * IC * OH * OW); + if (PH == 0 && PW == 0 && SH == 1 && SW == 1) { + f1(C_src, C_dst, OH, OW, IC, IH, IW, FH, FW); + } else { + f2(C_src, C_dst, OH, OW, IC, IH, IW, FH, FW, SH, SW, PH, PW); + } + } + } +} +} // namespace + +bool ConvolutionBackwardDataImpl::AlgoMatrixMulNCHW44::usable( + ConvolutionBackwardDataImpl*, const NCBKernSizeParam& param) const { + auto&& fm = param.filter_meta; + return fm.format == param::Convolution::Format::NCHW44 && + param.diff_type.enumv() == DTypeTrait::enumv && + param.filter_type.enumv() == DTypeTrait::enumv && + param.grad_type.enumv() == DTypeTrait::enumv && + fm.spatial_ndim == 2 && fm.group == 1 && fm.dilation[0] == 1 && + fm.dilation[1] == 1 && fm.icpg % 4 == 0 && fm.ocpg % 4 == 0; +} + +size_t ConvolutionBackwardDataImpl::AlgoMatrixMulNCHW44::get_workspace( + ConvolutionBackwardDataImpl*, const NCBKernSizeParam& param) const { + MIDOUT_BEGIN( + megdnn_fallback_deconv, + midout_iv("AlgoMatrixMulNCHW44::get_workspace"_hash)) { + return get_bundle(param).total_size_in_bytes(); + } + MIDOUT_END(); + return 0; +} + +ConvolutionBackwardDataImpl::ncb_kern_t ConvolutionBackwardDataImpl:: + AlgoMatrixMulNCHW44::dispatch_kern( + ConvolutionBackwardDataImpl*, const NCBKernSizeParam& param) const { + if (param.filter_type.enumv() == DTypeTrait::enumv) { + MIDOUT_BEGIN(megdnn_fallback_deconv, midout_iv("FLOAT_NCHW44"_hash)) { + return kern_matmul_nchw44; + } + MIDOUT_END(); + } + + megdnn_throw("unsupported data type on matrix mul"); +} + +bool ConvolutionBackwardDataImpl::AlgoMatrixMulNCHW44::is_preferred( + const NCBKernSizeParam& param) const { + return is_matrix_mul_preferred(param); +} + // vim: syntax=cpp.doxygen diff --git a/dnn/src/fallback/convolution/algos.h b/dnn/src/fallback/convolution/algos.h index bcf1e0f5d..31dc305bc 100644 --- a/dnn/src/fallback/convolution/algos.h +++ b/dnn/src/fallback/convolution/algos.h @@ -198,6 +198,20 @@ public: MEGDNN_DECL_ALGO_TYPE(FB_MATMUL) }; +class ConvolutionBackwardDataImpl::AlgoMatrixMulNCHW44 final : public AlgoBase { +public: + const char* name() const override { return "DeconvMatmulNchw44"; } + bool usable(ConvolutionBackwardDataImpl* opr, const NCBKernSizeParam& param) + const override; + size_t get_workspace( + ConvolutionBackwardDataImpl*, const NCBKernSizeParam& param) const override; + ncb_kern_t dispatch_kern( + ConvolutionBackwardDataImpl*, const NCBKernSizeParam&) const override; + bool is_preferred(const NCBKernSizeParam& param) const override; + AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } + MEGDNN_DECL_ALGO_TYPE(FB_MATMUL_NCHW44) +}; + } // namespace fallback } // namespace megdnn diff --git a/dnn/src/fallback/convolution/col2img_helper.h b/dnn/src/fallback/convolution/col2img_helper.h index b99df0d39..f0ceab7d5 100644 --- a/dnn/src/fallback/convolution/col2img_helper.h +++ b/dnn/src/fallback/convolution/col2img_helper.h @@ -1,5 +1,6 @@ #include #include "src/common/utils.h" +#include "src/fallback/general_intrinsic/gi_float.h" namespace { @@ -61,6 +62,72 @@ void col2img( } } +template +void col2img_stride_padding_nchw44( + const float* __restrict src, float* __restrict dst, const int OH, const int OW, + const int IC, const int IH, const int IW, const int FH, const int FW, + const int SH, const int SW, int PH, int PW) { + size_t i = 0; + rep(ic, IC / 4) { + rep(fh, FH) { + rep(fw, FW) { + int fh2, fw2; + if (is_xcorr) { + fh2 = fh; + fw2 = fw; + } else { + fh2 = FH - fh - 1; + fw2 = FW - fw - 1; + } + rep(ih, IH) { + int h = ih * SH - PH + fh2; + rep(iw, IW) { + int w = iw * SW - PW + fw2; + if (h >= 0 && h < OH && w >= 0 && w < OW) { + float* dst_ptr = dst + (ic * OH * OW + h * OW + w) * 4; + GI_FLOAT32_t dst_data = GiLoadFloat32(dst_ptr); + GI_FLOAT32_t src_data = GiLoadFloat32(src+i); + GiStoreFloat32(dst_ptr, GiAddFloat32(dst_data, src_data)); + } + i += 4; + } + } + } + } + } +} + +template +void col2img_nchw44( + const float* __restrict src, float* __restrict dst, const int OH, const int OW, + const int IC, const int IH, const int IW, const int FH, const int FW) { + size_t i = 0; + rep(ic, IC / 4) { + rep(fh, FH) { + rep(fw, FW) { + int fh2, fw2; + if (is_xcorr) { + fh2 = fh; + fw2 = fw; + } else { + fh2 = FH - fh - 1; + fw2 = FW - fw - 1; + } + rep(ih, IH) { + rep(iw, IW) { + float* dst_ptr = dst + ic * OH * OW * 4 + (ih + fh2) * OW * 4 + + iw * 4 + fw2 * 4; + GI_FLOAT32_t dst_data = GiLoadFloat32(dst_ptr); + GI_FLOAT32_t src_data = GiLoadFloat32(src + i); + GiStoreFloat32(dst_ptr, GiAddFloat32(dst_data, src_data)); + i += 4; + } + } + } + } + } +} + } // anonymous namespace // vim: syntax=cpp.doxygen diff --git a/dnn/src/fallback/convolution/opr_impl.cpp b/dnn/src/fallback/convolution/opr_impl.cpp index 54ec18aa3..2c07d3cc6 100644 --- a/dnn/src/fallback/convolution/opr_impl.cpp +++ b/dnn/src/fallback/convolution/opr_impl.cpp @@ -437,11 +437,13 @@ class ConvolutionBackwardDataImpl::AlgoPack : NonCopyableObj { AlgoNaive algo_naive; AlgoDirect algo_direct; AlgoMatrixMul algo_matmul; + AlgoMatrixMulNCHW44 algo_matmul_nchw44; SmallVector m_all_algos; AlgoBase::Mapper m_all_algos_map; public: AlgoPack() { + m_all_algos.emplace_back(&algo_matmul_nchw44); m_all_algos.emplace_back(&algo_matmul); m_all_algos.emplace_back(&algo_direct); m_all_algos.emplace_back(&algo_naive); @@ -557,7 +559,8 @@ ConvolutionBackwardDataImpl::NCBKernSizeParam ConvolutionBackwardDataImpl:: return v; }; size_t spatial_pos; - if (param().format == Param::Format::NCHW) { + if (param().format == Param::Format::NCHW || + param().format == Param::Format::NCHW44) { spatial_pos = 2; } else { megdnn_assert(param().format == Param::Format::NHWC, "invalid conv format"); @@ -622,7 +625,8 @@ void ConvolutionBackwardDataImpl::exec_with_ncb_kern(const NCBKernParam& param) } else { megdnn_assert( p1g.filter_meta.format == Param::Format::NCHW || - p1g.filter_meta.format == Param::Format::NHWC, + p1g.filter_meta.format == Param::Format::NHWC || + p1g.filter_meta.format == Param::Format::NCHW44, "invalid conv format"); auto run = [kptr, p1g_orig = p1g, group]() { auto p1g = p1g_orig; @@ -640,7 +644,8 @@ void ConvolutionBackwardDataImpl::exec_with_ncb_kern(const NCBKernParam& param) p1g.filter_type.size(); p1g.grad_extra_mem_size = (group - 1) * p1g.filter_meta.icpg * p1g.grad_type.size(); - if (p1g.filter_meta.format == Param::Format::NCHW) { + if (p1g.filter_meta.format == Param::Format::NCHW || + p1g.filter_meta.format == Param::Format::NCHW44) { istrd *= p1g.isz[0] * p1g.isz[1]; ostrd *= p1g.osz[0] * p1g.osz[1]; p1g.diff_extra_mem_size *= p1g.isz[0] * p1g.isz[1]; diff --git a/dnn/src/fallback/convolution/opr_impl.h b/dnn/src/fallback/convolution/opr_impl.h index b5c1613c2..be7408b1a 100644 --- a/dnn/src/fallback/convolution/opr_impl.h +++ b/dnn/src/fallback/convolution/opr_impl.h @@ -392,6 +392,7 @@ protected: FB_NAIVE = 1 << 0, FB_DIRECT, FB_MATMUL, + FB_MATMUL_NCHW44, #if MEGDNN_AARCH64 || MEGDNN_ARMV7 ARM_COMMON_DIRECT_STRD1_DOT_INT8X8X32 = 1 << 8, @@ -480,6 +481,7 @@ private: class AlgoNaive; class AlgoDirect; class AlgoMatrixMul; + class AlgoMatrixMulNCHW44; class AlgoPack; Algorithm* get_algorithm_from_desc(const AlgorithmDesc& desc) override; diff --git a/dnn/test/fallback/convolution.cpp b/dnn/test/fallback/convolution.cpp index 5a6a29c84..f1f25401b 100644 --- a/dnn/test/fallback/convolution.cpp +++ b/dnn/test/fallback/convolution.cpp @@ -463,6 +463,60 @@ TEST_F(FALLBACK, CONVOLUTION_BACKWARD_DATA) { } } +TEST_F(FALLBACK, CONVOLUTION_BACKWARD_DATA_NCHW44) { + Checker checker(handle()); + using Param = ConvolutionBackwardData::Param; + + Param param; + param.format = Param::Format::NCHW44; + auto run = [&](size_t n, size_t ic, size_t oh, size_t ow, size_t oc, size_t fh, + size_t fw, size_t stride, size_t padding, size_t dilate = 1, + size_t group = 1) { + param.pad_h = param.pad_w = padding; + param.stride_h = param.stride_w = stride; + param.dilate_h = param.dilate_w = dilate; + + TensorLayout diff = + TensorLayout{{n, oc / 4 * group, oh, ow, 4}, dtype::Float32()}; + TensorLayout grad; + TensorLayout filter; + if (group == 1) { + param.sparse = Param::Sparse::DENSE; + filter = {{oc / 4, ic / 4, fh, fw, 4, 4}, dtype::Float32()}; + } else { + param.sparse = Param::Sparse::GROUP; + filter = {{group, oc / 4, ic / 4, fh, fw, 4, 4}, dtype::Float32()}; + } + // TensorLayout grad; + { + auto opr = handle()->create_operator(); + opr->param() = param; + opr->deduce_layout(filter, diff, grad); + } + checker.set_param(param) + .set_dtype(0, dtype::Float32()) + .set_dtype(1, dtype::Float32()); + checker.exec(TensorLayoutArray{filter, diff, grad}); + }; + + for (auto mode : {Param::Mode::CONVOLUTION, Param::Mode::CROSS_CORRELATION}) { + param.mode = mode; + run(1, 4, 2, 2, 4, 1, 1, 1, 0, 1, 1); + run(1, 4, 2, 2, 4, 3, 3, 1, 0, 1, 1); + run(1, 4, 2, 2, 4, 3, 3, 1, 1, 1, 1); + + run(4, 16, 10, 13, 16, 1, 1, 1, 0, 1, 1); + run(4, 16, 10, 13, 16, 3, 3, 1, 0, 1, 1); + run(4, 16, 10, 13, 16, 3, 3, 1, 1, 1, 1); + + run(4, 32, 11, 23, 32, 1, 1, 1, 0, 1, 4); + + run(4, 16, 11, 23, 8, 3, 3, 1, 0, 1, 4); + run(4, 16, 11, 23, 8, 3, 3, 1, 1, 1, 4); + run(4, 16, 11, 23, 8, 3, 3, 2, 1, 1, 4); + } +} + TEST_F(FALLBACK, CONVOLUTION_BACKWARD_DATA_RECORD) { TaskRecordChecker checker(1); using Param = ConvolutionBackwardData::Param; @@ -707,4 +761,73 @@ TEST_F(FALLBACK, CONVOLUTION_BACKWARD_DATA_NAIVE_ALGO) { } } +#if MEGDNN_WITH_BENCHMARK + +TEST_F(FALLBACK, BENCHMARK_CONVOLUTION_BACKWARD_DATA_NCHW44) { + using Param = ConvolutionBackwardData::Param; + auto run = [&](size_t n, size_t ic, size_t oh, size_t ow, size_t oc, size_t fh, + size_t fw, size_t stride, size_t padding, size_t dilate = 1, + size_t group = 1) { + Param param; + param.pad_h = param.pad_w = padding; + param.stride_h = param.stride_w = stride; + param.dilate_h = param.dilate_w = dilate; + + TensorLayout diff_nchw44 = + TensorLayout{{n, oc / 4 * group, oh, ow, 4}, dtype::Float32()}; + TensorLayout diff = TensorLayout{{n, oc * group, oh, ow}, dtype::Float32()}; + TensorLayout grad; + TensorLayout grad_nchw44; + TensorLayout filter; + TensorLayout filter_nchw44; + if (group == 1) { + param.sparse = Param::Sparse::DENSE; + filter_nchw44 = {{oc / 4, ic / 4, fh, fw, 4, 4}, dtype::Float32()}; + filter = {{oc, ic, fh, fw}, dtype::Float32()}; + } else { + param.sparse = Param::Sparse::GROUP; + filter_nchw44 = {{group, oc / 4, ic / 4, fh, fw, 4, 4}, dtype::Float32()}; + filter = {{group, oc, ic, fh, fw}, dtype::Float32()}; + } + { + auto opr = handle()->create_operator(); + opr->param() = param; + opr->deduce_layout(filter, diff, grad); + opr->param().format = Param::Format::NCHW44; + opr->deduce_layout(filter_nchw44, diff_nchw44, grad_nchw44); + } + Benchmarker benchmarker_fallback(handle()); + size_t RUN = 50; + benchmarker_fallback.set_display(false) + .set_dtype(0, dtype::Float32{}) + .set_dtype(1, dtype::Float32{}) + .set_dtype(2, dtype::Float32{}) + .set_times(RUN); + + auto tnchw = + benchmarker_fallback.set_param(param) + .exec(TensorLayoutArray{filter, diff, grad}); + param.format = Param::Format::NCHW44; + auto tnchw44 = + benchmarker_fallback.set_param(param) + .exec(TensorLayoutArray{filter_nchw44, diff_nchw44, grad_nchw44}); + size_t IC = ic; + size_t FH = fh; + size_t FW = fw; + size_t total_flops = IC * diff.total_nr_elems() * FH * FW * 2; + printf("nchw_time: %.3f ms nchw_flops: %.3f Gflops\n", tnchw, + total_flops / (tnchw / RUN * 1e6)); + printf("nchw44_time: %.3f ms nchw44_flops: %.3f Gflops\n", tnchw44, + total_flops / (tnchw44 / RUN * 1e6)); + printf("speedup: %.3f\n", tnchw / tnchw44); + }; + run(1, 16, 14, 14, 16, 3, 3, 1, 1, 1, 1); + run(1, 32, 28, 28, 16, 3, 3, 1, 1, 1, 1); + run(1, 48, 28, 28, 48, 2, 2, 1, 0, 1, 1); + run(1, 32, 26, 26, 32, 3, 3, 1, 0, 1, 1); + run(2, 32, 64, 64, 32, 3, 3, 1, 0, 1, 1); + run(2, 16, 112, 112, 16, 3, 3, 1, 0, 1, 1); +} +#endif + // vim: syntax=cpp.doxygen -- GitLab