From e42679b517b30757d3faeb5db14ef2fce2d58ce8 Mon Sep 17 00:00:00 2001 From: Megvii Engine Team Date: Fri, 9 Oct 2020 22:25:28 +0800 Subject: [PATCH] feat(mge): do not export F.nn.interpolate GitOrigin-RevId: 031c6555c0a4c190594d96e47d989da5cd5df62f --- imperative/python/megengine/functional/nn.py | 5 ++--- .../test/unit/functional/test_functional.py | 16 ++++++++-------- 2 files changed, 10 insertions(+), 11 deletions(-) diff --git a/imperative/python/megengine/functional/nn.py b/imperative/python/megengine/functional/nn.py index 48056bcb9..4f004fc09 100644 --- a/imperative/python/megengine/functional/nn.py +++ b/imperative/python/megengine/functional/nn.py @@ -36,7 +36,6 @@ __all__ = [ "dot", "dropout", "indexing_one_hot", - "interpolate", "leaky_relu", "linear", "local_conv2d", @@ -1112,9 +1111,9 @@ def interpolate( import megengine.functional as F x = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) - out = F.interpolate(x, [4, 4], align_corners=False) + out = F.nn.interpolate(x, [4, 4], align_corners=False) print(out.numpy()) - out2 = F.interpolate(x, scale_factor=2.) + out2 = F.nn.interpolate(x, scale_factor=2.) np.testing.assert_allclose(out.numpy(), out2.numpy()) Outputs: diff --git a/imperative/python/test/unit/functional/test_functional.py b/imperative/python/test/unit/functional/test_functional.py index eef3a65f1..764c5c9d0 100644 --- a/imperative/python/test/unit/functional/test_functional.py +++ b/imperative/python/test/unit/functional/test_functional.py @@ -101,8 +101,8 @@ def test_interpolate(): def linear_interpolate(): inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2)) - out = F.interpolate(inp, scale_factor=2.0, mode="LINEAR") - out2 = F.interpolate(inp, 4, mode="LINEAR") + out = F.nn.interpolate(inp, scale_factor=2.0, mode="LINEAR") + out2 = F.nn.interpolate(inp, 4, mode="LINEAR") np.testing.assert_allclose( out.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32) @@ -114,16 +114,16 @@ def test_interpolate(): def many_batch_interpolate(): inp = tensor(np.arange(1, 9, dtype=np.float32).reshape(2, 1, 2, 2)) - out = F.interpolate(inp, [4, 4]) - out2 = F.interpolate(inp, scale_factor=2.0) + out = F.nn.interpolate(inp, [4, 4]) + out2 = F.nn.interpolate(inp, scale_factor=2.0) np.testing.assert_allclose(out.numpy(), out2.numpy()) def assign_corner_interpolate(): inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) - out = F.interpolate(inp, [4, 4], align_corners=True) - out2 = F.interpolate(inp, scale_factor=2.0, align_corners=True) + out = F.nn.interpolate(inp, [4, 4], align_corners=True) + out2 = F.nn.interpolate(inp, scale_factor=2.0, align_corners=True) np.testing.assert_allclose(out.numpy(), out2.numpy()) @@ -131,13 +131,13 @@ def test_interpolate(): inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) with pytest.raises(ValueError): - F.interpolate(inp, scale_factor=2.0, mode="LINEAR") + F.nn.interpolate(inp, scale_factor=2.0, mode="LINEAR") def inappropriate_scale_linear_interpolate(): inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2)) with pytest.raises(ValueError): - F.interpolate(inp, scale_factor=[2.0, 3.0], mode="LINEAR") + F.nn.interpolate(inp, scale_factor=[2.0, 3.0], mode="LINEAR") linear_interpolate() many_batch_interpolate() -- GitLab