提交 cdcb46ba 编写于 作者: M Megvii Engine Team 提交者: huangxinda

feat(profiler): add chrome timeline format for profiler

GitOrigin-RevId: e68071fecae097bf9861ca03ec51716cc2b0fa05
上级 1d64792b
......@@ -48,6 +48,40 @@ namespace mgb {
using namespace profiler;
}
#ifdef __GNUG__
namespace mgb {
/**
* USAGE
*
* header:
* namespace mgb { bool imperative_log_profile(const char* message); }
*
* code:
* mgb::imperative_log_profile("MY MESSAGE");
*
**/
__attribute__((visibility("default")))
void imperative_log_profile_begin(const char* message) {
RECORD_EVENT(CustomEvent, std::string{message});
}
__attribute__((visibility("default")))
void imperative_log_profile_end(const char* message) {
RECORD_EVENT(CustomFinishEvent, std::string{message});
}
__attribute__((visibility("default")))
void imperative_log_profile(const char* message){
imperative_log_profile_begin(message);
imperative_log_profile_end(message);
}
}
#endif
std::thread::id ChannelImpl::get_worker_tid() {
return m_worker_state.tid;
}
......@@ -674,6 +708,7 @@ void ChannelImpl::auto_evict() {
}
size_t current_memory = m_dtr.comp_node.get_used_memory();
while (current_memory > state.options.dtr_eviction_threshold) {
RECORD_EVENT(AutoEvictEvent);
sample_on_device(m_dtr.comp_node, false);
auto best = m_dtr.find_best_tensor();
if (!best) {
......@@ -695,6 +730,7 @@ void ChannelImpl::auto_evict() {
m_dtr.update_dsu_after_evict(best);
}
sample_on_device(m_dtr.comp_node, false);
RECORD_EVENT(AutoEvictFinishEvent);
}
}
......@@ -847,6 +883,7 @@ void ChannelImpl::process_one_task(IdentifiedCommand& icmd) {
RECORD_EVENT(TensorCommandFinishEvent, tensor_id, TensorCommandFinishEvent::Del);
sample_on_device(device, false);
} else if constexpr (std::is_same_v<T, GetValue>) {
imperative_log_profile_begin("GetValue");
if (!cmd.dest->ptr && cmd.dest->evict_type != EvictType::NONE) {
regenerate(cmd.dest);
}
......@@ -854,6 +891,7 @@ void ChannelImpl::process_one_task(IdentifiedCommand& icmd) {
cmd.dest->ptr->fetch_value();
MGB_LOCK_GUARD(m_mutex);
notify_tensor_unsafe(cmd.dest);
imperative_log_profile_end("GetValue");
} else if constexpr (std::is_same_v<T, SwapIn>) {
RECORD_EVENT(TensorCommandEvent, cmd.dest->id, TensorCommandEvent::SwapIn);
produce_tensor(cmd.dest, Tensor::make(cmd.dest->h_value));
......
......@@ -71,7 +71,9 @@ auto Profiler::get_thread_dict() -> thread_dict_t {
void Profiler::dump_profile(std::string basename, std::string format, results_t results, options_t options) {
auto thread_dict = get_thread_dict();
{
if (format == "chrome_timeline.json") {
profiler::dump_chrome_timeline(basename, options, thread_dict, results);
} else {
mgb_log_error("unsupported profiling format %s", format.c_str());
}
}
......
/**
* \file imperative/src/impl/profiler/chrome_timeline.cpp
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
*
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*/
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
#include <unistd.h>
#elif defined(_WIN32)
#include <process.h>
#else
#error Unsupported platform
#endif
#include "./formats.h"
#include "./states.h"
namespace mgb::imperative::profiler {
class ChromeTraceEvent {
public:
ChromeTraceEvent& name(std::string name) {
m_name = std::move(name);
return *this;
}
ChromeTraceEvent& tid(uint64_t tid) {
m_tid = std::move(tid);
return *this;
}
ChromeTraceEvent& cat(std::string cat) {
m_cat = std::move(cat);
return *this;
}
ChromeTraceEvent& scope(std::string scope) {
m_scope = std::move(scope);
return *this;
}
ChromeTraceEvent& pid(uint64_t pid) {
m_pid = pid;
return *this;
}
ChromeTraceEvent& id(uint64_t id) {
m_id = id;
return *this;
}
ChromeTraceEvent& idx(uint64_t idx) {
m_idx = idx;
return *this;
}
ChromeTraceEvent& ts(uint64_t ts) {
m_ts = ts;
return *this;
}
ChromeTraceEvent& dur(uint64_t dur) {
m_dur = dur;
return *this;
}
ChromeTraceEvent& ph(char ph) {
m_ph = ph;
return *this;
}
ChromeTraceEvent& bp(char bp) {
m_bp = bp;
return *this;
}
ChromeTraceEvent& args(std::shared_ptr<json::Object> args) {
m_args = std::move(args);
return *this;
}
ChromeTraceEvent& arg(std::string key, std::string value) {
if (!m_args) {
m_args = json::Object::make();
}
(*m_args)[key] = json::String::make(value);
return *this;
}
ChromeTraceEvent& arg(std::string key, double value) {
if (!m_args) {
m_args = json::Object::make();
}
(*m_args)[key] = json::Number::make(value);
return *this;
}
ChromeTraceEvent& arg(std::string key, std::shared_ptr<json::Value> value) {
if (!m_args) {
m_args = json::Object::make();
}
(*m_args)[key] = value;
return *this;
}
std::shared_ptr<json::Object> to_json() const {
auto result = json::Object::make();
auto prop_str = [&](auto key, auto value) {
if (value.empty()) {
return;
}
(*result)[key] = json::String::make(value);
};
auto prop_num = [&](auto key, auto value) {
if (!value) {
return;
}
(*result)[key] = json::Number::make(value.value());
};
auto prop_char = [&](auto key, auto value) {
if (!value) {
return;
}
(*result)[key] = json::String::make(std::string{} + value.value());
};
prop_str("name", m_name);
prop_str("cat", m_cat);
prop_str("scope", m_scope);
prop_num("tid", m_tid);
prop_num("pid", m_pid);
prop_num("id", m_id);
prop_num("idx", m_idx);
prop_num("ts", m_ts);
prop_num("dur", m_dur);
prop_char("ph", m_ph);
prop_char("bp", m_bp);
if (m_args) {
(*result)["args"] = m_args;
}
return result;
}
private:
std::string m_name;
std::string m_cat;
std::string m_scope;
std::optional<uint64_t> m_tid;
std::optional<uint64_t> m_pid;
std::optional<uint64_t> m_id;
std::optional<uint64_t> m_idx;
std::optional<uint64_t> m_ts;
std::optional<uint64_t> m_dur;
std::optional<char> m_ph;
std::optional<char> m_bp;
std::shared_ptr<json::Object> m_args;
};
class ChromeTraceEvents {
public:
ChromeTraceEvent& new_event() {
m_content.emplace_back();
return m_content.back();
}
std::shared_ptr<json::Value> to_json() const {
auto result = json::Object::make();
auto event_list = json::Array::make();
for (auto&& event: m_content) {
event_list->add(event.to_json());
}
(*result)["traceEvents"] = event_list;
//(*result)["localTime"] = json::String::make(std::to_string((double)m_local_time/1e3));
return result;
}
private:
std::vector<ChromeTraceEvent> m_content;
uint64_t m_local_time;
};
void dump_chrome_timeline(std::string filename, Profiler::options_t options, Profiler::thread_dict_t thread_dict, Profiler::results_t results){
auto pid = getpid();
ProfileDataCollector collector;
ProfileState state;
#define HANDLE_EVENT(type, ...) \
collector.handle<type>([&](uint64_t id, std::thread::id tid, uint64_t time, type event) __VA_ARGS__ );
ChromeTraceEvents trace_events;
#define NEW_HOST(NAME, PH) trace_events.new_event().name(NAME).pid(pid).tid(state[tid].index).ph(PH).ts((double)time/1e3)
#define NEW_DEVICE(NAME, PH) trace_events.new_event().name(NAME).pid(pid).tid(256+state[event.event->comp_node()].index).ph(PH).ts((double)get_device_time(event.event, time)/1e3)
#define OP_NAME op_state.name
#define OP_KERNEL_NAME (op_state.name + "")
#define OP_PROPS get_op_args(op_state)
#define OP_ID event.op_id
#define TENSOR_PROPS get_tensor_args(tensor_state, time)
#define TENSOR_INFO get_tensor_info(tensor_state, time)
#define TENSOR_COMMAND_KIND print_tensor_command_kind(event.kind)
#define HANDLE_PLAIN_EVENT(START, FINISH, NAME_EXPR)\
HANDLE_EVENT(START, { NEW_HOST(NAME_EXPR, 'B'); })\
HANDLE_EVENT(FINISH, { NEW_HOST(NAME_EXPR, 'E'); })
#define HANDLE_TENSOR_EVENT(START, FINISH, NAME_EXPR)\
HANDLE_EVENT(START, { NEW_HOST(NAME_EXPR, 'B'); })\
HANDLE_EVENT(FINISH, { auto& tensor_state = state.tensors[event.tensor_id]; NEW_HOST(NAME_EXPR, 'E').args(TENSOR_PROPS); })
#define INC_COUNTER(NAME, DELTA)\
{ state.statics.NAME += DELTA; NEW_HOST(#NAME, 'C').arg(#NAME, state.statics.NAME); }
auto get_tensor_args = [](const ProfileTensorState& tensor, uint64_t time) -> std::shared_ptr<json::Object> {
auto args = json::Object::make();
(*args)["id"] = json::Number::make(tensor.id);
(*args)["name"] = json::String::make(tensor.name);
(*args)["shape"] = json::String::make(tensor.layout.TensorShape::to_string());
(*args)["dtype"] = json::String::make(tensor.layout.dtype.name());
(*args)["nr_elements"] = json::Number::make(tensor.layout.total_nr_elems());
(*args)["device"] = json::String::make(tensor.device.to_string());
if (tensor.produced) {
(*args)["living_time"] = json::String::make(std::to_string((time - tensor.produced + tensor.living_time)/1e6) + "ms");
}
return args;
};
auto get_tensor_info = [](const ProfileTensorState& tensor, uint64_t time) -> std::string {
std::string name = tensor.name;
std::string shape = tensor.layout.TensorShape::to_string();
std::string size_in_bytes = std::to_string(tensor.size_in_bytes());
std::string device = tensor.device.to_string();
std::string dtype = tensor.layout.dtype.name();
return ssprintf("%s(%s:%s:%s)", name.c_str(), shape.c_str(), dtype.c_str(), device.c_str());
};
auto get_op_args = [&](const ProfileOperatorState& op) -> std::shared_ptr<json::Object> {
auto args = json::Object::make();
auto params = op.params;
for (auto&& [name, value]: params) {
(*args)[name] = json::String::make(value);
}
(*args)["__id__"] = json::Number::make(op.id);
(*args)["__name__"] = json::String::make(op.name);
(*args)["__device__"] = json::String::make(op.device.to_string());
return args;
};
auto get_device_time = [&](const std::shared_ptr<CompNode::Event>& event, uint64_t host) -> uint64_t {
event->host_wait();
auto& device_state = state.devices[event->comp_node()];
if (!device_state.base_event) {
device_state.base_event = event;
device_state.base_time = host;
return host;
}
uint64_t device = device_state.base_event->elapsed_time_until(*event) * 1e9 + device_state.base_time;
return std::max(device, host);
};
auto print_tensor_command_kind = [&](int kind) -> const char* {
switch(kind) {
case TensorCommandEvent::Put:
return "Put";
case TensorCommandEvent::Drop:
return "Drop";
case TensorCommandEvent::Del:
return "Del";
case TensorCommandEvent::SwapIn:
return "SwapIn";
case TensorCommandEvent::SwapOut:
return "SwapOut";
case TensorCommandEvent::RecFree:
return "RecFree";
case TensorCommandEvent::ReGen:
return "ReGen";
}
return "UnknownCommand";
};
HANDLE_EVENT(OpDispatchEvent, {
auto& op_state = state.operators[OP_ID] = {};
op_state.id = OP_ID;
op_state.name = event.op_name;
op_state.params = event.op_params();
op_state.inputs = event.inputs;
op_state.outputs = event.outputs;
NEW_HOST("OpDispatch", 'B');
NEW_HOST(ssprintf("%d", pid), 's')
.cat("OpDispatch")
.id(OP_ID)
.scope(std::to_string(pid));
NEW_HOST("OpDispatch", 'E').args(OP_PROPS);
INC_COUNTER(op_enqueue_count, 1);
});
HANDLE_EVENT(OpExecuteEvent, {
mgb_assert(OP_ID != 0);
mgb_assert(state.operators.count(OP_ID) > 0);
auto& op_state = state.operators[OP_ID];
op_state.host_begin = time;
NEW_HOST(OP_NAME, 'B');
//.args(OP_PROPS);
NEW_HOST(ssprintf("%d", pid), 't')
.cat("OpDispatch")
.id(OP_ID)
.scope(std::to_string(pid));
INC_COUNTER(op_execute_count, 1);
});
HANDLE_EVENT(OpExecuteFinishEvent, {
auto& op_state = state.operators[event.op_id];
op_state.host_end = time;
NEW_HOST(OP_NAME, 'E')
.args(OP_PROPS);
});
HANDLE_EVENT(KernelExecuteEvent, {
auto& op_state = state.operators[event.op_id];
op_state.device_begin = event.event;
NEW_HOST(ssprintf("%d", pid), 's')
.id(event.kernel_id)
.cat("KernelLaunch")
.scope(std::to_string(pid));
NEW_DEVICE(OP_KERNEL_NAME, 'B')
.cat("Kernel");
//.args(OP_PROPS);
NEW_DEVICE(ssprintf("%d", pid), 'f')
.id(event.kernel_id)
.bp('e')
.cat("KernelLaunch")
.scope(std::to_string(pid));
});
HANDLE_EVENT(KernelExecuteFinishEvent, {
auto& op_state = state.operators[event.op_id];
op_state.device_end = event.event;
NEW_DEVICE(OP_KERNEL_NAME, 'E')
.cat("Kernel")
.args(OP_PROPS);
});
HANDLE_EVENT(TensorDeclareEvent, {
auto& tensor_state = state.tensors[event.tensor_id] = {};
tensor_state.id = event.tensor_id;
tensor_state.name = event.name;
});
HANDLE_EVENT(TensorProduceEvent, {
auto& tensor_state = state.tensors[event.tensor_id];
tensor_state.device = event.device;
tensor_state.layout = event.layout;
tensor_state.produced = time;
if (!tensor_state.living_time) {
NEW_HOST(ssprintf("%d", pid), 's')
.id(event.tensor_id)
.cat("TensorLink")
.scope(std::to_string(pid));
} else {
NEW_HOST(ssprintf("%d", pid), 't')
.id(event.tensor_id)
.cat("TensorLink")
.scope(std::to_string(pid));
}
INC_COUNTER(alive_tensor_count, 1);
INC_COUNTER(produce_tensor_count, 1);
state.tensors_by_size.insert({tensor_state.id, tensor_state.size_in_bytes()});
state.tensors_by_produced.insert({tensor_state.id, tensor_state.produced});
});
HANDLE_EVENT(TensorUsageEvent, {
NEW_HOST(ssprintf("%d", pid), 't')
.id(event.tensor_id)
.cat("TensorLink")
.scope(std::to_string(pid));
});
HANDLE_EVENT(TensorReleaseEvent, {
auto& tensor_state = state.tensors[event.tensor_id];
tensor_state.living_time += time - tensor_state.produced;
tensor_state.produced = 0;
INC_COUNTER(alive_tensor_count, -1);
INC_COUNTER(erase_tensor_count, 1);
state.tensors_by_size.erase({tensor_state.id, tensor_state.size_in_bytes()});
state.tensors_by_produced.erase({tensor_state.id, tensor_state.produced});
NEW_HOST(ssprintf("%d", pid), 't')
.id(event.tensor_id)
.cat("TensorLink")
.scope(std::to_string(pid));
});
HANDLE_EVENT(TensorEraseEvent, {
auto& tensor_state = state.tensors[event.tensor_id];
if (tensor_state.living_time) {
NEW_HOST(ssprintf("%d", pid), 'f')
.id(event.tensor_id)
.bp('e')
.cat("TensorLink")
.scope(std::to_string(pid));
}
if (event.use_count == 0) {
INC_COUNTER(redundant_tensor_count, 1);
}
});
HANDLE_EVENT(TensorGetPropEvent, {
auto& tensor_state = state.tensors[event.tensor_id];
NEW_HOST("TensorGetProp", 'X')
.dur(0).args(TENSOR_PROPS);
});
HANDLE_EVENT(TensorWaitPropEvent, {
auto& tensor_state = state.tensors[event.tensor_id];
NEW_HOST("TensorWaitProp", 'B');
//.args(TENSOR_PROPS);
if (event.prop == TensorProp::HostValue) {
INC_COUNTER(wait_value_count, 1);
} else if (event.prop == TensorProp::Shape) {
INC_COUNTER(wait_shape_count, 1);
}
INC_COUNTER(wait_prop_count, 1);
});
HANDLE_EVENT(TensorWaitPropFinishEvent, {
auto& tensor_state = state.tensors[event.tensor_id];
if (event.notified) {
NEW_HOST(ssprintf("%d", pid), 'f')
.id(event.tensor_id)
.bp('e')
.cat("TensorProp")
.scope(std::to_string(pid));
}
NEW_HOST("TensorWaitProp", 'E')
.args(TENSOR_PROPS);
});
HANDLE_EVENT(TensorNotifyPropEvent, {
auto& tensor_state = state.tensors[event.tensor_id];
NEW_HOST(ssprintf("%d", pid), 's')
.id(event.tensor_id)
.cat("TensorProp")
.scope(std::to_string(pid));
});
HANDLE_EVENT(ShapeInferEvent, {
if (event.success) {
INC_COUNTER(infer_shape_valid_count, 1);
} else {
INC_COUNTER(infer_shape_invalid_count, 1);
}
});
HANDLE_EVENT(SampleDeviceEvent, {
NEW_HOST("TopKTensor", 'B');
});
HANDLE_EVENT(SampleDeviceFinishEvent, {
std::string device_name = event.device.locator().to_string();
std::string prop_name = ssprintf("%s_alloc_memory", device_name.c_str());
NEW_HOST(prop_name, 'C')
.arg(prop_name, event.total_memory - event.free_memory);
auto top_k_tensors = state.top_k_tensor_in_device(event.device, options.at("num_tensor_watch"));
auto& top_k_event = NEW_HOST("TopKTensor", 'E');
for (size_t i = 0; i < top_k_tensors.size(); ++i) {
auto tensor_id = top_k_tensors[i];
auto& tensor_state = state.tensors[tensor_id];
top_k_event.arg(ssprintf("top%03d", (int)i), TENSOR_INFO); //%03d is always enough
}
});
HANDLE_EVENT(WorkerExceptionEvent, {
INC_COUNTER(exception_count, 1);
});
HANDLE_EVENT(TensorCommandEvent, {
auto& tensor_state = state.tensors[event.tensor_id];
NEW_HOST(ssprintf("%s %zu", TENSOR_COMMAND_KIND, event.tensor_id), 'B');
//.args(TENSOR_PROPS);
});
HANDLE_EVENT(TensorCommandFinishEvent, {
auto& tensor_state = state.tensors[event.tensor_id];
NEW_HOST(ssprintf("%s %zu", TENSOR_COMMAND_KIND, event.tensor_id), 'E')
.args(TENSOR_PROPS);
});
HANDLE_EVENT(ScopeEvent, {
NEW_HOST(event.name, 'B');
state.threads[tid].scope_stack.push_back(event.name);
});
HANDLE_EVENT(ScopeFinishEvent, {
NEW_HOST(event.name, 'E');
mgb_assert(state.threads[tid].scope_stack.back() == event.name);
state.threads[tid].scope_stack.pop_back();
});
HANDLE_TENSOR_EVENT(OpInputEvent, OpInputFinishEvent, ssprintf("Input %zu", event.tensor_id));
HANDLE_TENSOR_EVENT(OpOutputEvent, OpOutputFinishEvent, ssprintf("Output %zu", event.tensor_id));
HANDLE_TENSOR_EVENT(OpDelEvent, OpDelFinishEvent, ssprintf("Del %zu", event.tensor_id));
HANDLE_PLAIN_EVENT(StartProfileEvent, StartProfileFinishEvent, "StartProfile");
HANDLE_PLAIN_EVENT(StopProfileEvent, StopProfileFinishEvent, "StopProfile");
HANDLE_PLAIN_EVENT(CustomEvent, CustomFinishEvent, event.title);
HANDLE_PLAIN_EVENT(AutoEvictEvent, AutoEvictFinishEvent, "AutoEvict");
if (results.size() > 0) {
uint64_t time = results[0].second.time;
trace_events.new_event().name("Metadata").ph('I').pid(pid).ts(0).arg("localTime", time/1e3);
}
for (auto&& result: results) {
collector(result.second.id, result.first, result.second.time, result.second.data);
}
for (auto&& [tid, thread]: state.threads) {
if (!thread_dict.count(tid)) {
continue;
}
trace_events.new_event().ts(0).name("thread_name").ph('M').pid(pid).tid(thread.index).arg("name", thread_dict[tid]);
}
for (auto&& [device, device_state]: state.devices) {
trace_events.new_event().ts(0).name("thread_name").ph('M').pid(pid).tid(256+device_state.index).arg("name", device.to_string());
}
trace_events.to_json()->writeto_fpath(filename);
}
}
......@@ -180,6 +180,13 @@ DEF_DUR_EVENT(TensorCommand, {
Kind kind;
});
DEF_DUR_EVENT(AutoEvict, {});
DEF_DUR_EVENT(Custom, {
std::string title;
std::string content;
});
#undef DEF_EVENT
#undef DEF_DUR_EVENT
......
......@@ -17,4 +17,6 @@
namespace mgb::imperative::profiler {
void dump_chrome_timeline(std::string filename, Profiler::options_t options, Profiler::thread_dict_t thread_dict, Profiler::results_t results);
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册