Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
fa4bf168
MegEngine
项目概览
MegEngine 天元
/
MegEngine
1 年多 前同步成功
通知
404
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
fa4bf168
编写于
9月 30, 2020
作者:
M
Megvii Engine Team
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
feat(mge/functional): add repeat and tile opr
GitOrigin-RevId: a20d4b6fb0684699175916385e78e3a49776efee
上级
c33a7173
变更
11
显示空白变更内容
内联
并排
Showing
11 changed file
with
214 addition
and
17 deletion
+214
-17
imperative/python/megengine/autodiff/grad_manager.py
imperative/python/megengine/autodiff/grad_manager.py
+2
-2
imperative/python/megengine/core/tensor/indexing.py
imperative/python/megengine/core/tensor/indexing.py
+1
-1
imperative/python/megengine/core/tensor/utils.py
imperative/python/megengine/core/tensor/utils.py
+4
-4
imperative/python/megengine/distributed/helper.py
imperative/python/megengine/distributed/helper.py
+1
-1
imperative/python/megengine/functional/inplace.py
imperative/python/megengine/functional/inplace.py
+2
-2
imperative/python/megengine/functional/tensor.py
imperative/python/megengine/functional/tensor.py
+143
-0
imperative/python/megengine/tensor.py
imperative/python/megengine/tensor.py
+0
-4
imperative/python/src/tensor.cpp
imperative/python/src/tensor.cpp
+8
-2
imperative/python/src/tensor.h
imperative/python/src/tensor.h
+1
-0
imperative/python/test/unit/functional/test_tensor.py
imperative/python/test/unit/functional/test_tensor.py
+50
-0
imperative/python/test/unit/test_tracing.py
imperative/python/test/unit/test_tracing.py
+2
-1
未找到文件。
imperative/python/megengine/autodiff/grad_manager.py
浏览文件 @
fa4bf168
...
@@ -279,8 +279,8 @@ class GradManager:
...
@@ -279,8 +279,8 @@ class GradManager:
tensor
.
grad
=
grad
tensor
.
grad
=
grad
else
:
else
:
tensor
.
grad
+=
grad
tensor
.
grad
+=
grad
if
tensor
.
isscalar
()
and
tensor
.
grad
is
not
None
:
if
tensor
.
_
isscalar
()
and
tensor
.
grad
is
not
None
:
tensor
.
grad
.
setscalar
()
tensor
.
grad
.
_
setscalar
()
finally
:
finally
:
self
.
release
()
self
.
release
()
backwarding_grad_manager
=
cache
backwarding_grad_manager
=
cache
...
...
imperative/python/megengine/core/tensor/indexing.py
浏览文件 @
fa4bf168
...
@@ -225,7 +225,7 @@ def getitem(tensor, index):
...
@@ -225,7 +225,7 @@ def getitem(tensor, index):
op
=
builtin
.
IndexingMultiAxisVec
(
items
=
items
)
op
=
builtin
.
IndexingMultiAxisVec
(
items
=
items
)
(
result
,)
=
apply
(
op
,
tensor
,
*
tensors
)
(
result
,)
=
apply
(
op
,
tensor
,
*
tensors
)
if
ret_scalar
:
if
ret_scalar
:
result
.
setscalar
()
result
.
_
setscalar
()
return
result
return
result
...
...
imperative/python/megengine/core/tensor/utils.py
浏览文件 @
fa4bf168
...
@@ -51,10 +51,10 @@ def concatenate(inputs, axis=0, *, device=None):
...
@@ -51,10 +51,10 @@ def concatenate(inputs, axis=0, *, device=None):
def
astype
(
x
,
dtype
):
def
astype
(
x
,
dtype
):
dtype
=
np
.
dtype
(
dtype
)
dtype
=
np
.
dtype
(
dtype
)
if
not
is_dtype_equal
(
x
.
dtype
,
dtype
):
if
not
is_dtype_equal
(
x
.
dtype
,
dtype
):
isscalar
=
x
.
isscalar
()
isscalar
=
x
.
_
isscalar
()
(
x
,)
=
apply
(
builtin
.
TypeCvt
(
dtype
=
dtype
),
x
)
(
x
,)
=
apply
(
builtin
.
TypeCvt
(
dtype
=
dtype
),
x
)
if
isscalar
:
if
isscalar
:
x
.
setscalar
()
x
.
_
setscalar
()
return
x
return
x
...
@@ -98,14 +98,14 @@ def result_type(*args):
...
@@ -98,14 +98,14 @@ def result_type(*args):
def
isscalar
(
x
):
def
isscalar
(
x
):
if
isinstance
(
x
,
Tensor
):
if
isinstance
(
x
,
Tensor
):
return
x
.
isscalar
()
return
x
.
_
isscalar
()
return
np
.
isscalar
(
x
)
return
np
.
isscalar
(
x
)
def
setscalar
(
x
):
def
setscalar
(
x
):
if
isinstance
(
x
,
Tensor
):
if
isinstance
(
x
,
Tensor
):
x
.
setscalar
()
x
.
_
setscalar
()
else
:
else
:
raise
NotImplementedError
(
"Unsupport type {}"
.
format
(
type
(
x
)))
raise
NotImplementedError
(
"Unsupport type {}"
.
format
(
type
(
x
)))
...
...
imperative/python/megengine/distributed/helper.py
浏览文件 @
fa4bf168
...
@@ -67,7 +67,7 @@ def param_pack_split(inp: Tensor, offsets: list, shapes: list):
...
@@ -67,7 +67,7 @@ def param_pack_split(inp: Tensor, offsets: list, shapes: list):
outputs
=
apply
(
op
,
inp
)
outputs
=
apply
(
op
,
inp
)
for
s
,
x
in
zip
(
shapes
,
outputs
):
for
s
,
x
in
zip
(
shapes
,
outputs
):
if
not
s
:
if
not
s
:
x
.
setscalar
()
x
.
_
setscalar
()
return
outputs
return
outputs
...
...
imperative/python/megengine/functional/inplace.py
浏览文件 @
fa4bf168
...
@@ -12,8 +12,8 @@ from ..core.ops.builtin import InplaceAdd
...
@@ -12,8 +12,8 @@ from ..core.ops.builtin import InplaceAdd
def
_inplace_add_
(
dest
,
delta
,
alpha
,
beta
):
def
_inplace_add_
(
dest
,
delta
,
alpha
,
beta
):
isscalar
=
dest
.
isscalar
()
isscalar
=
dest
.
_
isscalar
()
dest
.
_reset
(
apply
(
InplaceAdd
(),
dest
,
delta
,
alpha
,
beta
)[
0
])
dest
.
_reset
(
apply
(
InplaceAdd
(),
dest
,
delta
,
alpha
,
beta
)[
0
])
if
isscalar
:
if
isscalar
:
dest
.
setscalar
()
dest
.
_
setscalar
()
return
dest
return
dest
imperative/python/megengine/functional/tensor.py
浏览文件 @
fa4bf168
...
@@ -44,11 +44,13 @@ __all__ = [
...
@@ -44,11 +44,13 @@ __all__ = [
"linspace"
,
"linspace"
,
"ones"
,
"ones"
,
"ones_like"
,
"ones_like"
,
"repeat"
,
"reshape"
,
"reshape"
,
"split"
,
"split"
,
"squeeze"
,
"squeeze"
,
"stack"
,
"stack"
,
"scatter"
,
"scatter"
,
"tile"
,
"transpose"
,
"transpose"
,
"where"
,
"where"
,
"zeros"
,
"zeros"
,
...
@@ -987,3 +989,144 @@ def arange(
...
@@ -987,3 +989,144 @@ def arange(
if
np
.
dtype
(
dtype
)
==
np
.
int32
:
if
np
.
dtype
(
dtype
)
==
np
.
int32
:
return
result
.
astype
(
dtype
)
return
result
.
astype
(
dtype
)
return
result
return
result
def
repeat
(
inp
:
Tensor
,
repeats
:
int
,
axis
:
Optional
[
int
]
=
None
):
"""
Repeat elements of an array.
:param inp: input tensor.
:param repeats: the number of repetitions for each element.
:param axis: the axis along which to repeat values. By default, use the
flattened input array, and return a flat output array.
:return: output tensor.
Examples:
.. testcode::
import numpy as np
import megengine.functional as F
from megengine import tensor
x = tensor([[1, 2], [3, 4]], np.int32)
y = F.repeat(x, 2, axis=0)
print(y.numpy())
Outputs:
.. testoutput::
[[1 2]
[1 2]
[3 4]
[3 4]]
"""
if
axis
is
None
:
inp
=
inp
.
reshape
(
-
1
)
# flatten
axis
=
0
if
inp
.
_isscalar
():
inp
.
_unsetscalar
()
shape
=
astensor1d
(
inp
.
shape
,
inp
,
dtype
=
"int32"
,
device
=
inp
.
device
)
# assume inp.ndim is not changed during trace
max_axis
=
len
(
shape
)
-
1
assert
axis
>=
0
and
axis
<=
max_axis
assert
repeats
>=
1
base_shape
,
bcast_shape
,
target_shape
=
[],
[],
[]
if
axis
!=
0
:
target_shape
.
append
(
shape
[:
axis
])
base_shape
.
extend
([
shape
[:
axis
+
1
],
[
1
,]])
bcast_shape
.
extend
([
shape
[:
axis
+
1
],
[
repeats
,]])
target_shape
.
extend
(
[
shape
[
axis
]
*
repeats
,]
)
if
axis
+
1
<=
max_axis
:
base_shape
.
append
(
shape
[
axis
+
1
:])
bcast_shape
.
append
(
shape
[
axis
+
1
:])
target_shape
.
append
(
shape
[
axis
+
1
:])
out
=
broadcast_to
(
inp
.
reshape
(
concat
(
base_shape
)),
concat
(
bcast_shape
)).
reshape
(
concat
(
target_shape
)
)
return
out
def
_tile_one_dim
(
inp
,
rep
,
axis
):
shape
=
astensor1d
(
inp
.
shape
,
inp
,
dtype
=
"int32"
,
device
=
inp
.
device
)
# assume inp.ndim is not changed during trace
max_axis
=
len
(
shape
)
-
1
base_shape
,
bcast_shape
,
target_shape
=
[],
[],
[]
if
axis
!=
0
:
base_shape
.
append
(
shape
[:
axis
])
bcast_shape
.
append
(
shape
[:
axis
])
target_shape
.
append
(
shape
[:
axis
])
base_shape
.
extend
([[
1
,],
shape
[
axis
:]])
bcast_shape
.
extend
([
rep
,
shape
[
axis
:]])
target_shape
.
append
(
shape
[
axis
]
*
rep
)
if
axis
+
1
<=
max_axis
:
target_shape
.
append
(
shape
[
axis
+
1
:])
out
=
broadcast_to
(
inp
.
reshape
(
concat
(
base_shape
)),
concat
(
bcast_shape
)).
reshape
(
concat
(
target_shape
)
)
return
out
def
tile
(
inp
:
Tensor
,
reps
:
Iterable
[
int
]):
"""
Construct an array by repeating ``inp`` the number of times given by ``reps``. If reps has length d,
the result will have dimension of ``max(d, inp.ndim)``. It is required that ``d >= inp.dim``. If ``inp.ndim < d``,
``inp`` is promoted to be ``d``-dimensional by prepending new axis.
:param inp: input tensor.
:param reps: The number of repetitions of inp along each axis.
:return: output tensor.
Examples:
.. testcode::
import numpy as np
import megengine.functional as F
from megengine import tensor
x = tensor([[1, 2], [3, 4]], np.int32)
y = F.tile(x, (2,1))
print(y.numpy())
Outputs:
.. testoutput::
[[1 2]
[3 4]
[1 2]
[3 4]]
"""
shape
=
astensor1d
(
inp
.
shape
,
inp
,
dtype
=
"int32"
,
device
=
inp
.
device
)
reps
=
astensor1d
(
reps
,
inp
,
dtype
=
"int32"
,
device
=
inp
.
device
)
l_shape
=
len
(
shape
)
l_reps
=
len
(
reps
)
assert
(
l_reps
>=
l_shape
),
"Number of dimensions of tiled dims can not be smaller than number of dimensions of tensor"
for
i
in
range
(
l_shape
):
rep
=
reps
[
i
+
(
l_reps
-
l_shape
)]
inp
=
_tile_one_dim
(
inp
,
rep
,
i
)
if
l_reps
>
l_shape
:
shape
=
inp
.
shape
extra
=
reps
[:
-
l_shape
]
extra_ones
=
ones_like
(
extra
)
base_shape
=
concat
([
extra_ones
,
shape
])
bcast_shape
=
concat
([
extra
,
shape
])
target_shape
=
concat
([
extra
,
shape
])
inp
=
broadcast_to
(
inp
.
reshape
(
base_shape
),
bcast_shape
).
reshape
(
target_shape
)
return
inp
imperative/python/megengine/tensor.py
浏览文件 @
fa4bf168
...
@@ -51,10 +51,6 @@ class Tensor(_Tensor, ArrayMethodMixin):
...
@@ -51,10 +51,6 @@ class Tensor(_Tensor, ArrayMethodMixin):
cn
=
device
.
_cn
cn
=
device
.
_cn
if
isinstance
(
data
,
_Tensor
):
if
isinstance
(
data
,
_Tensor
):
if
dtype
is
not
None
:
logger
.
warning
(
"dtype does not work when creating a new Tensor with another Tensor"
)
obj
=
_Tensor
.
__new__
(
cls
,
data
)
obj
=
_Tensor
.
__new__
(
cls
,
data
)
else
:
else
:
if
isinstance
(
data
,
np
.
ndarray
):
if
isinstance
(
data
,
np
.
ndarray
):
...
...
imperative/python/src/tensor.cpp
浏览文件 @
fa4bf168
...
@@ -557,6 +557,11 @@ void TensorWrapper::setscalar() {
...
@@ -557,6 +557,11 @@ void TensorWrapper::setscalar() {
}
}
void
TensorWrapper
::
unsetscalar
()
{
m_tensor
->
m_flags
&=
~
Tensor
::
Flags
::
SCALAR
;
}
struct
TensorWeakRef
{
struct
TensorWeakRef
{
std
::
weak_ptr
<
Tensor
>
wptr
;
std
::
weak_ptr
<
Tensor
>
wptr
;
...
@@ -794,8 +799,9 @@ void init_tensor(py::module m) {
...
@@ -794,8 +799,9 @@ void init_tensor(py::module m) {
.
def_getset
<&
TensorWrapper
::
dtype
>
(
"dtype"
)
.
def_getset
<&
TensorWrapper
::
dtype
>
(
"dtype"
)
.
def_getset
<&
TensorWrapper
::
device
>
(
"device"
)
.
def_getset
<&
TensorWrapper
::
device
>
(
"device"
)
.
def
<&
TensorWrapper
::
reset
>
(
"_reset"
)
.
def
<&
TensorWrapper
::
reset
>
(
"_reset"
)
.
def
<&
TensorWrapper
::
isscalar
>
(
"isscalar"
)
.
def
<&
TensorWrapper
::
isscalar
>
(
"_isscalar"
)
.
def
<&
TensorWrapper
::
setscalar
>
(
"setscalar"
)
.
def
<&
TensorWrapper
::
setscalar
>
(
"_setscalar"
)
.
def
<&
TensorWrapper
::
unsetscalar
>
(
"_unsetscalar"
)
.
def
<&
TensorWrapper
::
detach
>
(
"detach"
)
.
def
<&
TensorWrapper
::
detach
>
(
"detach"
)
.
def
<&
TensorWrapper
::
_dev_tensor
>
(
"_dev_tensor"
)
.
def
<&
TensorWrapper
::
_dev_tensor
>
(
"_dev_tensor"
)
.
def
<&
TensorWrapper
::
_swap_out
>
(
"_swap_out"
)
.
def
<&
TensorWrapper
::
_swap_out
>
(
"_swap_out"
)
...
...
imperative/python/src/tensor.h
浏览文件 @
fa4bf168
...
@@ -153,6 +153,7 @@ struct TensorWrapper {
...
@@ -153,6 +153,7 @@ struct TensorWrapper {
PyObject
*
detach
();
PyObject
*
detach
();
PyObject
*
isscalar
();
PyObject
*
isscalar
();
void
setscalar
();
void
setscalar
();
void
unsetscalar
();
PyObject
*
_dev_tensor
();
PyObject
*
_dev_tensor
();
void
_swap_in
();
void
_swap_in
();
void
_swap_out
();
void
_swap_out
();
...
...
imperative/python/test/unit/functional/test_tensor.py
浏览文件 @
fa4bf168
...
@@ -406,3 +406,53 @@ def test_copy_d2h():
...
@@ -406,3 +406,53 @@ def test_copy_d2h():
def
test_copy_d2d
():
def
test_copy_d2d
():
copy_test
(
"gpu0"
,
"gpu1"
)
copy_test
(
"gpu0"
,
"gpu1"
)
copy_test
(
"gpu0:0"
,
"gpu0:1"
)
copy_test
(
"gpu0:0"
,
"gpu0:1"
)
@
pytest
.
mark
.
parametrize
(
"shape, repeats, axis"
,
[
((
2
,),
2
,
0
),
((
2
,
3
,
4
,
5
),
3
,
0
),
((
2
,
3
,
4
,
5
),
4
,
3
),
((
2
,),
2
,
None
),
((
2
,
3
,
4
,
5
),
3
,
None
),
((),
1
,
None
),
((),
10
,
None
),
],
)
def
test_repeat
(
shape
,
repeats
,
axis
):
def
repeat_func
(
inp
):
return
F
.
repeat
(
inp
=
inp
,
repeats
=
repeats
,
axis
=
axis
)
if
shape
!=
():
cases
=
[
{
"input"
:
np
.
random
.
randn
(
*
shape
).
astype
(
"float32"
)},
]
else
:
cases
=
[{
"input"
:
np
.
array
(
1.23
)}]
opr_test
(
cases
,
repeat_func
,
ref_fn
=
lambda
inp
:
np
.
repeat
(
inp
,
repeats
,
axis
),
)
@
pytest
.
mark
.
parametrize
(
"shape, reps"
,
[
((
2
,),
(
2
,)),
((
2
,
3
,
4
,
5
),
(
1
,
1
,
1
,
1
)),
((
2
,
3
,
4
,
5
),
(
1
,
2
,
3
,
4
)),
((
2
,
3
,
4
,
5
),
(
2
,
2
,
2
,
2
,
2
,
2
,
2
)),
],
)
def
test_tile
(
shape
,
reps
):
def
tile_func
(
inp
):
return
F
.
tile
(
inp
=
inp
,
reps
=
reps
)
cases
=
[
{
"input"
:
np
.
random
.
randn
(
*
shape
).
astype
(
"float32"
)},
]
opr_test
(
cases
,
tile_func
,
ref_fn
=
lambda
inp
:
np
.
tile
(
inp
,
reps
),
)
imperative/python/test/unit/test_tracing.py
浏览文件 @
fa4bf168
...
@@ -7,6 +7,7 @@
...
@@ -7,6 +7,7 @@
# software distributed under the License is distributed on an
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import
io
import
io
import
itertools
from
tempfile
import
mkstemp
from
tempfile
import
mkstemp
import
numpy
as
np
import
numpy
as
np
...
@@ -359,7 +360,7 @@ def test_trace_warp_perspective():
...
@@ -359,7 +360,7 @@ def test_trace_warp_perspective():
np
.
testing
.
assert_equal
(
out
.
shape
.
numpy
(),
np
.
array
([
1
,
1
,
2
,
2
]))
np
.
testing
.
assert_equal
(
out
.
shape
.
numpy
(),
np
.
array
([
1
,
1
,
2
,
2
]))
return
out
return
out
for
i
in
range
(
1
):
for
i
in
range
(
3
):
f
(
x
,
M
)
f
(
x
,
M
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录