提交 fb20cb36 编写于 作者: M Megvii Engine Team

docs(mge/traced_module): update traced_module api doc

GitOrigin-RevId: 19a95d26c71e672376c5fda00a4e7dc6050e1c6a
上级 c7a8d945
......@@ -130,3 +130,4 @@ import megengine.optimizer
import megengine.quantization
import megengine.random
import megengine.utils
import megengine.traced_module
......@@ -33,15 +33,22 @@ def rstrip(s: str, __chars: str):
class Expr:
"""``Expr`` represents the operations(i.e. CallMethod, CallFunction, Apply, GetAttr, Input, Constant) on ``Node``."""
r"""``Expr`` represents the operations (i.e. ``CallMethod``, ``CallFunction``, ``Apply``,
``GetAttr``, ``Input``, ``Constant``) on ``Node``.
"""
__total_id = 0
inputs = None # type: List[Node]
r"""The input Nodes of this Expr."""
outputs = None # type: List[Node]
r"""The output Nodes of this Expr."""
const_val = None # type: List[Any]
r"""The non-tensor object in the input of the operation."""
arg_def = None # type: TreeDef
r"""The :class:`TreeDef` used to reconstruct the input of the operation."""
out_def = None # type: TreeDef
r"""The :class:`TreeDef` used to reconstruct the output of the operation."""
_top_graph = None # type: weakref.ReferenceType
__total_id = 0
def __init__(self) -> None:
self._id = Expr.__total_id
......@@ -125,6 +132,11 @@ class Expr:
return inputs, {}
def replace_inputs(self, repl_dict: Dict[Node, Node]):
r"""Replace the input Nodes of this Expr.
Args:
repl_dict: the map {old_Node: new_Node} that specifies how to replace the input Nodes.
"""
while repl_dict:
node, repl_node = repl_dict.popitem()
assert type(node) == type(repl_node)
......@@ -147,16 +159,19 @@ class Expr:
@property
def kwargs(self):
r"""Get the the keyword arguments of the operation corresponding to this Expr."""
_, kwargs = self.unflatten_args(self.inputs)
return kwargs
@property
def args(self):
r"""Get the the positional arguments of the operation corresponding to this Expr."""
args, _ = self.unflatten_args(self.inputs)
return args
@property
def top_graph(self):
r"""Get the parent graph of this Expr."""
if self._top_graph:
return self._top_graph()
return None
......@@ -168,17 +183,18 @@ class Expr:
return state
@classmethod
def get_total_id(cls):
def _get_next_id(cls):
return cls.__total_id
@classmethod
def set_total_id(cls, id: int = 0):
def _set_next_id(cls, id: int = 0):
assert isinstance(id, int)
cls.__total_id = id
# expr: None (i.e. fake expression which is used to mark input)
class Input(Expr):
r"""A fake Expr which is used to mark the input of graph."""
name = None
def __init__(self, name=None, type=None, orig_name=None):
......@@ -204,13 +220,15 @@ class Input(Expr):
return expr.outputs[0]
def __repr__(self):
return "%{}:\t{} = Input({})".format(self._id, self.outputs[0], self.name)
return "%{}:\t{} = Input()".format(self._id, self.outputs[0])
# expr: outputs = getattr(inputs[0], self.name)
class GetAttr(Expr):
name = None
r"""``Getattr`` represents the fetch of an attribute from the ``Module`` hierarchy."""
name = None
r"""name: the qualified name of the attribute to be retrieved."""
def __init__(self, module, name, type=None, orig_name=None):
super().__init__()
assert isinstance(module, ModuleNode)
......@@ -251,6 +269,13 @@ class GetAttr(Expr):
# expr: outputs = inputs[0].__call__(*inputs[1:])
class CallMethod(Expr):
r"""``CallMethod`` represents a call to the ``__call__`` method of ``Module`` or a method of ``Tensor``.
Args:
node: the Node to be called.
method: the method name.
Default: "__call__"
"""
def __init__(self, node, method="__call__"):
super().__init__()
if isinstance(node, type):
......@@ -320,8 +345,12 @@ class CallMethod(Expr):
# expr: outputs = apply(self.opdef, *inputs)
class Apply(Expr):
opdef = None
r"""``Apply`` represents a call to :func:`apply`.
Args:
opdef: the applied :class:`OpDef`.
"""
opdef = None
def __init__(self, opdef):
super().__init__()
assert isinstance(opdef, OpDef)
......@@ -388,6 +417,11 @@ class Apply(Expr):
class CallFunction(Expr):
r"""``CallFunction`` represents a call to a built-in function.
Args:
func: a built-in function.
"""
def __init__(self, func):
super().__init__()
assert isinstance(func, Callable)
......@@ -425,7 +459,14 @@ class CallFunction(Expr):
# expr outputs = self.value
class Constant(Expr):
r"""``Constant`` represents a ``Tensor`` or "Module" which is not the attribute of a Module.
Args:
c: a const Tensor or Module.
name: the name of output Node.
"""
value = None
r"""The const Tensor or Module"""
# TODO: constant cache to reduce the size of dumped model
_constant_cache = {}
......
......@@ -15,6 +15,8 @@ from ..quantization.utils import QParams, QuantMode, fake_quant_tensor
class FakeQuantize(_FakeQuantize, QParamsModuleMixin):
r"""A module to do quant and dequant according to :attr:`~.FakeQuantize.qparams`."""
def __init__(
self, dtype: Union[str, QuantDtypeMeta], enable: bool = True, **kwargs
):
......@@ -35,9 +37,10 @@ class FakeQuantize(_FakeQuantize, QParamsModuleMixin):
return self.qparams
def set_qparams(self, qparams: QParams):
r"""
r"""Initialize :attr:`~.FakeQuantize.qparams`.
Args:
qparams: used to set initial scale.
qparams: used to set initial ``scale`` and ``zero_point``.
"""
if qparams.scale is None:
raise AssertionError("Can not get an initialized scale")
......
......@@ -11,29 +11,29 @@ from typing import Any, Dict, List, Tuple, Type
import numpy
from .. import get_logger
from ..core._imperative_rt.core2 import Tensor as RawTensor
from ..module import Module
from ..tensor import Tensor
logger = get_logger(__name__)
class Node:
r"""``Node`` represents the variables (Tensor/Module/other python object) used in Module's forward method.
They are inputs/outputs of Expr(the operations on variables).
Args:
expr: the Expr which produces the node
name: the name of the node
class Node:
r"""``Node`` represents the variables (``Tensor``, ``Module``) used in Module's forward method.
They are inputs/outputs of Expr (the operations on variables).
"""
expr = None
__total_id = 0
_id = None
expr = None # type: Expr
r"""The Expr which produces the Node."""
__total_id = 0 # type: int
_id = None # type: int
_top_graph = None # type: weakref.ReferenceType
_name = None
_orig_name = None
_format_spec = ""
_name = None # type: str
_orig_name = None # type: str
_format_spec = "" # type: str
def __init__(self, expr: "Expr", name: str = None, orig_name: str = None):
def __init__(self, expr: "Expr", name: str, orig_name: str):
self.expr = expr
self.users = [] # List[Expr]
self._id = Node.__total_id
......@@ -73,24 +73,42 @@ class Node:
else:
return name if name else ("%d" % self._id)
@property
def name(self):
r"""Return the name of this Node."""
return self._name
@name.setter
def name(self, new_name: str):
graph = self.top_graph
assert graph is not None, "The parent graph of this Node cannot be None."
assert new_name not in graph._used_names, (
"The name(%s) is already in use. Please try a different one again."
% (new_name)
)
new_name = graph._create_unique_name(new_name)
self._name = new_name
self._orig_name = new_name
@property
def top_graph(self):
r"""Get the parent graph of this Node."""
if self._top_graph:
return self._top_graph()
return None
@classmethod
def set_format_spec(cls, str):
def _set_format_spec(cls, str):
old_format_spec = cls._format_spec
cls._format_spec = str
return old_format_spec
@classmethod
def get_total_id(cls):
def _get_next_id(cls):
return cls.__total_id
@classmethod
def set_total_id(cls, id: int = 0):
def _set_next_id(cls, id: int = 0):
assert isinstance(id, int)
cls.__total_id = id
......@@ -99,6 +117,7 @@ class ModuleNode(Node):
r"""``ModuleNode`` represents the Module objects."""
module_type = Module # type: Type[Module]
r"""The type of the Module correspending to the ModuleNode."""
_owner = None # type: weakref.ReferenceType
def __init__(self, expr: "Expr", name: str = None, orig_name: str = None):
......@@ -116,6 +135,11 @@ class ModuleNode(Node):
@property
def owner(self):
r"""Get the ``Module`` corresponding to this ``ModuleNode``.
Returns:
An :calss:`~.Module`.
"""
if self._owner:
return self._owner()
return None
......@@ -145,6 +169,7 @@ class TensorNode(Node):
@property
def shape(self):
r"""Get the shape of this Node."""
return self._shape
@shape.setter
......@@ -153,6 +178,7 @@ class TensorNode(Node):
@property
def dtype(self):
r"""Get the dtype of this Node."""
return self._dtype
@dtype.setter
......@@ -161,6 +187,7 @@ class TensorNode(Node):
@property
def device(self):
r"""Get the device of this Node pointed Tensor."""
return self._device
@device.setter
......@@ -169,6 +196,7 @@ class TensorNode(Node):
@property
def qparams(self):
r"""Get the :calss:`QParams` of this Node."""
return self._qparams
@qparams.setter
......@@ -177,10 +205,16 @@ class TensorNode(Node):
@property
def value(self):
r"""Get the bound Tensor of this Node."""
return self._value
@value.setter
def value(self, value):
r"""Bind a Tensor to this Node.
Args:
value: A :class:`Tensor`.
"""
if isinstance(value, RawTensor) and NodeMixin.get(value, None) is not None:
setattr(value, "_NodeMixin__node", None)
self._value = value
......
......@@ -150,6 +150,9 @@ def tree_flatten(
is_leaf: Callable = _is_leaf,
is_const_leaf: Callable = _is_const_leaf,
):
r"""Flattens a object into a list of values and a :calss:`TreeDef` that can be used
to reconstruct the object.
"""
if type(values) not in SUPPORTED_TYPE:
assert is_leaf(values), values
node = LeafDef(leaf_type(values))
......@@ -169,6 +172,15 @@ def tree_flatten(
class TreeDef:
r"""A ``TreeDef`` represents the structure of a pytree.
Args:
type: the type of root Node of the pytree.
aux_data: some const data that is useful in unflattening the pytree.
children_defs: ``TreeDef`` for each child of the root Node.
num_leaves: the number of leaves.
"""
def __init__(self, type, aux_data, children_defs):
self.type = type
self.aux_data = aux_data
......@@ -176,6 +188,9 @@ class TreeDef:
self.num_leaves = sum(ch.num_leaves for ch in children_defs)
def unflatten(self, leaves):
r"""Given a list of values and a ``TreeDef``, builds a object.
This is the inverse operation of ``tree_flatten``.
"""
assert len(leaves) == self.num_leaves
start = 0
children = []
......@@ -196,13 +211,10 @@ class TreeDef:
)
)
def __lt__(self, other):
return self.__hash__() < other.__hash__()
def __gt__(self, other):
return self.__hash__() > other.__hash__()
def __ne__(self, other) -> bool:
return not self.__eq__(other)
def __eq__(self, other):
def __eq__(self, other) -> bool:
return (
self.type == other.type
and self.aux_data == other.aux_data
......@@ -227,6 +239,9 @@ class LeafDef(TreeDef):
assert isinstance(leaves[0], self.type), self.type
return leaves[0]
def __ne__(self, other) -> bool:
return not self.__eq__(other)
def __eq__(self, other):
if isinstance(self.const_val, np.ndarray):
return self.type == other.type and (self.const_val == other.const_val).all()
......
......@@ -18,7 +18,18 @@ import weakref
from inspect import getcallargs, getmembers, isclass, ismethod
from itertools import chain
from types import FunctionType
from typing import Callable, Dict, Iterable, List, Optional, Sequence, Type, Union
from typing import (
Any,
Callable,
Dict,
Iterable,
List,
Optional,
Sequence,
Tuple,
Type,
Union,
)
from megengine import tensor
......@@ -261,8 +272,8 @@ class _InsertExprs:
def __enter__(self):
self.use_sym_shape = set_symbolic_shape(True)
node_id, expr_id = self.root_graph._total_ids
Node.set_total_id(node_id)
Expr.set_total_id(expr_id)
Node._set_next_id(node_id)
Expr._set_next_id(expr_id)
set_module_tracing()
_set_convert_node_flag(True)
assert active_module_tracer() is None
......@@ -341,18 +352,53 @@ class _InsertExprs:
insert_index += 1
self.graph._used_names.update(self.global_scope._used_names)
self.root_graph._total_ids = (Node.get_total_id(), Expr.get_total_id())
self.root_graph._total_ids = (Node._get_next_id(), Expr._get_next_id())
self.root_graph.inputs[0].owner._update_ref()
return True
class InternalGraph:
r"""``InternalGraph`` is a graph consist of ``Node`` and ``Expr``, it is used to represent the execution procedure of Module's forward method.
r"""``InternalGraph`` is the main data structure used in the TracedModule.
It is used to represent the execution procedure of Module's forward method.
For example, the following code
.. code-block::
import megengine.random as rand
import megengine.functional as F
import megengine.module as M
import megengine.traced_module as tm
class MyModule(M.Module):
def __init__(self):
super().__init__()
self.param = rand.normal(size=(3, 4))
self.linear = M.Linear(4, 5)
def forward(self, x):
return F.relu(self.linear(x + self.param))
net = MyModule()
inp = F.zeros(shape = (3, 4))
traced_module = tm.trace_module(net, inp)
Will produce the following ``InternalGraph``::
print(traced_module.graph)
Attributes:
_exprs: List of Exprs in order of execution
_inputs: Input Nodes of InternalGraph
_outputs: Output Nodes of InternalGraph
.. code-block:: text
MyModule.Graph (self, x) {
%2: linear = getattr(self, "linear") -> (Linear)
%3: param = getattr(self, "param") -> (Tensor)
%4: add_out = x.__add__(param, )
%5: linear_out = linear(add_out, )
%6: relu_out = nn.relu(linear_out, )
return relu_out
}
"""
_exprs = None # type: List[Expr]
......@@ -394,44 +440,154 @@ class InternalGraph:
return name
@property
def inputs(self):
def inputs(self) -> List[Node]:
r"""Get the list of input Nodes of this graph.
Returns:
A list of ``Node``.
"""
return self._inputs
@property
def outputs(self):
def outputs(self) -> List[Node]:
r"""Get the list of output Nodes of this graph.
Returns:
A list of Node.
"""
return self._outputs
@property
def top_graph(self):
r"""Get the parent graph of this graph.
Returns:
An ``InternalGraph``.
"""
if self._top_graph:
return self._top_graph()
return None
def exprs(self, recursive=True):
r"""Get the Exprs that constitute this graph.
Args:
recursive: whether to get the Exprs in the subgraph.
Default: True
Returns:
A ``ExprFilter`` containing all Exprs of this graph.
"""
return ExprFilter(_expr_iter(self, recursive))
def nodes(self, recursive=True):
r"""Get the Nodes that constitute this graph.
Args:
recursive: whether to get the Nodes in the subgraph.
Default: True
Returns:
A ``NodeFilter`` containing all Nodes of this graph.
"""
return NodeFilter(_node_iter(self, recursive))
def get_function_by_type(self, func: Callable = None, recursive=True):
r"""Filter Exprs by the type of ``CallFunction``.
Args:
func: a built-in function, such as ``F.relu``.
recursive: whether to get the Exprs in the subgraph.
Default: True
Returns:
A :class:`~.TracedModule.ExprFilterCallFunction`.
"""
return self.exprs(recursive).call_function(func)
def get_method_by_type(self, method: str = None, recursive=True):
r"""Filter Exprs by the type of ``CallMethod``.
Args:
method: a method string, such as "__add__".
recursive: whether to get the Exprs in the subgraph.
Default: True
Returns:
A :class:`~.TracedModule.ExprFilterCallMethod`.
"""
return self.exprs(recursive).call_method(method)
def get_expr_by_id(self, expr_id: List[int] = None, recursive=True):
r"""Filter Exprs by their ``id``.
Args:
expr_id: a list of :class:`int`.
recursive: whether to get the Exprs in the subgraph.
Default: True
Returns:
A :class:`~.TracedModule.ExprFilterExprId`.
"""
return self.exprs(recursive).expr_id(expr_id)
def get_module_by_type(self, module_cls: Module, recursive=True):
r"""Filter Nodes by the ``module_type`` of ``ModuleNode``.
Args:
module_cls: a subclass of :class:`~.Module`.
recursive: whether to get the Nodes in the subgraph.
Default: True
Returns:
A :class:`~.TracedModule.NodeFilterType`.
"""
assert issubclass(module_cls, Module)
return self.nodes(recursive).type(module_cls, ModuleNode)
return self.nodes(recursive).type(module_cls)
def get_node_by_id(self, node_id: List[int] = None, recursive=True):
r"""Filter Nodes by their ``id``.
The ``id`` of the ``Node`` can be obtained by the following code
.. code-block::
# node : Node
print("{:i}".format(node))
print(node.__format__("i"))
# graph : InternalGraph
print("{:i}".format(graph))
print(graph.__format__("i"))
Args:
node_id: a list of :class:`int`.
recursive: whether to get the Nodes in the subgraph.
Default: True
Returns:
A :class:`~.TracedModule.NodeFilterNodeId`.
"""
return self.nodes(recursive).node_id(node_id)
def get_node_by_name(
self, name: str = None, ignorecase: bool = True, recursive=True
):
r"""Filter Nodes by their full name.
The full name of the ``Node`` can be obtained by the following code
.. code-block::
# node : Node
print("{:p}".format(node))
print(node.__format__("p"))
# graph : InternalGraph
print("{:p}".format(graph))
print(graph.__format__("p"))
Args:
name: a string in glob syntax that can contain ``?`` and
``*`` to match a single or arbitrary characters.
ignorecase: whether to ignroe case.
Default: True
recursive: whether to get the Nodes in the subgraph.
Default: True
Returns:
A :class:`~.TracedModule.NodeFilterName`.
"""
return self.nodes(recursive).name(name, ignorecase)
def _add_input(self, i):
......@@ -490,6 +646,13 @@ class InternalGraph:
o._orig_name = "{}{}".format(module_name, o._orig_name)
def get_dep_exprs(self, nodes: Sequence[Node]) -> List[Expr]:
r"""Get the dependent Exprs of the ``nodes``.
Args:
nodes: a list of :class:`Node`.
Returns:
A list of dependent :class:`Expr`.
"""
if not isinstance(nodes, Sequence):
nodes = (nodes,)
ret = list()
......@@ -560,11 +723,22 @@ class InternalGraph:
self._inputs[:] = formal_node_inputs
moudle.argdef_graph_map[tree_def] = moudle.argdef_graph_map.pop(org_argdef)
moudle.argdef_outdef_map[tree_def] = moudle.argdef_outdef_map.pop(org_argdef)
# return formal_node_inputs[1:], actual_nodes
return formal_node_inputs[1:]
def add_input_node(self, shape, dtype="float32", name="args"):
def add_input_node(
self, shape: Tuple[int], dtype: str = "float32", name: str = "args"
):
r"""Add an input node to the graph.
The new Node will be the last of the positional arguments.
Args:
shape: the shape of the new input Node.
dtype: the dtype of the new input Node.
Default: float32
name: the name of the new input Node. When the name is used in the graph,
a suffix will be added to it.
"""
forma_mnode = self.inputs[0]
actual_mnodes = forma_mnode.actual_node
......@@ -613,18 +787,63 @@ class InternalGraph:
moudle.argdef_graph_map[tree_def] = moudle.argdef_graph_map.pop(org_argdef)
moudle.argdef_outdef_map[tree_def] = moudle.argdef_outdef_map.pop(org_argdef)
# return formal_inp_node, actual_inp_nodes
return formal_inp_node
def reset_outputs(self, outputs):
r"""Reset the output Nodes of the graph.
.. note::
This method only supports resetting the output of graphs
that do not have a parent graph.
Args:
outputs: an object which inner element is Node. Support tuple, list
dict, etc.
For example, the following code
.. code-block::
import megengine.functional as F
import megengine.module as M
import megengine.traced_module as tm
class MyModule(M.Module):
def forward(self, x):
x = x + 1
return x
net = MyModule()
inp = F.zeros(shape = (1, ))
traced_module = tm.trace_module(net, inp)
graph = traced_module.graph
inp_node = graph.inputs[1]
out_node = graph.outputs[0]
graph.reset_outputs((out_node, {"input": inp_node}))
out = traced_module(inp)
Will produce the following ``InternalGraph`` and ``out``::
print(graph)
print(out)
.. code-block:: text
MyModule.Graph (self, x) {
%2: add_out = x.__add__(1, )
return add_out, x
}
(Tensor([1.], device=xpux:0), {'input': Tensor([0.], device=xpux:0)})
"""
outputs, out_def = tree_flatten(
outputs, is_leaf=lambda x: isinstance(x, TensorNode),
)
forma_mnode = self.inputs[0]
moudle = forma_mnode.owner
assert moudle._is_top, "reset_outputs only support the top-level graph"
assert moudle._is_top, "reset_outputs only support the top graph"
actual_mnodes = forma_mnode.actual_node
call_nodes = []
......@@ -657,10 +876,53 @@ class InternalGraph:
return actual_nodes
def add_output_node(self, node: TensorNode):
r"""Add an output node to the Graph.
The Graph output will become a ``tuple`` after calling ``add_output_node``.
The first element of the ``tuple`` is the original output, and the second
is the ``node``.
For example, the following code
.. code-block::
import megengine.functional as F
import megengine.module as M
import megengine.traced_module as tm
class MyModule(M.Module):
def forward(self, x):
x = x + 1
return x
net = MyModule()
inp = F.zeros(shape = (1, ))
traced_module = tm.trace_module(net, inp)
graph = traced_module.graph
inp_node = graph.inputs[1]
out_node = graph.outputs[0]
graph.add_output_node(inp_node)
graph.add_output_node(out_node)
out = traced_module(inp)
Will produce the following ``InternalGraph`` and ``out``::
print(graph)
print(out)
.. code-block:: text
MyModule.Graph (self, x) {
%2: add_out = x.__add__(1, )
return add_out, x, add_out
}
((Tensor([1.], device=xpux:0), Tensor([0.], device=xpux:0)), Tensor([1.], device=xpux:0))
"""
forma_mnode = self.inputs[0]
moudle = forma_mnode.owner
assert moudle._is_top, "add_output_node only support the top-level graph"
assert moudle._is_top, "add_output_node only support the top graph"
actual_mnodes = forma_mnode.actual_node
call_nodes = []
......@@ -703,11 +965,33 @@ class InternalGraph:
return actual_out_nodes
def insert_exprs(self, expr: Optional[Expr] = None):
r"""Initialize the trace mode and insertion position.
When used within a 'with' statement, this will temporary set the trace mode and
then restore normal mode when the with statement exits::
with graph.insert_exprs(e): # set the trace mode
... # trace function or module
... # inert exprs into graph and resotre normal mode
Args:
expr: the ``expr`` after which to insert. If None, the insertion position will be
automatically set based on the input node.
Returns:
A resource manager that will initialize trace mode on ``__enter__`` and
restore normal mode on ``__exit__``.
"""
if expr is not None:
assert expr.top_graph == self, "Expr to insert after is not in graph."
return _InsertExprs(self, expr)
def replace_node(self, repl_dict: Dict[Node, Node]):
r"""Replace the Nodes in the graph.
Args:
repl_dict: the map {old_Node: new_Node} that specifies how to replace the Nodes.
"""
while repl_dict:
node, repl_node = repl_dict.popitem()
assert type(node) == type(
......@@ -746,7 +1030,7 @@ class InternalGraph:
n.inputs[idx] = repl_node
def compile(self):
"""Delete unused expr."""
r"""Delete unused expr."""
dep_exprs = self.get_dep_exprs(self.outputs)
i = 0
while i < len(self._exprs):
......@@ -804,7 +1088,12 @@ class InternalGraph:
return list(node2value[i][0] for i in self._outputs)
def eval(self, *inputs):
def eval(self, *inputs: Tuple[Tensor]):
r"""Call this method to execute the graph.
Args:
inputs: the tensors corresponding to the ``graph.inputs[1:]``.
"""
assert len(inputs) == len(self._inputs) - 1
inp = [self._inputs[0].owner] + list(inputs)
return self.interpret(*inp)
......@@ -813,7 +1102,7 @@ class InternalGraph:
return self.__format__()
def __format__(self, format_spec: str = "") -> str:
saved_format_spec = Node.set_format_spec(format_spec)
saved_format_spec = Node._set_format_spec(format_spec)
name = ""
if self._name:
name = "%s.Graph" % self._name
......@@ -823,7 +1112,7 @@ class InternalGraph:
"\n\t".join("{}".format(str(i)) for i in self._exprs),
", ".join(str(i) for i in self._outputs),
)
Node.set_format_spec(saved_format_spec)
Node._set_format_spec(saved_format_spec)
return res
def __getstate__(self):
......@@ -1010,7 +1299,7 @@ class TracedModuleBuilder(NodeMixin):
for _, g in self._argdef_graph_map.items():
g.compile()
if self._is_top:
g._total_ids = (Node.get_total_id(), Expr.get_total_id())
g._total_ids = (Node._get_next_id(), Expr._get_next_id())
for k, v in self.__dict__.items():
if k not in TracedModuleBuilder.__builder_attributes__:
......@@ -1298,59 +1587,106 @@ class _node_iter:
class BaseFilter:
def __init__(self, expr_iter: Iterable):
self._iter = expr_iter
r"""``BaseFilter`` exposes some methods for converting ``_node_iter/_expr_iter`` to ``list``, ``dict``, etc."""
def __init__(self, iter: Iterable):
self._iter = iter
def __iter__(self):
return iter(self._iter)
def as_list(self):
r"""Consume this iterator and return its content as a list.
Returns:
A list of ``Node`` or ``Expr``.
"""
return list(self)
def as_dict(self):
r"""Construct an ordered dict to map from ``id`` to objects in this iterator.
Returns:
An :class:`OrderedDict`.
"""
return collections.OrderedDict((i._id, i) for i in self)
def as_unique(self):
"""Assert that this iterator yields only one ``Node`` or ``Expr`` and return it.
Rerurns:
A ``Node`` or ``Expr``.
"""
rst = self.as_list()
assert len(rst) == 1, "{} elements found".format(len(rst))
(expr,) = self
return expr
(elem,) = self
return elem
def as_count(self):
r"""Consume this iterator and get the number of elements."""
return sum(1 for _ in self)
class ExprFilter(BaseFilter):
"""Filter on Expr iterator.
This class is an iterator of :class:`.Expr` objects and multiple
filtering conditions and mappers can be chained.
"""
def call_function(self, func):
r"""Filter by specific ``CallFunction.func``.
See :meth:`~.InternalGraph.get_function_by_type` for details.
"""
return ExprFilterCallFunction(self, func)
def call_method(self, method):
r"""Filter by specific ``CallMethod.method``.
See :meth:`~.InternalGraph.get_function_by_type` for details.
"""
return ExprFilterCallMethod(self, method)
def expr_id(self, expr_id: List[int]):
r"""Filter Exprs by their ``id``.
See :meth:`~.InternalGraph.get_function_by_type` for details.
"""
return ExprFilterExprId(self, expr_id)
class NodeFilter(BaseFilter):
def type(self, owner_type, node_type):
return NodeFilterType(self, owner_type, node_type)
"""Filter on Node iterator.
This class is an iterator of :class:`.Node` objects and multiple
filtering conditions and mappers can be chained.
"""
def type(self, owner_type):
r"""Filter by specific Module type.
See :meth:`~.InternalGraph.get_module_by_type` for details.
"""
return NodeFilterType(self, owner_type)
def node_id(self, node_id: List[int]):
r"""Filter Nodes by their ``id``.
See :meth:`~.InternalGraph.get_node_by_id` for details.
"""
return NodeFilterNodeId(self, node_id)
def name(self, name: str, ignorecase: bool = True):
r"""Filter Nodes by their full name.
See :meth:`~.InternalGraph.get_node_by_name` for details.
"""
return NodeFilterName(self, name, ignorecase)
class NodeFilterType(NodeFilter):
def __init__(self, expr_iter, owner_type, node_type):
"""See :meth:`~.InternalGraph.get_module_by_type`"""
def __init__(self, expr_iter, owner_type):
super().__init__(expr_iter)
self.owner_type = owner_type
self.node_type = node_type
def __iter__(self):
for node in self._iter:
if not isinstance(node, self.node_type):
if not isinstance(node, ModuleNode):
continue
if not hasattr(node, "owner"):
continue
......@@ -1359,6 +1695,8 @@ class NodeFilterType(NodeFilter):
class NodeFilterNodeId(NodeFilter):
"""See :meth:`~.InternalGraph.get_node_by_id`"""
def __init__(self, expr_iter, node_id: List[int]):
super().__init__(expr_iter)
if not isinstance(node_id, Sequence):
......@@ -1372,6 +1710,8 @@ class NodeFilterNodeId(NodeFilter):
class NodeFilterName(NodeFilter):
"""See :meth:`~.InternalGraph.get_node_by_name`"""
_re = None
def __init__(self, node_iter, pattern, ignorecase):
......@@ -1399,6 +1739,8 @@ class NodeFilterName(NodeFilter):
class ExprFilterCallFunction(ExprFilter):
"""See :meth:`~.InternalGraph.get_function_by_type`"""
def __init__(self, expr_iter, func: Callable = None):
super().__init__(expr_iter)
self.func = func
......@@ -1412,6 +1754,8 @@ class ExprFilterCallFunction(ExprFilter):
class ExprFilterCallMethod(ExprFilter):
"""See :meth:`~.InternalGraph.get_method_by_type`"""
def __init__(self, expr_iter, method: str = None):
super().__init__(expr_iter)
self.method = method
......@@ -1425,6 +1769,8 @@ class ExprFilterCallMethod(ExprFilter):
class ExprFilterExprId(ExprFilter):
"""See :meth:`~.InternalGraph.get_expr_by_id`"""
def __init__(self, expr_iter, expr_id: List[int]):
super().__init__(expr_iter)
if not isinstance(expr_id, Sequence):
......@@ -1438,8 +1784,16 @@ class ExprFilterExprId(ExprFilter):
class TracedModule(Module):
r"""`TracedModule` is the Module created by tracing normal module. It owns an argdef to graph(InternalGraph) map. The forward method of `TracedModule` will get a graph from `argdef_graph_map` according to the argdef of input args/kwargs and interpret it."""
r"""``TracedModule`` is the Module created by tracing normal module.
It owns an argdef to graph(InternalGraph) map. The forward method of ``TracedModule``
will get a graph from ``argdef_graph_map`` according to the argdef of input ``args/kwargs``
and interpret it.
.. note::
``TracedModule`` can only be created by :func:`~.trace_module`. See :func:`~.trace_module`
for more details.
"""
# m_node = None # type: ModuleNode
argdef_graph_map = None
argdef_outdef_map = None
......@@ -1475,19 +1829,97 @@ class TracedModule(Module):
return outputs
def set_watch_points(self, nodes):
r"""Initialize the :attr:`~.TracedModule.watch_points`.
You can call this function to get the ``Tensor/Module`` corresponding to a ``Node`` at runtime.
Args:
nodes: a list of ``Node``.
For example, the following code
.. code-block::
import megengine.module as M
import megengine as mge
import megengine.traced_module as tm
class MyModule(M.Module):
def forward(self, x):
x = x + 1 + 2
return x
net = MyModule()
inp = mge.Tensor([0])
traced_module = tm.trace_module(net, inp)
add_1_node = traced_module.graph.get_node_by_id(2).as_unique()
traced_module.set_watch_points(add_1_node)
out = traced_module(inp)
Will get the following ``watch_node_value``::
print(traced_module.watch_node_value)
.. code-block:: text
{add_out: Tensor([1.], device=xpux:0)}
"""
if not isinstance(nodes, Sequence):
nodes = [nodes]
self.watch_points = nodes
if nodes:
nodes[0].top_graph._watch_point = []
for n in nodes:
n.top_graph._watch_point.append(n)
def clear_watch_points(self):
r"""Clear the :attr:`~.TracedModule.watch_points` and :attr:`~.TracedModule.watch_node_value`.
"""
for n in self.watch_points:
n.top_graph._watch_point = []
self.watch_points = []
self.watch_node_value = {}
def set_end_points(self, nodes):
def set_end_points(self, nodes: Sequence[Node]):
r"""Initialize the :attr:`~.TracedModule.end_points`.
When all the ``nodes`` are generated, the Module will stop execution and return directly.
Args:
nodes: a list of ``Node``.
For example, the following code
.. code-block::
import megengine.module as M
import megengine as mge
import megengine.traced_module as tm
class MyModule(M.Module):
def forward(self, x):
x = x + 1 + 2
return x
net = MyModule()
inp = mge.Tensor([0])
traced_module = tm.trace_module(net, inp)
add_1_node = traced_module.graph.get_node_by_id(2).as_unique()
traced_module.set_end_points(add_1_node)
out = traced_module(inp)
Will get the following ``out``::
print(out)
.. code-block:: text
[Tensor([1.], device=xpux:0)]
"""
if not isinstance(nodes, Sequence):
nodes = [nodes]
self.end_points = nodes
......@@ -1497,12 +1929,16 @@ class TracedModule(Module):
n.top_graph._end_point.append(n)
def clear_end_points(self):
r"""Clear the :attr:`~.TracedModule.end_points`.
"""
for n in self.end_points:
n.top_graph._end_point = []
self.end_points = []
@property
def graph(self) -> InternalGraph:
"""Return the ``InternalGraph`` of this ``TracedModule``
"""
if self._is_top:
self._update_ref()
assert len(self.argdef_graph_map) == 1
......@@ -1559,9 +1995,10 @@ class TracedModule(Module):
obj._update_ref(mnode_map, graph)
def flatten(self):
r"""Get a new module, which eliminates ``GetAttr`` and has no hierarchy.
r"""Get a new TracedModule, which eliminates ``GetAttr`` and has no hierarchy.
:return: :class:`TracedModule`
Retruns:
A new :class:`TracedModule`.
"""
new_module = copy.deepcopy(self)
assert active_module_tracer() is None
......@@ -1690,16 +2127,35 @@ def cpp_apply_module_trace(opdef, *args):
def register_as_builtin(mod_cls: Type[Module]) -> None:
r"""Registers class ``mod_cls`` (subclass of megengine.module.Module) as builtin module.
r"""Registers class ``mod_cls`` (subclass of :class:`~.Module`) as builtin module.
Args:
mod_cls: the Module class which will be threated as builtin module in tracing
mod_cls: the module class which will be treated as builtin module in tracing.
"""
module_tracer.register_as_builtin(mod_cls)
def wrap(func: Callable):
r"""Call this function to register func as a builtin function."""
r"""Call this function to register ``func`` as a builtin function.
This function can be called at module-level scope to register ``func`` as a builtin function.
A builtin function will be converted to a :class:`CallFunction` Expr in tracing::
def my_func(x, y):
return x + y
import megengine.traced_module as tm
tm.wrap(my_func)
This function can also equivalently be used as a decorator::
@tm.wrap
def my_func(x, y):
return x + y
Args:
func: the function of the global function to insert into the graph when it's called.
"""
assert callable(func), "func must be a callable"
assert hasattr(func, "__code__")
fn_name = func.__code__.co_name
......@@ -1739,13 +2195,15 @@ def _register_all_builtin_module():
module_tracer.register_as_builtin(TM_FakeQuant)
def trace_module(mod: Module, *args: Tensor, **kwargs: Tensor) -> TracedModule:
r"""Traces module ``mod`` and returns corresponding TracedModule.
def trace_module(
mod: Module, *args: Tuple[Any], **kwargs: Dict[str, Any]
) -> TracedModule:
r"""Traces module ``mod`` and returns corresponding :class:`TracedModule`.
Args:
mod: the module will be converted to TracedModule
input: the positional arguments passed to forward method of ``mod``
kwargs: the keyword arguments passed to forward method of ``mod``
mod: the module will be converted to :class:`TracedModule`.
args: the positional arguments passed to forward method of ``mod``.
kwargs: the keyword arguments passed to forward method of ``mod``.
"""
assert active_module_tracer() is None
assert isinstance(mod, Module)
......@@ -1756,7 +2214,7 @@ def trace_module(mod: Module, *args: Tensor, **kwargs: Tensor) -> TracedModule:
module_tracer(_wrapped_function, _init_id2name(mod, "self"))
)
for cls in [Expr, Node]:
cls.set_total_id(0)
cls._set_next_id(0)
with active_module_tracer().patcher:
global_scope = InternalGraph(name="")
active_module_tracer().push_scope(global_scope)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册