提交 e698ec20 编写于 作者: M Megvii Engine Team 提交者: 王彪

feat(cuda): float16 depthwise large kernel conv compute fp32

GitOrigin-RevId: 3050d48f2691faeeda4fb054134041cc620b5a35
上级 48406382
......@@ -57,10 +57,13 @@ struct Global2SharedMem {
T* smem;
int stride;
int start_h, start_w, bound_h, bound_w, ring_smem_h, ring_src_h;
// just used in backward src data
int stride_h, stride_w;
const T* g_ptr;
__device__ __forceinline__
Global2SharedMem(T* smem_, int stride_, int s_h, int s_w, int b_h, int b_w);
__device__ __forceinline__ Global2SharedMem(
T* smem_, int stride_, int s_h, int s_w, int b_h, int b_w, int stride_h_,
int stride_w_);
__device__ __forceinline__ void first_copy();
__device__ __forceinline__ void copy();
......@@ -77,7 +80,7 @@ struct Global2SharedMem {
template <
typename ldg_dtype, DepthwiseConv2dDirection kDirection, typename ThreadConfig_,
typename OutTileConfig_, typename FilterTileConfig_>
typename OutTileConfig_, typename FilterTileConfig_, int stride_w, int stride_h>
struct ConvTrait {
using ThreadConfig = ThreadConfig_;
using OutTileConfig = OutTileConfig_;
......@@ -88,19 +91,19 @@ struct ConvTrait {
static int const unroll_h =
OutTileConfig::unroll_h + FilterTileConfig::unroll_h - 1;
static int const unroll_w =
OutTileConfig::unroll_w + FilterTileConfig::unroll_w - 1;
(OutTileConfig::unroll_w - 1) * stride_w + FilterTileConfig::unroll_w;
static int const unroll_size = unroll_h * unroll_w;
};
struct SrcTileCount {
static int const smem_src_h =
OutTileConfig::block_h + FilterTileConfig::unroll_h - 1;
(OutTileConfig::block_h - 1) * stride_h + FilterTileConfig::unroll_h;
static int const smem_buff_h = FilterTileConfig::unroll_h;
static int const smem_load_h = smem_src_h + smem_buff_h;
static int const smem_h = smem_load_h + smem_buff_h;
static int const smem_w =
DIVUP(OutTileConfig::block_w +
FilterTileConfig::unroll_w * ThreadConfig::thread_x - 1,
DIVUP((OutTileConfig::block_w - 1) * stride_w +
FilterTileConfig::unroll_w * ThreadConfig::thread_x,
2) *
2;
static int const smem_size = smem_h * smem_w;
......@@ -140,20 +143,25 @@ template <
typename TileCount_>
__device__ __forceinline__
Global2SharedMem<T, kDirection, ThreadConfig_, TileCount_>::Global2SharedMem(
T* smem_, int stride_, int s_h, int s_w, int b_h, int b_w)
T* smem_, int stride_, int s_h, int s_w, int b_h, int b_w, int stride_h_,
int stride_w_)
: smem(smem_),
stride(stride_),
start_h(s_h),
start_w(s_w),
bound_h(b_h),
bound_w(b_w),
ring_smem_h(TileCount::smem_load_h) {
ring_smem_h(TileCount::smem_load_h),
stride_h(stride_h_),
stride_w(stride_w_) {
if (is_fwd) {
ring_src_h = s_h + TileCount::smem_load_h;
w_offset = 0;
} else {
ring_src_h = s_h - 1;
w_offset = TileCount::smem_w - b_w;
// stride_h and stride_w just used in backward src data.
stride_h = stride_w = 1;
}
}
......@@ -195,9 +203,10 @@ __device__ __forceinline__ void Global2SharedMem<
T val = 0.0f;
if (src_h_idx >= 0 && src_h_idx < bound_h && src_w_idx >= 0 &&
src_w_idx < bound_w &&
(is_fwd || (TileCount::smem_load_h - smem_h_idx - 1 >= 0 &&
TileCount::smem_w - w_offset - smem_w_idx - 1 >= 0))) {
val = g_ptr[src_h_idx * stride + src_w_idx];
((is_fwd && src_h_idx % stride_h == 0 && src_w_idx % stride_w == 0) ||
(!is_fwd && TileCount::smem_load_h - smem_h_idx - 1 >= 0 &&
TileCount::smem_w - w_offset - smem_w_idx - 1 >= 0))) {
val = g_ptr[src_h_idx / stride_h * stride + src_w_idx / stride_w];
}
*(sh_ptr_as_copy_t(smem_h_idx, smem_w_idx)) = val;
}
......@@ -223,8 +232,9 @@ __device__ __forceinline__ void Global2SharedMem<
T val = 0.0f;
if (ring_src_h >= 0 && ring_src_h < bound_h && src_w_idx >= 0 &&
src_w_idx < bound_w &&
(is_fwd || TileCount::smem_w - w_offset - smem_w_idx - 1 >= 0)) {
val = g_ptr[ring_src_h * stride + src_w_idx];
((is_fwd && ring_src_h % stride_h == 0 && src_w_idx % stride_w == 0) ||
(!is_fwd && TileCount::smem_w - w_offset - smem_w_idx - 1 >= 0))) {
val = g_ptr[ring_src_h / stride_h * stride + src_w_idx / stride_w];
}
reg[j] = val;
}
......@@ -286,21 +296,23 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall(
int off_ochannel = blockIdx.x, off_obw = blockIdx.y, off_obh = blockIdx.z,
off_oh = threadIdx.y, off_ow = threadIdx.x;
const int t2_src_unroll_w = (SrcTileConfig::unroll_w + 1) / 2;
const int t2_flt_unroll_w = (FilterTileConfig::unroll_w + 2) / 2;
const int t2_out_unroll_w = (OutTileConfig::unroll_w + 1) / 2;
constexpr int t2_src_unroll_w = (SrcTileConfig::unroll_w + 1) / 2;
constexpr int t2_flt_unroll_w = (FilterTileConfig::unroll_w + 2) / 2;
constexpr int t2_out_unroll_w = (OutTileConfig::unroll_w + 1) / 2;
extern __shared__ __align__(8) unsigned char smem[];
static_assert(sizeof(T) <= 8, "Insufficient alignment detected");
T* smem_src = reinterpret_cast<T*>(smem);
T* smem_flt = reinterpret_cast<T*>(&smem_src[SrcTileCount::smem_size]);
int stride_h = is_fwd ? param.stride_h : 1;
int stride_w = is_fwd ? param.stride_w : 1;
int off_ichannel = off_ochannel / param.chl_mul,
off_fchannel = off_ichannel % param.src_chl,
out_start_h = off_obh * OutTileConfig::block_h,
out_start_w = off_obw * OutTileConfig::block_w,
src_start_h = out_start_h - param.pad_h,
src_start_w = out_start_w - param.pad_w,
src_start_h = out_start_h * stride_h - param.pad_h,
src_start_w = out_start_w * stride_w - param.pad_w,
out_base_h_idx = out_start_h + off_oh * OutTileConfig::unroll_h;
T* smem_src_ptr = smem_src + off_ow * FilterTileConfig::unroll_w;
......@@ -308,12 +320,28 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall(
T* out_base_ptr = output + off_ochannel * param.out_h * param.out_w;
SrcGlobal2ShareVisitor gl2sh_src(
smem_src, param.src_w, src_start_h, src_start_w, param.src_h, param.src_w);
FilterGlobal2ShareVisitor gl2sh_flt = {
smem_flt, param.flt_w, is_fwd ? 0 : param.flt_h - 2,
0, param.flt_h, param.flt_w};
SrcGlobal2ShareVisitor gl2sh_src = {
smem_src,
param.src_w,
is_fwd ? src_start_h
: src_start_h - (param.out_h / 2 + param.flt_h / 2 - param.pad_h -
param.src_h * param.stride_h / 2),
is_fwd ? src_start_w
: src_start_w - (param.out_w / 2 + param.flt_w / 2 - param.pad_w -
param.src_w * param.stride_w / 2),
is_fwd ? param.src_h : param.src_h * param.stride_h,
is_fwd ? param.src_w : param.src_w * param.stride_w,
is_fwd ? 1 : param.stride_h,
is_fwd ? 1 : param.stride_w};
FilterGlobal2ShareVisitor gl2sh_flt = {smem_flt,
param.flt_w,
is_fwd ? 0 : param.flt_h - 2,
0,
param.flt_h,
param.flt_w,
1,
1};
gl2sh_src.g_ptr = input + off_ichannel * param.src_h * param.src_w;
gl2sh_flt.g_ptr = filter + off_fchannel * param.flt_h * param.flt_w;
......@@ -326,7 +354,7 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall(
T2 reg_src[SrcTileConfig::unroll_h * t2_src_unroll_w],
reg_flt[2][FilterTileConfig::unroll_h * t2_flt_unroll_w];
T2 sum[OutTileConfig::unroll_size] = {{0.0, 0.0}};
float2 sum[OutTileConfig::unroll_size] = {{0.0, 0.0}};
for (int fh = 0; fh < param.flt_h; fh += FilterTileConfig::unroll_h) {
gl2sh_src.copy();
......@@ -335,7 +363,7 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall(
for (int s_h = 0; s_h < SrcTileConfig::unroll_h; ++s_h) {
#pragma unroll
for (int s_w = 0; s_w < t2_src_unroll_w; ++s_w) {
int src_offset = (off_oh + fh + s_h) % SrcTileCount::smem_h *
int src_offset = (off_oh * stride_h + fh + s_h) % SrcTileCount::smem_h *
SrcTileCount::smem_w +
s_w * 2;
reg_src[s_h * t2_src_unroll_w + s_w] =
......@@ -373,9 +401,10 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall(
#pragma unroll
for (int ow = 0; ow < OutTileConfig::unroll_w; ++ow) {
sum[oh * t2_out_unroll_w + ow] = megdnn::cuda::fma2(
reg_flt[ow % 2][inner_fh * t2_flt_unroll_w + fw],
reg_flt[ow * stride_w % 2]
[inner_fh * t2_flt_unroll_w + fw],
reg_src[(inner_fh + oh) * t2_src_unroll_w + fw +
ow / 2],
ow * stride_w / 2],
sum[oh * t2_out_unroll_w + ow]);
}
}
......@@ -392,7 +421,8 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall(
for (int o = 0; o < OutTileConfig::unroll_size; ++o) {
for (int i = 1; i < ThreadConfig::thread_x; i = i << 1) {
sum[o] += __shfl_xor(sum[o], i, 32);
sum[o].x += __shfl_xor(sum[o].x, i, 32);
sum[o].y += __shfl_xor(sum[o].y, i, 32);
}
}
......@@ -406,9 +436,9 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall(
int out_w_idx = out_start_w + j;
if (out_w_idx >= param.out_w)
return;
out_base_ptr[out_h_idx * param.out_w + out_w_idx] =
out_base_ptr[out_h_idx * param.out_w + out_w_idx] = __float2half(
sum[i * OutTileConfig::unroll_w + j].x +
sum[i * OutTileConfig::unroll_w + j].y;
sum[i * OutTileConfig::unroll_w + j].y);
}
}
}
......@@ -433,21 +463,19 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall(
int off_ochannel = blockIdx.x, off_obw = blockIdx.y, off_obh = blockIdx.z,
off_oh = threadIdx.y, off_ow = threadIdx.x;
const int t2_src_unroll_w = (SrcTileConfig::unroll_w + 1) / 2;
const int t2_flt_unroll_w = (FilterTileConfig::unroll_w + 2) / 2;
const int t2_out_unroll_w = (OutTileConfig::unroll_w + 1) / 2;
extern __shared__ __align__(8) unsigned char smem[];
static_assert(sizeof(T) <= 8, "Insufficient alignment detected");
T* smem_src = reinterpret_cast<T*>(smem);
T* smem_flt = reinterpret_cast<T*>(&smem_src[SrcTileCount::smem_size]);
int stride_h = is_fwd ? param.stride_h : 1;
int stride_w = is_fwd ? param.stride_w : 1;
int off_ichannel = off_ochannel / param.chl_mul,
off_fchannel = off_ichannel % param.src_chl,
out_start_h = off_obh * OutTileConfig::block_h,
out_start_w = off_obw * OutTileConfig::block_w,
src_start_h = out_start_h - param.pad_h,
src_start_w = out_start_w - param.pad_w,
src_start_h = out_start_h * stride_h - param.pad_h,
src_start_w = out_start_w * stride_w - param.pad_w,
out_base_h_idx = out_start_h + off_oh * OutTileConfig::unroll_h;
T* smem_src_ptr = smem_src + off_ow * FilterTileConfig::unroll_w;
......@@ -455,12 +483,28 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall(
T* out_base_ptr = output + off_ochannel * param.out_h * param.out_w;
SrcGlobal2ShareVisitor gl2sh_src(
smem_src, param.src_w, src_start_h, src_start_w, param.src_h, param.src_w);
FilterGlobal2ShareVisitor gl2sh_flt = {
smem_flt, param.flt_w, is_fwd ? 0 : param.flt_h - 2,
0, param.flt_h, param.flt_w};
SrcGlobal2ShareVisitor gl2sh_src = {
smem_src,
param.src_w,
is_fwd ? src_start_h
: src_start_h - (param.out_h / 2 + param.flt_h / 2 - param.pad_h -
param.src_h * param.stride_h / 2),
is_fwd ? src_start_w
: src_start_w - (param.out_w / 2 + param.flt_w / 2 - param.pad_w -
param.src_w * param.stride_w / 2),
is_fwd ? param.src_h : param.src_h * param.stride_h,
is_fwd ? param.src_w : param.src_w * param.stride_w,
is_fwd ? 1 : param.stride_h,
is_fwd ? 1 : param.stride_w};
FilterGlobal2ShareVisitor gl2sh_flt = {smem_flt,
param.flt_w,
is_fwd ? 0 : param.flt_h - 2,
0,
param.flt_h,
param.flt_w,
1,
1};
gl2sh_src.g_ptr = input + off_ichannel * param.src_h * param.src_w;
gl2sh_flt.g_ptr = filter + off_fchannel * param.flt_h * param.flt_w;
......@@ -470,10 +514,10 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall(
__syncthreads();
T2 reg_src[SrcTileConfig::unroll_h * t2_src_unroll_w],
reg_flt[2][FilterTileConfig::unroll_h * t2_flt_unroll_w];
T reg_src[SrcTileConfig::unroll_h * SrcTileConfig::unroll_w],
reg_flt[FilterTileConfig::unroll_h * FilterTileConfig::unroll_w];
T2 sum[OutTileConfig::unroll_size] = {{0.0, 0.0}};
T sum[OutTileConfig::unroll_size] = {0.0};
for (int fh = 0; fh < param.flt_h; fh += FilterTileConfig::unroll_h) {
gl2sh_src.copy();
......@@ -481,34 +525,28 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall(
#pragma unroll
for (int s_h = 0; s_h < SrcTileConfig::unroll_h; ++s_h) {
#pragma unroll
for (int s_w = 0; s_w < t2_src_unroll_w; ++s_w) {
int src_offset = (off_oh + fh + s_h) % SrcTileCount::smem_h *
SrcTileCount::smem_w +
s_w * 2;
reg_src[s_h * t2_src_unroll_w + s_w] =
*reinterpret_cast<T2*>(smem_src_ptr + src_offset);
for (int s_w = 0; s_w < SrcTileConfig::unroll_w; ++s_w) {
reg_src[s_h * SrcTileConfig::unroll_w + s_w] = smem_src_ptr
[(off_oh * stride_h + fh + s_h) % SrcTileCount::smem_h *
SrcTileCount::smem_w +
s_w];
if (off_ochannel == 0 && off_obw == 0 && off_obh == 0 && off_oh == 30 &&
off_ow == 0) {
printf("reg_src[%d] = %f\n", s_h * SrcTileConfig::unroll_w + s_w,
reg_src[s_h * SrcTileConfig::unroll_w + s_w]);
}
}
}
#pragma unroll
for (int f_h = 0; f_h < FilterTileConfig::unroll_h; ++f_h) {
#pragma unroll
for (int f_w = 0; f_w < t2_flt_unroll_w - 1; ++f_w) {
int flt_offset =
(fh + f_h) % FilterTileCount::smem_h * FilterTileCount::smem_w +
f_w * 2;
reg_flt[0][f_h * t2_flt_unroll_w + f_w] =
*reinterpret_cast<T2*>(smem_flt_ptr + flt_offset);
reg_flt[1][f_h * t2_flt_unroll_w + f_w] = {
f_w > 0 ? reg_flt[0][f_h * t2_flt_unroll_w + f_w - 1].y
: static_cast<T>(0.0),
reg_flt[0][f_h * t2_flt_unroll_w + f_w].x};
for (int f_w = 0; f_w < FilterTileConfig::unroll_w; ++f_w) {
reg_flt[f_h * FilterTileConfig::unroll_w + f_w] = smem_flt_ptr
[(fh + f_h) % FilterTileCount::smem_h *
FilterTileCount::smem_w +
f_w];
}
reg_flt[0][f_h * t2_flt_unroll_w + t2_flt_unroll_w - 1] = {
static_cast<T>(0.0), static_cast<T>(0.0)};
reg_flt[1][f_h * t2_flt_unroll_w + t2_flt_unroll_w - 1] = {
reg_flt[0][f_h * t2_flt_unroll_w + t2_flt_unroll_w - 2].y,
static_cast<T>(0.0)};
}
#pragma unroll
......@@ -516,14 +554,22 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall(
#pragma unroll
for (int oh = 0; oh < OutTileConfig::unroll_h; ++oh) {
#pragma unroll
for (int fw = 0; fw < t2_flt_unroll_w; ++fw) {
for (int fw = 0; fw < FilterTileConfig::unroll_w; ++fw) {
#pragma unroll
for (int ow = 0; ow < OutTileConfig::unroll_w; ++ow) {
sum[oh * t2_out_unroll_w + ow] = megdnn::cuda::fma2(
reg_flt[ow % 2][inner_fh * t2_flt_unroll_w + fw],
reg_src[(inner_fh + oh) * t2_src_unroll_w + fw +
ow / 2],
sum[oh * t2_out_unroll_w + ow]);
sum[oh * OutTileConfig::unroll_w + ow] +=
reg_flt[inner_fh * FilterTileConfig::unroll_w + fw] *
reg_src[(inner_fh + oh) * SrcTileConfig::unroll_w + fw +
ow * stride_w];
if (off_ochannel == 0 && off_obw == 0 && off_obh == 0 &&
off_oh == 30) {
printf("sum[%d] += %f * %f\nsum = %f\n",
oh * OutTileConfig::unroll_w + ow,
reg_flt[inner_fh * FilterTileConfig::unroll_w + fw],
reg_src[(inner_fh + oh) * SrcTileConfig::unroll_w +
fw + ow * stride_w],
sum[oh * OutTileConfig::unroll_w + ow]);
}
}
}
}
......@@ -539,8 +585,7 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall(
for (int o = 0; o < OutTileConfig::unroll_size; ++o) {
for (int i = 1; i < ThreadConfig::thread_x; i = i << 1) {
sum[o].x += __shfl_xor(sum[o].x, i, 32);
sum[o].y += __shfl_xor(sum[o].y, i, 32);
sum[o] += __shfl_xor(sum[o], i, 32);
}
}
......@@ -555,8 +600,7 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall(
if (out_w_idx >= param.out_w)
return;
out_base_ptr[out_h_idx * param.out_w + out_w_idx] =
sum[i * OutTileConfig::unroll_w + j].x +
sum[i * OutTileConfig::unroll_w + j].y;
sum[i * OutTileConfig::unroll_w + j];
}
}
}
......@@ -565,7 +609,7 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall(
template <
typename T, typename T2, DepthwiseConv2dDirection kDirection, int unroll_fw,
int unroll_ow>
int unroll_ow, int stride>
void LaunchDepthwiseConv2dGPUSmall(
const Param& param, const T* input, const T* filter, T* output,
cudaStream_t stream) {
......@@ -574,8 +618,9 @@ void LaunchDepthwiseConv2dGPUSmall(
using FilterTileConfig = FilterTileConfig<unroll_fh, unroll_fw>;
using ThreadConfig = ThreadConfig<4, 32>;
using OutTileConfig = OutTileConfig<ThreadConfig, unroll_oh, unroll_ow>;
using IConvTrait =
ConvTrait<T, kDirection, ThreadConfig, OutTileConfig, FilterTileConfig>;
using IConvTrait = ConvTrait<
T, kDirection, ThreadConfig, OutTileConfig, FilterTileConfig, stride,
stride>;
using SrcTileCount = typename IConvTrait::SrcTileCount;
using FilterTileCount = typename IConvTrait::FilterTileCount;
......@@ -593,10 +638,17 @@ void LaunchDepthwiseConv2dGPUSmall(
after_kernel_launch();
}
#define INSTANCE_AB(type1, type2, a, b, direction) \
if (param.out_w > b * 4) { \
LaunchDepthwiseConv2dGPUSmall<type1, type2, direction, a + 2, b + 1>( \
param, src, flt, dst, stream); \
#define INSTANCE_AB(type1, type2, a, b, direction) \
if (param.out_w > b * 4) { \
printf("param.out_w = %d, b = %d\n", param.out_w, b); \
if (direction == DepthwiseConv2dDirection::DIRECTION_BACKWARD || \
(param.stride_h == 1 && param.stride_w == 1)) { \
LaunchDepthwiseConv2dGPUSmall<type1, type2, direction, a + 2, b + 1, 1>( \
param, src, flt, dst, stream); \
} else if (param.stride_h == 2 && param.stride_w == 2) { \
LaunchDepthwiseConv2dGPUSmall<type1, type2, direction, a + 2, b + 1, 2>( \
param, src, flt, dst, stream); \
} \
}
#define INSTANCE_A(type1, type2, a, direction) \
......
......@@ -11,7 +11,6 @@
#include "cuda.h"
#include "cuda_fp16.h"
// #include "src/cuda/conv_bias/chanwise/fwd_depthwise_large_filter.cuh"
#include "src/cuda/conv_bias/chanwise/kern.cuh"
#include "src/cuda/conv_bias/chanwise/kern_helper.cuh"
#include "src/cuda/conv_bias/chanwise/launch_config.cuh"
......
......@@ -32,15 +32,14 @@ inline bool is_available_depthwise_large_filter(const chanwise::Param& param) {
: 1 + (ow + 3) / 4 + flt_smem_w / 4 - 1;
int out_reg_per_thread = (ow + 3) / 4 * 4;
if (device_prop.regsPerBlock < 4 * 32 *
(flt_reg_per_thread + src_reg_per_thread +
out_reg_per_thread) ||
(flt_reg_per_thread * 2 +
src_reg_per_thread + out_reg_per_thread) ||
device_prop.sharedMemPerBlock <
static_cast<size_t>(
flt_smem_w * flt_smem_h + src_smem_w * src_smem_h)) {
flt_smem_w * flt_smem_h * 2 + src_smem_w * src_smem_h)) {
return false;
}
return param.stride_h == 1 && param.stride_w == 1 && param.src_h == param.out_h &&
param.src_w == param.out_w;
return true;
}
} // anonymous namespace
......
......@@ -68,7 +68,7 @@ public:
const TensorLayout& grad);
convolution::ForwardSizeArgs as_fwd_args() const {
return {handle, grad_layout, filter_layout, filter_meta, diff_layout};
return {handle, diff_layout, filter_layout, filter_meta, grad_layout};
}
};
struct ExecArgs : public SizeArgs {
......
......@@ -31,15 +31,17 @@ inline bool is_available_depthwise_large_filter(const chanwise::Param& param) {
: 1 + (ow + 3) / 4 + flt_smem_w / 4 - 1;
int out_reg_per_thread = (ow + 3) / 4 * 4;
if (device_prop.regsPerBlock < 4 * 32 *
(flt_reg_per_thread + src_reg_per_thread +
out_reg_per_thread) ||
(flt_reg_per_thread * 2 +
src_reg_per_thread + out_reg_per_thread) ||
device_prop.sharedMemPerBlock <
static_cast<size_t>(
flt_smem_w * flt_smem_h + src_smem_w * src_smem_h)) {
flt_smem_w * flt_smem_h * 2 + src_smem_w * src_smem_h)) {
return false;
}
return param.stride_h == 1 && param.stride_w == 1 && param.src_h == param.out_h &&
param.src_w == param.out_w;
printf("param.src_w = %d, param.src_h = %d, param.out_w = %d, param.out_h = %d\n",
param.src_w, param.src_h, param.out_w, param.out_h);
return (param.stride_h == 1 && param.stride_w == 1) ||
(param.stride_h == 2 && param.stride_w == 2);
}
} // anonymous namespace
......
......@@ -45,6 +45,12 @@ fma2(const __half2 a, const __half2 b, const __half2 c) {
#endif
}
__device__ __forceinline__ float2
fma2(const __half2 a, const __half2 b, const float2 c) {
return {__half2float(a.x) * __half2float(b.x) + c.x,
__half2float(a.y) * __half2float(b.y) + c.y};
}
#endif // CUDA_VERSION >= 9000
} // namespace cuda
......
......@@ -701,8 +701,10 @@ TEST_F(CUDA, CONV_BIAS_FORWARD_DEPTHWISE_LARGE_FILTER) {
ConvBiasForward::algo_name<ConvBias::DirectParam>(
"DEPTHWISE_LARGE_FILTER", {})
.c_str()));
for (auto dtype : std::vector<DType>{dtype::Float16()}) {
auto run = [&checker, &dtype](size_t n, size_t g, size_t h, size_t fh) {
for (auto dtype : std::vector<DType>{dtype::Float32(), dtype::Float16()}) {
auto run = [&checker, &dtype](
size_t n, size_t g, size_t h, size_t fh, size_t padding,
size_t stride) {
param::ConvBias cur_param;
cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
cur_param.sparse = ConvBias::Param::Sparse::GROUP;
......@@ -711,42 +713,52 @@ TEST_F(CUDA, CONV_BIAS_FORWARD_DEPTHWISE_LARGE_FILTER) {
.set_dtype(2, dtype)
.set_dtype(3, dtype)
.set_dtype(4, dtype);
float scale = 64.f / sqrt(fh * fh);
UniformFloatRNG rng(scale, 2 * scale);
checker.set_rng(0, &rng)
.set_rng(1, &rng)
.set_rng(2, &rng)
.set_rng(3, &rng)
.set_rng(4, &rng);
if (dtype.enumv() == DTypeEnum::Float16) {
checker.set_epsilon(1e-1);
}
cur_param.pad_h = cur_param.pad_w = fh / 2;
cur_param.stride_h = cur_param.stride_w = 1;
cur_param.pad_h = cur_param.pad_w = padding;
cur_param.stride_h = cur_param.stride_w = stride;
checker.set_param(cur_param).execs(
{{n, g, h, h}, {g, 1, 1, fh, fh}, {}, {}, {}});
};
run(4, 8, 32, 5);
run(4, 8, 32, 7);
run(4, 8, 32, 9);
run(4, 8, 32, 11);
run(4, 8, 32, 13);
run(4, 8, 32, 15);
run(4, 8, 32, 17);
run(4, 8, 32, 19);
run(4, 8, 32, 21);
run(4, 8, 32, 23);
run(4, 8, 32, 25);
run(4, 8, 32, 27);
run(4, 8, 32, 29);
run(4, 8, 32, 31);
run(4, 8, 64, 5);
run(4, 8, 64, 7);
run(4, 8, 64, 9);
run(4, 8, 64, 11);
run(4, 8, 64, 13);
run(4, 8, 64, 15);
run(4, 8, 64, 17);
run(4, 8, 64, 19);
run(4, 8, 64, 21);
run(4, 8, 64, 23);
run(4, 8, 64, 25);
run(4, 8, 64, 27);
run(4, 8, 64, 29);
run(4, 8, 64, 31);
run(1, 2, 128, 31);
run(1, 2, 256, 31);
run(4, 8, 32, 5, 5 / 2, 1);
run(4, 8, 32, 7, 7 / 2, 1);
run(4, 8, 32, 9, 9 / 2, 1);
run(4, 8, 32, 11, 11 / 2, 1);
run(4, 8, 32, 13, 13 / 2, 1);
run(4, 8, 32, 15, 15 / 2, 1);
run(4, 8, 32, 17, 17 / 2, 1);
run(4, 8, 32, 19, 19 / 2, 1);
run(4, 8, 32, 21, 21 / 2, 1);
run(4, 8, 32, 23, 23 / 2, 1);
run(4, 8, 32, 25, 25 / 2, 1);
run(4, 8, 32, 27, 27 / 2, 1);
run(4, 8, 32, 29, 29 / 2, 1);
run(4, 8, 32, 31, 31 / 2, 1);
run(4, 8, 64, 5, 5 / 3, 2);
run(4, 8, 64, 7, 7 / 3, 2);
run(4, 8, 64, 9, 9 / 3, 2);
run(4, 8, 64, 11, 11 / 3, 2);
run(4, 8, 64, 13, 13 / 3, 2);
run(4, 8, 64, 15, 15 / 3, 2);
run(4, 8, 64, 17, 17 / 3, 2);
run(4, 8, 64, 19, 19 / 3, 2);
run(4, 8, 64, 21, 21 / 3, 2);
run(4, 8, 64, 23, 23 / 3, 2);
run(4, 8, 64, 25, 25 / 3, 2);
run(4, 8, 64, 27, 27 / 3, 2);
run(4, 8, 64, 29, 29 / 3, 2);
run(4, 8, 64, 31, 31 / 3, 2);
run(1, 2, 128, 31, 10, 2);
run(1, 2, 256, 31, 10, 2);
}
}
......@@ -1530,7 +1542,7 @@ TEST_F(CUDA, BENCHMARK_CONV_BIAS_FORWARD_TENSORCORE_INT8) {
run_bench(256, 512, 7, 7, 2048, 1, 1, 1, 1, 1000);
}
TEST_F(CUDA, BENCHMARK_CONV_BIAS_FORWARD_DEPTHWISE_LARGE_FILTER) {
TEST_F(CUDA, BENCHMARK_CONV_BIAS_FORWARD_DEPTHWISE_LARGE_FILTER_FP16) {
require_compute_capability(7, 5);
Benchmarker<ConvBiasForward> bencher(handle_cuda());
bencher.set_display(false);
......@@ -1552,6 +1564,11 @@ TEST_F(CUDA, BENCHMARK_CONV_BIAS_FORWARD_DEPTHWISE_LARGE_FILTER) {
param.stride_h = sh;
param.stride_w = sw;
bencher.set_param(param)
.set_dtype(0, dtype::Float16())
.set_dtype(1, dtype::Float16())
.set_dtype(2, dtype::Float16())
.set_dtype(4, dtype::Float16());
bencher.set_times(nr_times);
size_t ho = infer_conv_shape(hi, fh, sh, param.pad_h);
size_t wo = infer_conv_shape(wi, fw, sw, param.pad_w);
......@@ -1562,25 +1579,13 @@ TEST_F(CUDA, BENCHMARK_CONV_BIAS_FORWARD_DEPTHWISE_LARGE_FILTER) {
out.total_nr_elems()) /
(1024 * 1024 * 1024) * 1e3;
bencher.set_param(param)
.set_dtype(0, dtype::Float32())
.set_dtype(1, dtype::Float32())
.set_dtype(2, dtype::Float32())
.set_dtype(4, dtype::Float32());
auto fp32_time_in_ms = bencher.execs({inp, kern, {}, {}, out}) / nr_times;
bencher.set_param(param)
.set_dtype(0, dtype::Float16())
.set_dtype(1, dtype::Float16())
.set_dtype(2, dtype::Float16())
.set_dtype(4, dtype::Float16());
auto fp16_time_in_ms = bencher.execs({inp, kern, {}, {}, out}) / nr_times;
printf("chanwise_depthwise_large_filter: inp=%s, kern=%s, out=%s, fp32_time: "
"%.2fms, fp16_time: %.2fms, speedup: %0.2f (fp16/fp32) "
"fp32_bandwidth: %.2fGB/s fp16_bandwidth: %.2fGB/s.\n",
auto time_in_ms = bencher.execs({inp, kern, {}, {}, out}) / nr_times;
auto ops = 2.0 * batch * g * ho * wo * fh * fw / (time_in_ms * 1e-3) * 1e-12;
printf("chanwise_depthwise_large_filter: inp=%s, kern=%s, out=%s, time: "
"%.2fms, "
"perf: %.2f Tops bandwidth: %.2fGB/s.\n",
inp.to_string().c_str(), kern.to_string().c_str(),
out.to_string().c_str(), fp32_time_in_ms, fp16_time_in_ms,
fp32_time_in_ms / fp16_time_in_ms, bandwith * 4 / fp32_time_in_ms,
bandwith * 2 / fp16_time_in_ms);
out.to_string().c_str(), time_in_ms, ops, bandwith * 4 / time_in_ms);
};
run_bench(64, 384, 32, 32, 3, 3, 1, 1, 10);
......@@ -1600,7 +1605,7 @@ TEST_F(CUDA, BENCHMARK_CONV_BIAS_FORWARD_DEPTHWISE_LARGE_FILTER) {
run_bench(64, 384, 32, 32, 31, 31, 1, 1, 10);
}
TEST_F(CUDA, BENCHMARK_CONV_BIAS_FORWARD_DEPTHWISE_LARGE_FILTER_FP16) {
TEST_F(CUDA, BENCHMARK_CONV_BIAS_FORWARD_DEPTHWISE_LARGE_FILTER_FP32) {
require_compute_capability(7, 5);
Benchmarker<ConvBiasForward> bencher(handle_cuda());
bencher.set_display(false);
......@@ -1623,10 +1628,10 @@ TEST_F(CUDA, BENCHMARK_CONV_BIAS_FORWARD_DEPTHWISE_LARGE_FILTER_FP16) {
param.stride_w = sw;
bencher.set_param(param)
.set_dtype(0, dtype::Float16())
.set_dtype(1, dtype::Float16())
.set_dtype(2, dtype::Float16())
.set_dtype(4, dtype::Float16());
.set_dtype(0, dtype::Float32())
.set_dtype(1, dtype::Float32())
.set_dtype(2, dtype::Float32())
.set_dtype(4, dtype::Float32());
bencher.set_times(nr_times);
size_t ho = infer_conv_shape(hi, fh, sh, param.pad_h);
size_t wo = infer_conv_shape(wi, fw, sw, param.pad_w);
......
......@@ -728,48 +728,58 @@ TEST_F(CUDA, CONVOLUTION_BACKWARD_DEPTHWISE_LARGE_FILTER) {
Checker<ConvolutionBackwardData> checker(handle_cuda());
checker.set_before_exec_callback(
AlgoChecker<ConvolutionBackwardData>("DEPTHWISE_LARGE_FILTER"));
for (auto dtype : std::vector<DType>{dtype::Float16()}) {
auto run = [&checker, &dtype](size_t n, size_t g, size_t h, size_t fh) {
for (auto dtype : std::vector<DType>{dtype::Float32(), dtype::Float16()}) {
auto run = [&checker, &dtype](
size_t n, size_t g, size_t h, size_t fh, size_t padding,
size_t stride) {
param::Convolution param;
param.stride_h = param.stride_w = 1;
param.pad_h = param.pad_w = fh / 2;
param.stride_h = param.stride_w = stride;
param.pad_h = param.pad_w = padding;
param.mode = Convolution::Mode::CROSS_CORRELATION;
param.sparse = param::Convolution::Sparse::GROUP;
checker.set_dtype(0, dtype).set_dtype(1, dtype).set_dtype(2, dtype);
float scale = 64.f / sqrt(fh * fh);
UniformFloatRNG rng(1.0, 1.0);
checker.set_rng(0, &rng).set_rng(1, &rng).set_rng(2, &rng);
if (dtype.enumv() == DTypeEnum::Float16)
checker.set_epsilon(1e-1);
checker.set_param(param).execs(
{{g, 1, 1, fh, fh}, {n, g, h, h}, {n, g, h, h}});
{{g, 1, 1, fh, fh},
{n, g, (h + 2 * padding - fh + 1) / stride,
(h + 2 * padding - fh + 1) / stride},
{n, g, h, h}});
};
run(4, 8, 32, 5);
run(4, 8, 32, 7);
run(4, 8, 32, 9);
run(4, 8, 32, 11);
run(4, 8, 32, 13);
run(4, 8, 32, 15);
run(4, 8, 32, 17);
run(4, 8, 32, 19);
run(4, 8, 32, 21);
run(4, 8, 32, 23);
run(4, 8, 32, 25);
run(4, 8, 32, 27);
run(4, 8, 32, 29);
run(4, 8, 32, 31);
run(4, 8, 64, 7);
run(4, 8, 64, 5);
run(4, 8, 64, 9);
run(4, 8, 64, 11);
run(4, 8, 64, 13);
run(4, 8, 64, 15);
run(4, 8, 64, 17);
run(4, 8, 64, 19);
run(4, 8, 64, 21);
run(4, 8, 64, 23);
run(4, 8, 64, 25);
run(4, 8, 64, 27);
run(4, 8, 64, 29);
run(4, 8, 64, 31);
run(1, 2, 128, 31);
run(1, 2, 256, 31);
run(4, 8, 32, 5, 5 / 2, 1);
run(4, 8, 32, 7, 7/2, 1);
run(4, 8, 32, 9, 9/2, 1);
run(4, 8, 32, 11, 11/2, 1);
run(4, 8, 32, 13, 13/2, 1);
run(4, 8, 32, 15, 15/2, 1);
run(4, 8, 32, 17, 17/2, 1);
run(4, 8, 32, 19, 19/2, 1);
run(4, 8, 32, 21, 21/2, 1);
run(4, 8, 32, 23, 23/2, 1);
run(4, 8, 32, 25, 25/2, 1);
run(4, 8, 32, 27, 27/2, 1);
run(4, 8, 32, 29, 29/2, 1);
run(4, 8, 32, 31, 31/2, 1);
run(4, 8, 64, 5, 5 / 2, 2);
run(4, 8, 64, 7, 7/3, 2);
run(4, 8, 64, 9, 9/3, 2);
run(4, 8, 64, 11, 11/3, 2);
run(4, 8, 64, 13, 13/3, 2);
run(4, 8, 64, 15, 15/3, 2);
run(4, 8, 64, 17, 17/3, 2);
run(4, 8, 64, 19, 19/3, 2);
run(4, 8, 64, 21, 21/3, 2);
run(4, 8, 64, 23, 23/3, 2);
run(4, 8, 64, 25, 25/3, 2);
run(4, 8, 64, 27, 27/3, 2);
run(4, 8, 64, 29, 29/3, 2);
run(4, 8, 64, 31, 31/3, 2);
run(1, 2, 128, 31, 31/3, 2);
run(1, 2, 256, 31, 31/3, 2);
}
}
......@@ -950,7 +960,7 @@ TEST_F(CUDA, CONVOLUTION_BWD_DATA_BENCHMARK) {
run(32, 64, 64, 56, 56, 1, 1, 0);
}
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_DEPTHWISE_LARGE_FILTER) {
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_DEPTHWISE_LARGE_FILTER_FP32) {
CUBenchmarker<ConvolutionBackwardData> bencher{handle_cuda()};
bencher.set_display(false);
bencher.set_before_exec_callback(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册