Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
ba2ad46e
MegEngine
项目概览
MegEngine 天元
/
MegEngine
1 年多 前同步成功
通知
404
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
ba2ad46e
编写于
3月 08, 2021
作者:
M
Megvii Engine Team
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
feat(gopt): add deconv nchw4 int8 opt pass, add deconv nchw int8
GitOrigin-RevId: c0530a949ef29aa1e42d68a0d6d76cdd96a46a0e
上级
5d350fc8
变更
13
显示空白变更内容
内联
并排
Showing
13 changed file
with
360 addition
and
24 deletion
+360
-24
dnn/src/cuda/convolution/backward_data/algo.cpp
dnn/src/cuda/convolution/backward_data/algo.cpp
+3
-0
dnn/src/cuda/convolution/backward_data/algo.h
dnn/src/cuda/convolution/backward_data/algo.h
+21
-7
dnn/src/cuda/convolution/backward_data/implicit_gemm_int8_nchw4_dp4a.cpp
...nvolution/backward_data/implicit_gemm_int8_nchw4_dp4a.cpp
+1
-1
dnn/src/cuda/convolution/backward_data/implicit_gemm_int8_nchw_dp4a.cpp
...onvolution/backward_data/implicit_gemm_int8_nchw_dp4a.cpp
+154
-0
dnn/src/cuda/convolution/opr_impl.h
dnn/src/cuda/convolution/opr_impl.h
+1
-0
dnn/test/common/convolution.cpp
dnn/test/common/convolution.cpp
+51
-3
dnn/test/common/convolution.h
dnn/test/common/convolution.h
+1
-0
dnn/test/cuda/convolution.cpp
dnn/test/cuda/convolution.cpp
+63
-4
src/gopt/impl/fuse_nchw4_int8_preprocess.cpp
src/gopt/impl/fuse_nchw4_int8_preprocess.cpp
+2
-1
src/gopt/impl/tensor_reformat.cpp
src/gopt/impl/tensor_reformat.cpp
+42
-2
src/gopt/test/inference.cpp
src/gopt/test/inference.cpp
+16
-2
src/opr/impl/dnn/dnn.oprdecl
src/opr/impl/dnn/dnn.oprdecl
+1
-1
src/opr/test/dnn/convolution.cpp
src/opr/test/dnn/convolution.cpp
+4
-3
未找到文件。
dnn/src/cuda/convolution/backward_data/algo.cpp
浏览文件 @
ba2ad46e
...
@@ -36,6 +36,9 @@ ConvolutionBackwardDataImpl::AlgoPack::AlgoPack() {
...
@@ -36,6 +36,9 @@ ConvolutionBackwardDataImpl::AlgoPack::AlgoPack() {
int8_algos
.
push_back
(
&
algo
);
int8_algos
.
push_back
(
&
algo
);
}
}
int8_algos
.
push_back
(
&
int8_nchw_dotprod
);
all_algos
.
push_back
(
&
int8_nchw_dotprod
);
all_algos
.
reserve
(
all_algos
.
size
()
*
2
);
all_algos
.
reserve
(
all_algos
.
size
()
*
2
);
// add gconv algos by AlgoGroupConvGeneral
// add gconv algos by AlgoGroupConvGeneral
...
...
dnn/src/cuda/convolution/backward_data/algo.h
浏览文件 @
ba2ad46e
...
@@ -39,7 +39,8 @@ public:
...
@@ -39,7 +39,8 @@ public:
CUDA_CHANWISE_SMALL
,
CUDA_CHANWISE_SMALL
,
CUDA_BFLOAT16
,
CUDA_BFLOAT16
,
CUDA_GROUP_CONV_GENERAL
,
CUDA_GROUP_CONV_GENERAL
,
CUDA_IMPLICIT_GEMM_NCHW4_DOTPROD_INT8
CUDA_IMPLICIT_GEMM_NCHW4_DOTPROD_INT8
,
CUDA_IMPLICIT_GEMM_NCHW_DOTPROD_INT8
};
};
using
Mapper
=
std
::
unordered_map
<
AlgorithmDesc
,
AlgoBase
*>
;
using
Mapper
=
std
::
unordered_map
<
AlgorithmDesc
,
AlgoBase
*>
;
...
@@ -254,12 +255,6 @@ public:
...
@@ -254,12 +255,6 @@ public:
int
warp_k
;
int
warp_k
;
int
stage
;
int
stage
;
std
::
string
to_string
()
{
std
::
string
to_string
()
{
/// default algorithm
if
(
threadblock_m
==
128
&&
threadblock_n
==
128
&&
threadblock_k
==
32
&&
warp_m
==
32
&&
warp_n
==
64
&&
warp_k
==
32
&&
stage
==
2
)
{
return
""
;
}
return
ssprintf
(
"_%dX%dX%d_%dX%dX%d_%dstage"
,
threadblock_m
,
return
ssprintf
(
"_%dX%dX%d_%dX%dX%d_%dstage"
,
threadblock_m
,
threadblock_n
,
threadblock_k
,
warp_m
,
warp_n
,
threadblock_n
,
threadblock_k
,
warp_m
,
warp_n
,
warp_k
,
stage
);
warp_k
,
stage
);
...
@@ -284,6 +279,24 @@ private:
...
@@ -284,6 +279,24 @@ private:
std
::
string
m_name
;
std
::
string
m_name
;
};
};
class
ConvolutionBackwardDataImpl
::
AlgoInt8NCHWDotProdImplicitGemm
final
:
public
AlgoBase
{
public:
bool
is_available
(
const
SizeArgs
&
args
)
const
override
;
size_t
get_workspace_in_bytes
(
const
SizeArgs
&
args
)
const
override
;
void
exec
(
const
ExecArgs
&
args
)
const
override
;
const
char
*
name
()
const
override
{
return
"INT8_NCHW_DOTPROD_IMPLICIT_GEMM"
;
}
AlgoAttribute
attribute
()
const
override
{
return
AlgoAttribute
::
REPRODUCIBLE
;
}
MEGDNN_DECL_ALGO_TYPE
(
CUDA_IMPLICIT_GEMM_NCHW_DOTPROD_INT8
);
private:
WorkspaceBundle
get_workspace_bundle
(
dt_byte
*
raw_ptr
,
const
SizeArgs
&
args
)
const
;
};
class
ConvolutionBackwardDataImpl
::
AlgoPack
:
NonCopyableObj
{
class
ConvolutionBackwardDataImpl
::
AlgoPack
:
NonCopyableObj
{
// defined in cudnn.cpp
// defined in cudnn.cpp
void
fill_cudnn_algos
();
void
fill_cudnn_algos
();
...
@@ -303,6 +316,7 @@ public:
...
@@ -303,6 +316,7 @@ public:
std
::
unordered_map
<
AlgoBase
*
,
AlgoGroupConvGeneral
*>
algo2gconv
;
std
::
unordered_map
<
AlgoBase
*
,
AlgoGroupConvGeneral
*>
algo2gconv
;
AlgoBFloat16
bfloat16
;
AlgoBFloat16
bfloat16
;
std
::
vector
<
AlgoInt8NCHW4DotProdImplicitGemm
>
int8_nchw4_dotprod
;
std
::
vector
<
AlgoInt8NCHW4DotProdImplicitGemm
>
int8_nchw4_dotprod
;
AlgoInt8NCHWDotProdImplicitGemm
int8_nchw_dotprod
;
std
::
vector
<
AlgoBase
*>
std
::
vector
<
AlgoBase
*>
//! all algorithms
//! all algorithms
...
...
dnn/src/cuda/convolution/backward_data/implicit_gemm_int8_nchw4_dp4a.cpp
浏览文件 @
ba2ad46e
/**
/**
* \file dnn/src/cuda/conv
_bias
/implicit_gemm_int8_nchw4_dp4a.cpp
* \file dnn/src/cuda/conv
olution/backward_data
/implicit_gemm_int8_nchw4_dp4a.cpp
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
*
*
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
...
...
dnn/src/cuda/convolution/backward_data/implicit_gemm_int8_nchw_dp4a.cpp
0 → 100644
浏览文件 @
ba2ad46e
/**
* \file
* dnn/src/cuda/convolution/backward_data/implicit_gemm_int8_nchw4_dp4a.cpp
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
*
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
*/
#include "./algo.h"
#include "src/cuda/utils.h"
#include "src/cuda/convolution_helper/parameter.cuh"
#include "src/cuda/convolution/backward_data/cutlass_deconvolution_wrapper.cuh"
using
namespace
megdnn
;
using
namespace
cuda
;
bool
ConvolutionBackwardDataImpl
::
AlgoInt8NCHWDotProdImplicitGemm
::
is_available
(
const
SizeArgs
&
args
)
const
{
auto
&&
fm
=
args
.
filter_meta
;
if
(
fm
.
format
!=
Param
::
Format
::
NCHW
)
return
false
;
bool
available
=
true
;
auto
src_dtype
=
args
.
diff_layout
->
dtype
,
filter_dtype
=
args
.
filter_layout
->
dtype
,
dst_dtype
=
args
.
grad_layout
->
dtype
;
available
&=
(
src_dtype
.
enumv
()
==
DTypeEnum
::
QuantizedS8
&&
filter_dtype
.
enumv
()
==
DTypeEnum
::
QuantizedS8
&&
dst_dtype
.
enumv
()
==
DTypeEnum
::
QuantizedS8
);
// TODO support group deconv int8
available
&=
(
fm
.
group
==
1
);
// ic and oc must be multiples of 4
available
&=
((
fm
.
group
*
fm
.
icpg
)
%
4
==
0
&&
(
fm
.
group
*
fm
.
ocpg
)
%
4
==
0
);
// mode must be cross correlation
available
&=
!
fm
.
should_flip
;
// mode must be 2D
available
&=
fm
.
spatial_ndim
==
2
;
// TODO: support dialtion
available
&=
(
fm
.
dilation
[
0
]
==
1
&&
fm
.
dilation
[
1
]
==
1
);
// FIXME: too large filter size is not supported now
available
&=
fm
.
spatial
[
0
]
*
fm
.
spatial
[
1
]
<=
64
;
// only support sm_61 or later, platform should have fast native int8
// support
available
&=
is_compute_capability_required
(
6
,
1
);
return
available
;
}
WorkspaceBundle
ConvolutionBackwardDataImpl
::
AlgoInt8NCHWDotProdImplicitGemm
::
get_workspace_bundle
(
dt_byte
*
raw_ptr
,
const
SizeArgs
&
args
)
const
{
size_t
ws_filter
=
args
.
filter_layout
->
span
().
dist_byte
();
size_t
ws_diff
=
args
.
diff_layout
->
span
().
dist_byte
();
size_t
ws_grad
=
args
.
grad_layout
->
span
().
dist_byte
();
return
WorkspaceBundle
{
raw_ptr
,
{
ws_filter
,
ws_diff
,
ws_grad
}};
}
size_t
ConvolutionBackwardDataImpl
::
AlgoInt8NCHWDotProdImplicitGemm
::
get_workspace_in_bytes
(
const
SizeArgs
&
args
)
const
{
return
get_workspace_bundle
(
nullptr
,
args
).
total_size_in_bytes
();
}
void
ConvolutionBackwardDataImpl
::
AlgoInt8NCHWDotProdImplicitGemm
::
exec
(
const
ExecArgs
&
args
)
const
{
auto
&&
fm
=
args
.
filter_meta
;
size_t
n
=
args
.
diff_layout
->
operator
[](
0
),
co
=
args
.
diff_layout
->
operator
[](
1
),
ho
=
args
.
diff_layout
->
operator
[](
2
),
wo
=
args
.
diff_layout
->
operator
[](
3
);
size_t
ci
=
args
.
grad_layout
->
operator
[](
1
),
hi
=
args
.
grad_layout
->
operator
[](
2
),
wi
=
args
.
grad_layout
->
operator
[](
3
);
size_t
fh
=
fm
.
spatial
[
0
],
fw
=
fm
.
spatial
[
1
];
size_t
sh
=
fm
.
stride
[
0
],
sw
=
fm
.
stride
[
1
];
size_t
ph
=
fm
.
padding
[
0
],
pw
=
fm
.
padding
[
1
];
auto
&&
stream
=
cuda_stream
(
args
.
opr
->
handle
());
auto
bundle
=
get_workspace_bundle
(
args
.
workspace
.
raw_ptr
,
args
);
int8_t
*
inner_filter_ptr
=
nullptr
;
int8_t
*
inner_diff_ptr
=
nullptr
;
// TODO: weight preprocess
{
inner_filter_ptr
=
reinterpret_cast
<
int8_t
*>
(
bundle
.
get
(
0
));
// reformat filter from nchw to n4hwc4
TensorLayout
exec_src
{{
co
/
4
,
4
,
ci
,
fh
,
fw
},
dtype
::
Int8
()};
TensorLayout
exec_dst
{{
co
/
4
,
fh
,
fw
,
ci
,
4
},
dtype
::
Int8
()};
exec_src
=
exec_src
.
dimshuffle
({
0
,
3
,
4
,
2
,
1
});
auto
&&
relayout
=
args
.
opr
->
handle
()
->
create_operator
<
RelayoutForward
>
();
relayout
->
exec
({
args
.
filter_tensor
->
raw_ptr
,
exec_src
},
{
inner_filter_ptr
,
exec_dst
});
}
{
inner_diff_ptr
=
reinterpret_cast
<
int8_t
*>
(
bundle
.
get
(
1
));
// reformat diff from nchw to nchw4
TensorLayout
exec_src
{{
n
,
co
/
4
,
4
,
ho
,
wo
},
dtype
::
Int8
()};
TensorLayout
exec_dst
{{
n
,
co
/
4
,
ho
,
wo
,
4
},
dtype
::
Int8
()};
exec_src
=
exec_src
.
dimshuffle
({
0
,
1
,
3
,
4
,
2
});
auto
&&
relayout
=
args
.
opr
->
handle
()
->
create_operator
<
RelayoutForward
>
();
relayout
->
exec
({
args
.
diff_tensor
->
raw_ptr
,
exec_src
},
{
inner_diff_ptr
,
exec_dst
});
}
int8_t
*
inner_grad_ptr
=
reinterpret_cast
<
int8_t
*>
(
bundle
.
get
(
2
));
convolution
::
ConvParam
kern_param
;
kern_param
.
n
=
n
,
kern_param
.
co
=
co
,
kern_param
.
ci
=
ci
,
kern_param
.
hi
=
hi
,
kern_param
.
wi
=
wi
,
kern_param
.
ho
=
ho
,
kern_param
.
wo
=
wo
,
kern_param
.
ph
=
ph
,
kern_param
.
pw
=
pw
,
kern_param
.
sh
=
sh
,
kern_param
.
sw
=
sw
,
kern_param
.
fh
=
fh
,
kern_param
.
fw
=
fw
;
float
diff_scale
=
args
.
diff_layout
->
dtype
.
param
<
dtype
::
QuantizedS8
>
().
scale
,
filter_scale
=
args
.
filter_layout
->
dtype
.
param
<
dtype
::
QuantizedS8
>
().
scale
,
grad_scale
=
args
.
grad_layout
->
dtype
.
param
<
dtype
::
QuantizedS8
>
().
scale
;
float
alpha
=
diff_scale
*
filter_scale
/
grad_scale
;
// only use 16x64x8_16x64x8_2stages impl
cutlass_wrapper
::
do_deconv_int8_implicit_gemm_dp4a_ncdiv4hw4
(
inner_diff_ptr
,
inner_filter_ptr
,
inner_grad_ptr
,
nullptr
,
kern_param
,
alpha
,
cutlass_wrapper
::
GemmCoord
{
16
,
64
,
8
},
cutlass_wrapper
::
GemmCoord
{
16
,
64
,
8
},
2
,
stream
);
after_kernel_launch
();
{
// reformat grad from nchw4 to nchw
TensorLayout
exec_src
{{
n
,
ci
/
4
,
hi
,
wi
,
4
},
dtype
::
Int8
()};
TensorLayout
exec_dst
{{
n
,
ci
/
4
,
4
,
hi
,
wi
},
dtype
::
Int8
()};
exec_src
=
exec_src
.
dimshuffle
({
0
,
1
,
4
,
2
,
3
});
auto
&&
relayout
=
args
.
opr
->
handle
()
->
create_operator
<
RelayoutForward
>
();
relayout
->
exec
({
inner_grad_ptr
,
exec_src
},
{
args
.
grad_tensor
->
raw_ptr
,
exec_dst
});
}
}
// vim: syntax=cpp.doxygen
dnn/src/cuda/convolution/opr_impl.h
浏览文件 @
ba2ad46e
...
@@ -106,6 +106,7 @@ public:
...
@@ -106,6 +106,7 @@ public:
class
AlgoGroupConvGeneral
;
class
AlgoGroupConvGeneral
;
class
AlgoBFloat16
;
class
AlgoBFloat16
;
class
AlgoInt8NCHW4DotProdImplicitGemm
;
class
AlgoInt8NCHW4DotProdImplicitGemm
;
class
AlgoInt8NCHWDotProdImplicitGemm
;
class
AlgoPack
;
class
AlgoPack
;
...
...
dnn/test/common/convolution.cpp
浏览文件 @
ba2ad46e
...
@@ -434,7 +434,7 @@ std::vector<TestArg> convolution::get_args_int8_nchw4_conv_bwd_data() {
...
@@ -434,7 +434,7 @@ std::vector<TestArg> convolution::get_args_int8_nchw4_conv_bwd_data() {
param
::
Convolution
cur_param
;
param
::
Convolution
cur_param
;
// clang-format off
// clang-format off
for
(
auto
mode
:
{
param
::
Conv
Bias
::
Mode
::
CROSS_CORRELATION
})
{
for
(
auto
mode
:
{
param
::
Conv
olution
::
Mode
::
CROSS_CORRELATION
})
{
for
(
size_t
b
:
{
64
,
16
})
{
for
(
size_t
b
:
{
64
,
16
})
{
for
(
size_t
ic
:
{
16
,
32
})
{
for
(
size_t
ic
:
{
16
,
32
})
{
for
(
size_t
oc
:
{
16
,
32
})
{
for
(
size_t
oc
:
{
16
,
32
})
{
...
@@ -449,8 +449,8 @@ std::vector<TestArg> convolution::get_args_int8_nchw4_conv_bwd_data() {
...
@@ -449,8 +449,8 @@ std::vector<TestArg> convolution::get_args_int8_nchw4_conv_bwd_data() {
size_t
f
=
kernel_size
;
size_t
f
=
kernel_size
;
cur_param
.
mode
=
mode
;
cur_param
.
mode
=
mode
;
cur_param
.
format
=
param
::
Conv
Bias
::
Format
::
NCHW4
;
cur_param
.
format
=
param
::
Conv
olution
::
Format
::
NCHW4
;
cur_param
.
sparse
=
param
::
Conv
Bias
::
Sparse
::
DENSE
;
cur_param
.
sparse
=
param
::
Conv
olution
::
Sparse
::
DENSE
;
cur_param
.
pad_h
=
cur_param
.
pad_w
=
p
;
cur_param
.
pad_h
=
cur_param
.
pad_w
=
p
;
cur_param
.
stride_h
=
cur_param
.
stride_w
=
s
;
cur_param
.
stride_h
=
cur_param
.
stride_w
=
s
;
...
@@ -460,6 +460,54 @@ std::vector<TestArg> convolution::get_args_int8_nchw4_conv_bwd_data() {
...
@@ -460,6 +460,54 @@ std::vector<TestArg> convolution::get_args_int8_nchw4_conv_bwd_data() {
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
// clang-format on
// clang-format on
cur_param
.
pad_h
=
cur_param
.
pad_w
=
1
;
cur_param
.
stride_h
=
cur_param
.
stride_w
=
1
;
args
.
emplace_back
(
cur_param
,
TensorShape
{
16
,
4
,
8
,
11
,
4
},
TensorShape
{
16
,
4
,
3
,
3
,
4
});
return
args
;
}
std
::
vector
<
TestArg
>
convolution
::
get_args_int8_nchw_conv_bwd_data
()
{
std
::
vector
<
TestArg
>
args
;
param
::
Convolution
cur_param
;
// clang-format off
for
(
auto
mode
:
{
param
::
Convolution
::
Mode
::
CROSS_CORRELATION
})
{
for
(
size_t
b
:
{
64
,
16
})
{
for
(
size_t
ic
:
{
16
,
32
})
{
for
(
size_t
oc
:
{
16
,
32
})
{
for
(
size_t
h
:
{
8
})
{
for
(
size_t
w
:
{
8
,
11
})
{
for
(
size_t
kernel_size
:
{
3
,
4
,
5
,
7
})
{
for
(
int
p
:
{
0
,
static_cast
<
int
>
(
kernel_size
/
2
)})
{
for
(
size_t
s
:
{
2
})
{
if
(
kernel_size
>=
7
)
{
b
=
std
::
min
(
b
,
32
_z
);
}
size_t
f
=
kernel_size
;
cur_param
.
mode
=
mode
;
cur_param
.
format
=
param
::
Convolution
::
Format
::
NCHW
;
cur_param
.
sparse
=
param
::
Convolution
::
Sparse
::
DENSE
;
cur_param
.
pad_h
=
cur_param
.
pad_w
=
p
;
cur_param
.
stride_h
=
cur_param
.
stride_w
=
s
;
//! bias channel
args
.
emplace_back
(
cur_param
,
TensorShape
{
b
,
ic
,
h
,
w
},
TensorShape
{
oc
,
ic
,
f
,
f
});
}
}
}
}
}
}
}
}
}
// clang-format on
// test stride = 1
cur_param
.
pad_h
=
cur_param
.
pad_w
=
1
;
cur_param
.
stride_h
=
cur_param
.
stride_w
=
1
;
args
.
emplace_back
(
cur_param
,
TensorShape
{
16
,
16
,
8
,
11
},
TensorShape
{
16
,
16
,
3
,
3
});
return
args
;
return
args
;
}
}
...
...
dnn/test/common/convolution.h
浏览文件 @
ba2ad46e
...
@@ -49,6 +49,7 @@ std::vector<TestArg> get_1x1_args();
...
@@ -49,6 +49,7 @@ std::vector<TestArg> get_1x1_args();
std
::
vector
<
TestArg
>
get_dilated_args
();
std
::
vector
<
TestArg
>
get_dilated_args
();
std
::
vector
<
TestArg
>
get_chanwise_args
();
std
::
vector
<
TestArg
>
get_chanwise_args
();
std
::
vector
<
TestArg
>
get_args_int8_nchw4_conv_bwd_data
();
std
::
vector
<
TestArg
>
get_args_int8_nchw4_conv_bwd_data
();
std
::
vector
<
TestArg
>
get_args_int8_nchw_conv_bwd_data
();
//! \param stage 0 for fwd, 1 for bwd data, 2 for bwd filter
//! \param stage 0 for fwd, 1 for bwd data, 2 for bwd filter
using
ConvEPSGetter
=
using
ConvEPSGetter
=
...
...
dnn/test/cuda/convolution.cpp
浏览文件 @
ba2ad46e
...
@@ -266,19 +266,78 @@ TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_MATMUL) {
...
@@ -266,19 +266,78 @@ TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_MATMUL) {
}
}
}
}
TEST_F
(
CUDA
,
CONVOLUTION_BACKWARD_DATA_INT8_DP4A
)
{
TEST_F
(
CUDA
,
CONVOLUTION_BACKWARD_DATA_INT8_
NCHW4_
DP4A
)
{
if
(
!
cuda
::
is_compute_capability_required
(
6
,
1
))
{
if
(
!
cuda
::
is_compute_capability_required
(
6
,
1
))
{
printf
(
"Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_
DP4A test as current
"
printf
(
"Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_
NCHW4_DP4A test as
"
"device doesn't support
\n
"
);
"
current
device doesn't support
\n
"
);
return
;
return
;
}
}
using
namespace
convolution
;
using
namespace
convolution
;
std
::
vector
<
TestArg
>
args
=
get_args_int8_nchw4_conv_bwd_data
();
std
::
vector
<
TestArg
>
args
=
get_args_int8_nchw4_conv_bwd_data
();
struct
AlgoParam
{
int
threadblock_m
;
int
threadblock_n
;
int
threadblock_k
;
int
warp_m
;
int
warp_n
;
int
warp_k
;
int
stage
;
std
::
string
to_string
()
{
return
ssprintf
(
"_%dX%dX%d_%dX%dX%d_%dstage"
,
threadblock_m
,
threadblock_n
,
threadblock_k
,
warp_m
,
warp_n
,
warp_k
,
stage
);
}
};
std
::
vector
<
AlgoParam
>
all_params
;
all_params
.
emplace_back
(
AlgoParam
{
16
,
64
,
8
,
16
,
64
,
8
,
2
});
all_params
.
emplace_back
(
AlgoParam
{
16
,
128
,
16
,
16
,
64
,
16
,
2
});
all_params
.
emplace_back
(
AlgoParam
{
16
,
128
,
16
,
16
,
128
,
16
,
1
});
all_params
.
emplace_back
(
AlgoParam
{
32
,
128
,
32
,
32
,
64
,
32
,
2
});
all_params
.
emplace_back
(
AlgoParam
{
64
,
128
,
32
,
64
,
32
,
32
,
2
});
for
(
auto
algo_param
:
all_params
)
{
Checker
<
ConvolutionBackwardData
>
checker
(
handle_cuda
());
std
::
string
algo_name
(
ssprintf
(
"INT8_NCHW4_DOTPROD_IMPLICIT_GEMM%s"
,
algo_param
.
to_string
().
c_str
()));
checker
.
set_before_exec_callback
(
AlgoChecker
<
ConvolutionBackwardData
>
(
algo_name
.
c_str
()));
checker
.
set_epsilon
(
1
+
1e-3
).
set_max_avg_error
(
1e-1
);
for
(
auto
&&
arg
:
args
)
{
UniformIntRNG
rng
(
-
3
,
3
);
auto
src
=
TensorLayout
(
arg
.
src
,
dtype
::
QuantizedS8
{
1.2
f
});
auto
filter
=
TensorLayout
(
arg
.
filter
,
dtype
::
QuantizedS8
{
1.3
f
});
TensorLayout
dst
;
dst
.
dtype
=
dtype
::
QuantizedS8
{
1.2
f
};
{
auto
opr
=
handle_cuda
()
->
create_operator
<
Convolution
>
();
opr
->
param
()
=
arg
.
param
;
opr
->
deduce_layout
(
src
,
filter
,
dst
);
}
checker
.
set_rng
(
0
,
&
rng
).
set_rng
(
1
,
&
rng
).
set_param
(
arg
.
param
).
exec
(
TensorLayoutArray
{
filter
,
dst
,
src
});
}
}
}
TEST_F
(
CUDA
,
CONVOLUTION_BACKWARD_DATA_INT8_NCHW_DP4A
)
{
if
(
!
cuda
::
is_compute_capability_required
(
6
,
1
))
{
printf
(
"Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NCHW_DP4A test as "
"current device doesn't support
\n
"
);
return
;
}
using
namespace
convolution
;
std
::
vector
<
TestArg
>
args
=
get_args_int8_nchw_conv_bwd_data
();
Checker
<
ConvolutionBackwardData
>
checker
(
handle_cuda
());
Checker
<
ConvolutionBackwardData
>
checker
(
handle_cuda
());
checker
.
set_before_exec_callback
(
AlgoChecker
<
ConvolutionBackwardData
>
(
checker
.
set_before_exec_callback
(
AlgoChecker
<
ConvolutionBackwardData
>
(
"INT8_NCHW
4
_DOTPROD_IMPLICIT_GEMM"
));
"INT8_NCHW_DOTPROD_IMPLICIT_GEMM"
));
checker
.
set_epsilon
(
1
+
1e-3
).
set_max_avg_error
(
1e-1
);
checker
.
set_epsilon
(
1
+
1e-3
).
set_max_avg_error
(
1e-1
);
...
...
src/gopt/impl/fuse_nchw4_int8_preprocess.cpp
浏览文件 @
ba2ad46e
...
@@ -459,7 +459,8 @@ void FuseWarpPerspectiveDimshufflePass::apply(OptState& opt) const {
...
@@ -459,7 +459,8 @@ void FuseWarpPerspectiveDimshufflePass::apply(OptState& opt) const {
opr
::
WarpPerspective
::
Param
new_param
,
opr
::
WarpPerspective
::
Param
new_param
,
megdnn
::
DType
dst_dtype
,
megdnn
::
DType
dst_dtype
,
SymbolVar
&
new_warp
)
{
SymbolVar
&
new_warp
)
{
OperatorNodeConfig
new_config
(
dst_dtype
);
OperatorNodeConfig
new_config
=
warp
->
config
();
new_config
.
output_dtype
(
dst_dtype
);
if
(
warp
->
input
().
size
()
==
3
)
{
if
(
warp
->
input
().
size
()
==
3
)
{
auto
src
=
rewriter
.
get_var
(
warp
->
input
(
0
)),
auto
src
=
rewriter
.
get_var
(
warp
->
input
(
0
)),
mat
=
rewriter
.
get_var
(
warp
->
input
(
1
)),
mat
=
rewriter
.
get_var
(
warp
->
input
(
1
)),
...
...
src/gopt/impl/tensor_reformat.cpp
浏览文件 @
ba2ad46e
...
@@ -1514,6 +1514,46 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter() {
...
@@ -1514,6 +1514,46 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter() {
return
new_opr
;
return
new_opr
;
};
};
auto
replace_deconv_opr
=
[
trans_nchw4
,
conv_format
](
OperatorNodeBase
*
opr
,
const
VarNodeArray
&
new_inp
)
{
if
(
new_inp
[
1
]
->
dtype
().
enumv
()
==
DTypeEnum
::
Float32
)
{
return
serialization
::
copy_opr_shallow
(
*
opr
,
new_inp
,
opr
->
config
());
}
mgb_assert
(
opr
->
input
().
size
()
==
new_inp
.
size
());
auto
&
deconv_opr
=
opr
->
cast_final_safe
<
opr
::
ConvolutionBackwardData
>
();
if
((
deconv_opr
.
param
().
format
!=
megdnn
::
param
::
Convolution
::
Format
::
NCHW
)
||
(
deconv_opr
.
param
().
sparse
!=
megdnn
::
param
::
Convolution
::
Sparse
::
DENSE
))
{
return
serialization
::
copy_opr_shallow
(
*
opr
,
new_inp
,
opr
->
config
());
}
VarNode
*
deconv_src
=
new_inp
[
1
],
*
deconv_filter
=
new_inp
[
0
];
auto
deconv_mode
=
trans_nchw4
(
deconv_opr
.
param
().
sparse
,
deconv_filter
);
// src: NCHW --> NCWH4
if
(
deconv_src
->
shape
().
ndim
!=
5
)
{
mgb_assert
(
deconv_src
->
shape
().
ndim
==
4
);
auto
new_src
=
RelayoutPlaceholder
::
make
(
deconv_src
,
deconv_mode
.
src
);
deconv_src
=
new_src
.
node
();
}
// weight: NCHW --> NCHW4
auto
new_filter
=
RelayoutPlaceholder
::
make
(
deconv_filter
,
deconv_mode
.
weight
);
deconv_filter
=
new_filter
.
node
();
// format: NCHW --> NCHW4
auto
new_param
=
deconv_opr
.
param
();
new_param
.
format
=
conv_format
;
// dst
auto
new_deconv_opr
=
opr
::
ConvolutionBackwardData
::
make_deconv
(
deconv_src
,
deconv_filter
,
new_param
,
deconv_opr
.
execution_policy
(),
deconv_opr
.
config
());
OperatorNodeBase
*
new_opr
=
new_deconv_opr
.
node
()
->
owner_opr
();
return
new_opr
;
};
auto
replace_batch_conv_bias_opr
=
[
batch_conv_bias_format
,
auto
replace_batch_conv_bias_opr
=
[
batch_conv_bias_format
,
src_to_nchw4_mode
](
src_to_nchw4_mode
](
OperatorNodeBase
*
opr
,
OperatorNodeBase
*
opr
,
...
@@ -1806,6 +1846,8 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter() {
...
@@ -1806,6 +1846,8 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter() {
auto
&&
replace_func
=
ret
->
m_opr_replace_func
;
auto
&&
replace_func
=
ret
->
m_opr_replace_func
;
//! supportted nchw4
//! supportted nchw4
replace_func
[
opr
::
Convolution
::
typeinfo
()]
=
replace_conv_opr
;
replace_func
[
opr
::
Convolution
::
typeinfo
()]
=
replace_conv_opr
;
replace_func
[
opr
::
ConvolutionBackwardData
::
typeinfo
()]
=
replace_deconv_opr
;
replace_func
[
opr
::
ConvBias
::
typeinfo
()]
=
replace_conv_bias_opr
;
replace_func
[
opr
::
ConvBias
::
typeinfo
()]
=
replace_conv_bias_opr
;
replace_func
[
opr
::
BatchConvBias
::
typeinfo
()]
=
replace_batch_conv_bias_opr
;
replace_func
[
opr
::
BatchConvBias
::
typeinfo
()]
=
replace_batch_conv_bias_opr
;
replace_func
[
opr
::
PoolingForward
::
typeinfo
()]
=
replace_pooling_opr
;
replace_func
[
opr
::
PoolingForward
::
typeinfo
()]
=
replace_pooling_opr
;
...
@@ -1818,8 +1860,6 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter() {
...
@@ -1818,8 +1860,6 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter() {
replace_func
[
opr
::
PowC
::
typeinfo
()]
=
replace_elemwise_opr
;
replace_func
[
opr
::
PowC
::
typeinfo
()]
=
replace_elemwise_opr
;
//! not supported nchw4
//! not supported nchw4
replace_func
[
opr
::
Concat
::
typeinfo
()]
=
relayout_inp_to_nchw
;
replace_func
[
opr
::
Concat
::
typeinfo
()]
=
relayout_inp_to_nchw
;
replace_func
[
opr
::
ConvolutionBackwardData
::
typeinfo
()]
=
relayout_inp_to_nchw
;
replace_func
[
opr
::
Subtensor
::
typeinfo
()]
=
relayout_inp_to_nchw
;
replace_func
[
opr
::
Subtensor
::
typeinfo
()]
=
relayout_inp_to_nchw
;
replace_func
[
opr
::
GetVarShape
::
typeinfo
()]
=
relayout_inp_to_nchw
;
replace_func
[
opr
::
GetVarShape
::
typeinfo
()]
=
relayout_inp_to_nchw
;
replace_func
[
opr
::
Dimshuffle
::
typeinfo
()]
=
relayout_inp_to_nchw
;
replace_func
[
opr
::
Dimshuffle
::
typeinfo
()]
=
relayout_inp_to_nchw
;
...
...
src/gopt/test/inference.cpp
浏览文件 @
ba2ad46e
...
@@ -2923,6 +2923,7 @@ TEST(TestGoptInference, ConvertFormatNCHW4GPU) {
...
@@ -2923,6 +2923,7 @@ TEST(TestGoptInference, ConvertFormatNCHW4GPU) {
auto
conv1
=
opr
::
ConvBiasForward
::
make
(
auto
conv1
=
opr
::
ConvBiasForward
::
make
(
x
,
w1
,
b1
,
param_conv_bias
,
{},
x
,
w1
,
b1
,
param_conv_bias
,
{},
OperatorNodeConfig
{
dtype
::
QuantizedS8
{
2.5
f
}});
OperatorNodeConfig
{
dtype
::
QuantizedS8
{
2.5
f
}});
// group
// group
// icpg != 1 && ocpg != 1
// icpg != 1 && ocpg != 1
param_conv_bias
.
sparse
=
opr
::
ConvBias
::
Param
::
Sparse
::
GROUP
;
param_conv_bias
.
sparse
=
opr
::
ConvBias
::
Param
::
Sparse
::
GROUP
;
...
@@ -2932,8 +2933,19 @@ TEST(TestGoptInference, ConvertFormatNCHW4GPU) {
...
@@ -2932,8 +2933,19 @@ TEST(TestGoptInference, ConvertFormatNCHW4GPU) {
conv1
,
w2
,
b2
,
param_conv_bias
,
{},
conv1
,
w2
,
b2
,
param_conv_bias
,
{},
OperatorNodeConfig
{
dtype
::
QuantizedS8
{
2.5
f
}});
OperatorNodeConfig
{
dtype
::
QuantizedS8
{
2.5
f
}});
auto
conv2_fp32
=
opr
::
TypeCvt
::
make
(
conv2
,
dtype
::
Float32
());
opr
::
Convolution
::
Param
param_deconv
;
auto
y
=
conv2_fp32
+
opr
::
TypeCvt
::
make
(
b2
,
dtype
::
Float32
());
param_deconv
.
format
=
opr
::
Convolution
::
Param
::
Format
::
NCHW
;
param_deconv
.
stride_h
=
param_deconv
.
stride_w
=
2
;
param_deconv
.
pad_h
=
param_deconv
.
pad_w
=
2
;
// dense
param_deconv
.
sparse
=
opr
::
Convolution
::
Param
::
Sparse
::
DENSE
;
auto
w3
=
mkcvar
(
"w3"
,
{
8
,
8
,
4
,
4
},
dtype
::
QuantizedS8
(
2.5
f
));
auto
deconv1
=
opr
::
ConvolutionBackwardData
::
make_deconv
(
conv2
,
w3
,
param_deconv
,
{},
OperatorNodeConfig
{
dtype
::
QuantizedS8
{
2.5
f
}});
auto
deconv1_fp32
=
opr
::
TypeCvt
::
make
(
deconv1
,
dtype
::
Float32
());
auto
y
=
deconv1_fp32
+
opr
::
TypeCvt
::
make
(
b2
,
dtype
::
Float32
());
SymbolVar
y_opt
;
SymbolVar
y_opt
;
{
{
...
@@ -2944,6 +2956,8 @@ TEST(TestGoptInference, ConvertFormatNCHW4GPU) {
...
@@ -2944,6 +2956,8 @@ TEST(TestGoptInference, ConvertFormatNCHW4GPU) {
ASSERT_EQ
(
opr
::
ConvBias
::
Param
::
Format
::
NCHW4
,
ASSERT_EQ
(
opr
::
ConvBias
::
Param
::
Format
::
NCHW4
,
find_opr
<
opr
::
ConvBias
>
(
y_opt
).
param
().
format
);
find_opr
<
opr
::
ConvBias
>
(
y_opt
).
param
().
format
);
ASSERT_EQ
(
opr
::
ConvolutionBackwardData
::
Param
::
Format
::
NCHW4
,
find_opr
<
opr
::
ConvolutionBackwardData
>
(
y_opt
).
param
().
format
);
auto
nr_reshape
=
find_opr_num
<
mgb
::
opr
::
Reshape
>
(
y_opt
);
auto
nr_reshape
=
find_opr_num
<
mgb
::
opr
::
Reshape
>
(
y_opt
);
ASSERT_EQ
(
2u
,
nr_reshape
);
ASSERT_EQ
(
2u
,
nr_reshape
);
...
...
src/opr/impl/dnn/dnn.oprdecl
浏览文件 @
ba2ad46e
...
@@ -51,7 +51,7 @@ decl_opr('ConvolutionBackwardData',
...
@@ -51,7 +51,7 @@ decl_opr('ConvolutionBackwardData',
],
],
desc
=
'batched deconvolution on channeled 2D images; the underlying '
desc
=
'batched deconvolution on channeled 2D images; the underlying '
'computation is in fact gradient of convolution w.r.t. data'
,
'computation is in fact gradient of convolution w.r.t. data'
,
version
=
2
)
version
=
2
,
has_out_dtype
=
True
)
decl_opr
(
'MaskConvolution'
,
decl_opr
(
'MaskConvolution'
,
inputs
=
[
Doc
(
'src'
,
inputs
=
[
Doc
(
'src'
,
...
...
src/opr/test/dnn/convolution.cpp
浏览文件 @
ba2ad46e
...
@@ -609,10 +609,11 @@ TEST(TestOprDNN, DeconvolutionExePolicy_QuantizedS8) {
...
@@ -609,10 +609,11 @@ TEST(TestOprDNN, DeconvolutionExePolicy_QuantizedS8) {
using
S
=
Policy
::
Strategy
;
using
S
=
Policy
::
Strategy
;
#if MGB_ENABLE_FASTRUN
#if MGB_ENABLE_FASTRUN
for
(
auto
strategy
:
{
S
::
PROFILE
,
S
::
HEURISTIC
,
S
::
PROFILE_REPRODUCIBLE
,
for
(
auto
strategy
:
S
::
PROFILE_HEURISTIC
})
{
{
S
::
PROFILE
,
S
::
HEURISTIC
,
S
(
S
::
PROFILE
|
S
::
REPRODUCIBLE
),
S
(
S
::
PROFILE
|
S
::
HEURISTIC
)})
{
#else
#else
for
(
auto
strategy
:
{
S
:
HEURISTIC
,
S
::
PROFILE_HEURISTIC
})
{
for
(
auto
strategy
:
{
S
:
HEURISTIC
,
S
(
S
::
PROFILE
|
S
::
HEURISTIC
)
})
{
#endif
#endif
auto
graph
=
ComputingGraph
::
make
();
auto
graph
=
ComputingGraph
::
make
();
HostTensorGenerator
<>
gen
;
HostTensorGenerator
<>
gen
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录