提交 ae6ff2c5 编写于 作者: M Megvii Engine Team

feat(mgb/gopt): add opt pass for nchw64 layout transform

GitOrigin-RevId: adede7cef6218b1a4871278bf45973ca599ad594
上级 63a9bd30
......@@ -343,6 +343,7 @@ ConvBiasImpl::NCBKernSizeParam ConvBiasImpl::make_ncb_kern_size_param(
param().format == Param::Format::NCHW44 ||
param().format == Param::Format::NCHW44_DOT ||
param().format == Param::Format::NCHW ||
param().format == Param::Format::NCHW32 ||
param().format == Param::Format::NCHW64) {
spatial_pos = 2;
} else if (param().format == Param::Format::NHWC) {
......
......@@ -481,7 +481,9 @@ void ConvolutionBackwardDataImpl::exec(_megdnn_tensor_in filter,
_megdnn_tensor_out grad,
_megdnn_workspace workspace) {
if (param().format == param::Convolution::Format::NHWCD4 ||
param().format == param::Convolution::Format::NCHW4) {
param().format == param::Convolution::Format::NCHW4 ||
(param().format == param::Convolution::Format::NCHW &&
grad.layout.dtype.enumv() == DTypeEnum::QuantizedS8)) {
return naive::ConvolutionBackwardDataImpl::exec(filter, diff, grad,
workspace);
}
......@@ -493,7 +495,9 @@ size_t ConvolutionBackwardDataImpl::get_workspace_in_bytes(
const TensorLayout& filter, const TensorLayout& diff,
const TensorLayout& grad) {
if (param().format == param::Convolution::Format::NHWCD4 ||
param().format == param::Convolution::Format::NCHW4) {
param().format == param::Convolution::Format::NCHW4 ||
(param().format == param::Convolution::Format::NCHW &&
grad.dtype.enumv() == DTypeEnum::QuantizedS8)) {
return naive::ConvolutionBackwardDataImpl::get_workspace_in_bytes(
filter, diff, grad);
}
......@@ -506,7 +510,9 @@ ConvolutionBackwardDataImpl::get_all_algorithms(const TensorLayout& filter,
const TensorLayout& diff,
const TensorLayout& grad) {
if (param().format == param::Convolution::Format::NHWCD4 ||
param().format == param::Convolution::Format::NCHW4) {
param().format == param::Convolution::Format::NCHW4 ||
(param().format == param::Convolution::Format::NCHW &&
grad.dtype.enumv() == DTypeEnum::QuantizedS8)) {
return naive::ConvolutionBackwardDataImpl::get_all_algorithms(
filter, diff, grad);
}
......@@ -523,7 +529,9 @@ ConvolutionBackwardDataImpl::get_algorithm_heuristic(
const AlgoAttribute& positive_attr,
const AlgoAttribute& negative_attr) {
if (param().format == param::Convolution::Format::NHWCD4 ||
param().format == param::Convolution::Format::NCHW4) {
param().format == param::Convolution::Format::NCHW4 ||
(param().format == param::Convolution::Format::NCHW &&
grad.dtype.enumv() == DTypeEnum::QuantizedS8)) {
return naive::ConvolutionBackwardDataImpl::get_algorithm_heuristic(
filter, diff, grad, workspace_limit_in_bytes, positive_attr,
negative_attr);
......
......@@ -229,6 +229,13 @@ void RelayoutForwardImpl::exec(
return;
}
// FIXME: optimize for lowbit cases
if (src.layout.dtype.enumv() == DTypeEnum::QuantizedS4 ||
src.layout.dtype.enumv() == DTypeEnum::Quantized4Asymm) {
NaiveRelayoutForwardImpl::do_exec(src, dst);
return;
}
relayout::TransposeParam trans_param;
bool trans = relayout::is_transpose(src.layout, dst.layout, trans_param);
exec_after_preprocess(src, dst, trans ? &trans_param : nullptr);
......
......@@ -230,6 +230,11 @@ R"__usage__(
--enable-fuse-preprocess
Fusion astype\pad_channel\dimshuffle and etc opr from h2d op
)__usage__"
R"__usage__(
--enable-nchw64
Execute operators with kernels implemented in MegDNN with NCHW64 tensor format. Can only be used
on Nvidia GPUs, which natively support fast int4 tensorcore inference.
)__usage__"
;
struct DataParser {
......@@ -1150,6 +1155,7 @@ Args Args::from_argv(int argc, char **argv) {
cb(nchw88);
cb(nchw32);
cb(nhwcd4);
cb(nchw64);
#undef cb
if (!strcmp(argv[i], "--enable-nchw44-dot")) {
mgb_log_warn("enable-nchw44-dot optimization");
......
......@@ -351,7 +351,6 @@ void OperatorNodeBase::init_output_format() {
}
for (auto i : output()) {
if (i->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) {
mgb_assert(format.is_default());
i->format(TensorFormat(i->dtype()));
} else {
if (!format.is_default())
......
......@@ -643,8 +643,8 @@ TensorND<TensorStorage>::copy_from_fixlayout(
(m_layout.format.is_lowbit_aligned() &&
m_layout.is_contiguous()),
src_contig = src.layout().is_physical_contiguous() ||
(m_layout.format.is_lowbit_aligned() &&
m_layout.is_contiguous());
(src.layout().format.is_lowbit_aligned() &&
src.layout().is_contiguous());
if (self_contig && src_contig) {
if ((m_layout.format.is_default() &&
src.layout().format.is_default()) ||
......
......@@ -112,6 +112,8 @@ struct GraphCommonOptimizeOptions {
///< tensorcore
CHWN4, ///< compute using CHWN4 tensor format, transformed mainly
///< used for cuda
NCHW64, ///< compute using NCHW64 tensor format, used for fast int4
///< support on Nvidia GPU
};
LayoutTransform layout_transform = LayoutTransform::DEFAULT;
......@@ -154,6 +156,7 @@ struct GraphCommonOptimizeOptions {
SET(nchw44_dot, NCHW44_DOT);
SET(nchw32, NCHW32);
SET(chwn4, CHWN4);
SET(nchw64, NCHW64);
#undef SET
};
......
......@@ -774,6 +774,17 @@ const GraphOptimizer& GraphOptimizer::add_passes_for_optimize_options(
add_pass<ShuffleShuffleRemovePass>();
add_pass<RemoveRedundantTypeCvtPass>();
});
cb(nchw64, {
add_pass<FuseConvBiasNonlinPass>();
add_pass<PaddingChannelPass>();
add_pass<FuseConvBiasZPass>();
add_pass(EnableNCHW64Pass::make_nchw64_converter());
add_pass<ShuffleShuffleRemovePass>();
add_pass<RemoveRedundantTypeCvtPass>();
add_pass(FuseNCHW4Int8Preprocess::make());
add_pass<FuseWarpPerspectiveDimshufflePass>();
add_pass<FoldingConvBiasDimshufflePass>();
});
cb(fuse_conv_bias_nonlinearity, { add_pass<FuseConvBiasNonlinPass>(); });
cb(fuse_conv_bias_with_z, {
......
此差异已折叠。
......@@ -419,6 +419,27 @@ namespace gopt {
void apply(OptState& opt) const override;
};
/*!
* \brief convert tensor format to nchw64 to enable tensorcore int4 on CUDA
* we assume that the input network is in NCHW layout
*/
class EnableNCHW64Pass final : public TensorReformatPass {
public:
using Format = opr::ConvBias::Param::Format;
const char* name() const override {
return mgb_cstr_log("tensor_format_nchw64");
}
//! make nchw -> nchw64 converter opt pass
static std::unique_ptr<EnableNCHW64Pass> make_nchw64_converter();
private:
ThinHashMap<OperatorNodeBase*, Format> m_opr_format_map;
VarNode* on_graph_endpoint_var(VarNode* new_var,
VarNode* orig_var) const override;
};
} // namespace gopt
} // namespace mgb
......
......@@ -4248,7 +4248,7 @@ TEST(TestGoptInference, PaddingChannels) {
};
cg::DepOprIter{cb}.add(y3_pad.node()->owner_opr());
ASSERT_EQ(oprs.size(), 3);
ASSERT_EQ(oprs[0]->output(0)->shape()[1], 20);
ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
ASSERT_EQ(oprs[1]->output(0)->shape()[1], 32);
ASSERT_EQ(oprs[2]->output(0)->shape()[1], 32);
HostTensorND t1, t2;
......@@ -4322,7 +4322,7 @@ TEST(TestGoptInference, ConcatAfterPaddingChannels) {
};
cg::DepOprIter{cb}.add(y2_pad.node()->owner_opr());
ASSERT_EQ(oprs.size(), 2);
ASSERT_EQ(oprs[0]->output(0)->shape()[1], 20);
ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
ASSERT_EQ(oprs[1]->output(0)->shape()[1], 32);
HostTensorND t1, t2;
auto func1 = graph->compile({make_callback_copy(y2, t1)});
......@@ -4335,16 +4335,16 @@ TEST(TestGoptInference, ConcatAfterPaddingChannels) {
// FIXME replace cpu with gpu to enable gpu validation
TEST(TestGoptInference, PaddingChannelsWithPooling) {
REQUIRE_GPU(1);
auto cn = CompNode::load("cpu0");
// cn.activate();
// auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
// auto sm_ver = prop.major * 10 + prop.minor;
// if (sm_ver < 61) {
// printf("This testcast ignored due to insufficient cuda cap(got: %d, "
// "expected: %d)\n",
// sm_ver, 61);
// return;
// }
auto cn = CompNode::load("gpu0");
cn.activate();
auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
auto sm_ver = prop.major * 10 + prop.minor;
if (sm_ver < 61) {
printf("This testcast ignored due to insufficient cuda cap(got: %d, "
"expected: %d)\n",
sm_ver, 61);
return;
}
HostTensorGenerator<dtype::Int8> gen;
auto graph = ComputingGraph::make();
......@@ -4485,6 +4485,311 @@ TEST(TestGoptInference, PaddingChannelsWithWarpPerspective) {
func2->execute();
MGB_ASSERT_TENSOR_EQ(t1, t2);
}
TEST(TestGoptInference, EnableNCHW64Basic) {
REQUIRE_GPU(1);
auto cn = CompNode::load("cpu0");
// cn.activate();
// auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
// auto sm_ver = prop.major * 10 + prop.minor;
// if (sm_ver < 61) {
// printf("This testcast ignored due to insufficient cuda cap(got: %d, "
// "expected: %d)\n",
// sm_ver, 61);
// return;
// }
HostTensorGenerator<dtype::Int8> gen;
auto graph = ComputingGraph::make();
graph->options().graph_opt_level = 0;
auto mkvar = [&](const char* name, const TensorShape& shp,
const DType& dtype) {
return opr::TypeCvt::make(
opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
dtype);
};
auto mkcvar = [&](const char* name, const TensorShape& shp,
const DType& dtype) {
return opr::TypeCvt::make(
opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
.rename(name),
dtype);
};
auto x = mkvar("x", {16, 4, 14, 14}, dtype::QuantizedS8(2.5f)),
w = mkcvar("w", {32, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
b = mkcvar("b", {1, 32, 1, 1}, dtype::QuantizedS32(6.25f));
opr::ConvBias::Param param;
param.format = opr::ConvBias::Param::Format::NCHW;
param.nonlineMode = opr::ConvBias::Param::NonlineMode::IDENTITY;
param.stride_h = param.stride_w = 1;
param.pad_h = param.pad_w = 1;
auto y = opr::ConvBias::make(x, w, b, param, {},
OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
auto w1 = mkcvar("w1", {32, 32, 3, 3}, dtype::QuantizedS8(2.5f)),
b1 = mkcvar("b1", {1, 32, 1, 1}, dtype::QuantizedS32(6.25f));
auto y1 = opr::ConvBias::make(y, w1, b1, param, {},
OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
auto w2 = mkcvar("w2", {64, 32, 3, 3}, dtype::QuantizedS8(2.5f)),
b2 = mkcvar("b2", {1, 64, 1, 1}, dtype::QuantizedS32(6.25f));
auto y2 = opr::ConvBias::make(y1, w2, b2, param, {},
OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
y2 = opr::TypeCvt::make(y2, dtype::QuantizedS4{40.f});
auto w3 = mkcvar("w3", {64, 64, 3, 3}, dtype::QuantizedS4(2.5f)),
b3 = mkcvar("b3", {1, 64, 1, 1}, dtype::QuantizedS32(100.f));
auto y3 = opr::ConvBias::make(y2, w3, b3, param, {},
OperatorNodeConfig{dtype::QuantizedS4{40.f}});
y3 = opr::TypeCvt::make(y3, dtype::QuantizedS8{2.5f});
auto w4 = mkcvar("w4", {32, 64, 3, 3}, dtype::QuantizedS8(2.5f)),
b4 = mkcvar("b4", {1, 32, 1, 1}, dtype::QuantizedS32(6.25f));
auto y4 = opr::ConvBias::make(y3, w4, b4, param, {},
OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
using ElemMultiMode = opr::ElemwiseMultiType::Param::Mode;
auto y5 = opr::ElemwiseMultiType::make(
{y, y4}, {ElemMultiMode::QFUSE_ADD_RELU},
OperatorNodeConfig{dtype::QuantizedS8{1.2f}});
y5 = opr::TypeCvt::make(y5, dtype::Float32());
SymbolVar y5_pad;
unpack_vector(
gopt::GraphOptimizer{}
.add_pass(gopt::EnableNCHW64Pass::make_nchw64_converter())
.apply({{y5}})
.endpoint_vars(),
y5_pad);
EXPECT_TRUE(y5.node()->shape().eq_shape(y5_pad.node()->shape()));
SmallVector<cg::OperatorNodeBase*> oprs;
auto cb = [&oprs](cg::OperatorNodeBase* opr) {
if (opr->same_type<opr::ConvBias>()) {
oprs.push_back(opr);
}
};
cg::DepOprIter{cb}.add(y5_pad.node()->owner_opr());
ASSERT_EQ(oprs.size(), 5);
using Format = opr::ConvBiasForward::Param::Format;
#define CHECK(_i, _fmt) \
{ \
const auto& o = oprs[_i]->cast_final<opr::ConvBias>(); \
ASSERT_EQ(o.param().format, Format::_fmt); \
}
CHECK(0, NCHW4);
CHECK(1, NCHW32);
CHECK(2, NCHW32);
CHECK(3, NCHW64);
CHECK(4, NCHW32);
#undef CHECK
HostTensorND t1, t2;
auto func1 = graph->compile({make_callback_copy(y5, t1)});
func1->execute();
auto func2 = graph->compile({make_callback_copy(y5_pad, t2)});
func2->execute();
MGB_ASSERT_TENSOR_EQ(t1, t2);
}
TEST(TestGoptInference, EnableNCHW64PaddingChannel) {
REQUIRE_GPU(1);
auto cn = CompNode::load("cpu0");
// cn.activate();
// auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
// auto sm_ver = prop.major * 10 + prop.minor;
// if (sm_ver < 61) {
// printf("This testcast ignored due to insufficient cuda cap(got: %d, "
// "expected: %d)\n",
// sm_ver, 61);
// return;
// }
HostTensorGenerator<dtype::Int8> gen;
auto graph = ComputingGraph::make();
graph->options().graph_opt_level = 0;
auto mkvar = [&](const char* name, const TensorShape& shp,
const DType& dtype) {
return opr::TypeCvt::make(
opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
dtype);
};
auto mkcvar = [&](const char* name, const TensorShape& shp,
const DType& dtype) {
return opr::TypeCvt::make(
opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
.rename(name),
dtype);
};
auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
w = mkcvar("w", {20, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
b = mkcvar("b", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
opr::ConvBias::Param param;
param.format = opr::ConvBias::Param::Format::NCHW;
param.nonlineMode = opr::ConvBias::Param::NonlineMode::IDENTITY;
param.stride_h = param.stride_w = 1;
param.pad_h = param.pad_w = 1;
auto y = opr::ConvBias::make(x, w, b, param, {},
OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
opr::Pooling::Param pool;
pool.format = opr::Pooling::Param::Format::NCHW;
y = opr::Pooling::make(y, pool);
auto w1 = mkcvar("w1", {24, 20, 3, 3}, dtype::QuantizedS8(2.5f)),
b1 = mkcvar("b1", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
auto y1 = opr::ConvBias::make(y, w1, b1, param, {},
OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
auto w2 = mkcvar("w2", {20, 24, 3, 3}, dtype::QuantizedS8(2.5f)),
b2 = mkcvar("b2", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
auto y2 = opr::ConvBias::make(y1, w2, b2, param, {},
OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
y2 = opr::TypeCvt::make(y2, dtype::QuantizedS4{40.f});
auto w3 = mkcvar("w3", {64, 20, 3, 3}, dtype::QuantizedS4(2.5f)),
b3 = mkcvar("b3", {1, 64, 1, 1}, dtype::QuantizedS32(100.f));
auto y3 = opr::ConvBias::make(y2, w3, b3, param, {},
OperatorNodeConfig{dtype::QuantizedS4{40.f}});
auto w4 = mkcvar("w4", {20, 64, 3, 3}, dtype::QuantizedS4(2.5f)),
b4 = mkcvar("b4", {1, 20, 1, 1}, dtype::QuantizedS32(100.f));
auto y4 = opr::ConvBias::make(y3, w4, b4, param, {},
OperatorNodeConfig{dtype::QuantizedS4{40.f}});
y4 = opr::TypeCvt::make(y4, dtype::QuantizedS8{2.5f});
using ElemMultiMode = opr::ElemwiseMultiType::Param::Mode;
auto y5 = opr::ElemwiseMultiType::make(
{y, y4}, {ElemMultiMode::QFUSE_ADD_RELU},
OperatorNodeConfig{dtype::QuantizedS8{1.2f}});
opr::ConvolutionBackwardData::Param deconv;
deconv.format = opr::ConvolutionBackwardData::Param::Format::NCHW;
deconv.stride_h = deconv.stride_w = 2;
deconv.pad_h = deconv.pad_w = 1;
auto w6 = mkcvar("w6", {20, 20, 4, 4}, dtype::QuantizedS8{2.5f});
auto y6 = opr::ConvolutionBackwardData::make(
w6, y5, deconv, {},
OperatorNodeConfig{dtype::QuantizedS8(2.0f)});
std::shared_ptr<HostTensorND> mat = std::make_shared<HostTensorND>(
cn, TensorShape{16, 3, 3}, dtype::Float32());
warp_perspective_mat_gen(*mat, 16, 14, 14);
auto mat_var = opr::Host2DeviceCopy::make(*graph, mat).rename("mat");
opr::WarpPerspective::Param warp_param;
warp_param.format = opr::WarpPerspective::Param::Format::NCHW;
auto y7 = opr::WarpPerspective::make(y6, mat_var, TensorShape{14, 14},
warp_param);
y7 = opr::TypeCvt::make(y7, dtype::Float32());
SymbolVar y7_pad;
auto opt = gopt::OptimizeForInferenceOptions{};
opt.enable_nchw64();
unpack_vector(gopt::optimize_for_inference({y7}, opt), y7_pad);
EXPECT_TRUE(y7.node()->shape().eq_shape(y7_pad.node()->shape()));
SmallVector<cg::OperatorNodeBase*> oprs;
auto cb = [&oprs](cg::OperatorNodeBase* opr) {
if (opr->same_type<opr::ConvBias>()) {
oprs.push_back(opr);
}
};
cg::DepOprIter{cb}.add(y7_pad.node()->owner_opr());
ASSERT_EQ(oprs.size(), 5);
using Format = opr::ConvBiasForward::Param::Format;
#define CHECK(_i, _fmt) \
{ \
const auto& o = oprs[_i]->cast_final<opr::ConvBias>(); \
ASSERT_EQ(o.param().format, Format::_fmt); \
}
CHECK(0, NCHW4);
CHECK(1, NCHW32);
CHECK(2, NCHW32);
CHECK(3, NCHW64);
CHECK(4, NCHW64);
#undef CHECK
{
const auto& deconv = find_opr<opr::ConvolutionBackwardData>(y7_pad);
ASSERT_EQ(deconv.param().format, Format::NCHW4);
const auto& pool = find_opr<opr::PoolingForward>(y7_pad);
ASSERT_EQ(pool.param().format, Format::NCHW4);
const auto& warp = find_opr<opr::WarpPerspectiveForward>(y7_pad);
ASSERT_EQ(warp.param().format, Format::NCHW4);
}
size_t nr_dimshuffle = find_opr_num<opr::Dimshuffle>(y7_pad);
HostTensorND t1, t2;
auto func1 = graph->compile({make_callback_copy(y7, t1)});
func1->execute();
auto func2 = graph->compile({make_callback_copy(y7_pad, t2)});
func2->execute();
MGB_ASSERT_TENSOR_EQ(t1, t2);
}
TEST(TestGoptInference, EnableNCHW64FuseConvBiasZ) {
REQUIRE_GPU(1);
auto cn = CompNode::load("cpu0");
// cn.activate();
// auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
// auto sm_ver = prop.major * 10 + prop.minor;
// if (sm_ver < 61) {
// printf("This testcast ignored due to insufficient cuda cap(got: %d, "
// "expected: %d)\n",
// sm_ver, 61);
// return;
// }
HostTensorGenerator<dtype::Int8> gen;
auto graph = ComputingGraph::make();
graph->options().graph_opt_level = 0;
auto mkvar = [&](const char* name, const TensorShape& shp,
const DType& dtype) {
return opr::TypeCvt::make(
opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
dtype);
};
auto mkcvar = [&](const char* name, const TensorShape& shp,
const DType& dtype) {
return opr::TypeCvt::make(
opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
.rename(name),
dtype);
};
auto x = mkvar("x", {16, 4, 14, 14}, dtype::QuantizedS8(2.5f)),
w = mkcvar("w", {32, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
b = mkcvar("b", {1, 32, 1, 1}, dtype::QuantizedS32(6.25f));
opr::ConvBias::Param param;
param.format = opr::ConvBias::Param::Format::NCHW;
param.nonlineMode = opr::ConvBias::Param::NonlineMode::IDENTITY;
param.stride_h = param.stride_w = 1;
param.pad_h = param.pad_w = 1;
auto y = opr::ConvBias::make(x, w, b, param, {},
OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
auto w1 = mkcvar("w1", {64, 32, 3, 3}, dtype::QuantizedS8(2.5f)),
b1 = mkcvar("b1", {1, 64, 1, 1}, dtype::QuantizedS32(6.25f));
auto y1 = opr::ConvBias::make(y, w1, b1, param, {},
OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
y1 = opr::TypeCvt::make(y1, dtype::QuantizedS4{40.f});
auto w2 = mkcvar("w2", {64, 64, 3, 3}, dtype::QuantizedS4(2.5f)),
b2 = mkcvar("b2", {1, 64, 1, 1}, dtype::QuantizedS32(100.f));
auto y2 = opr::ConvBias::make(y1, w2, b2, param, {},
OperatorNodeConfig{dtype::QuantizedS4{40.f}});
auto w3 = mkcvar("w3", {64, 64, 3, 3}, dtype::QuantizedS4(2.5f)),
b3 = mkcvar("b3", {1, 64, 1, 1}, dtype::QuantizedS32(100.f));
auto y3 = opr::ConvBias::make(y2, w3, b3, param, {},
OperatorNodeConfig{dtype::QuantizedS4(40.f)});
using ElemMultiMode = opr::ElemwiseMultiType::Param::Mode;
auto y4 = opr::ElemwiseMultiType::make(
{y1, y3}, {ElemMultiMode::QFUSE_ADD_RELU},
OperatorNodeConfig{dtype::QuantizedS4{40.f}});
y4 = opr::TypeCvt::make(y4, dtype::Float32());
SymbolVar y4_pad;
auto opt = gopt::OptimizeForInferenceOptions{};
opt.enable_nchw64();
unpack_vector(gopt::optimize_for_inference({y4}, opt), y4_pad);
EXPECT_TRUE(y4.node()->shape().eq_shape(y4_pad.node()->shape()));
size_t nr_elem_mult_type = find_opr_num<opr::ElemwiseMultiType>(y4_pad);
ASSERT_EQ(nr_elem_mult_type, 0);
// FIXME need impl of elemwise/elemwise_multi_type on CUDA
#if 0
HostTensorND t1, t2;
auto func1 = graph->compile({make_callback_copy(y4, t1)});
func1->execute();
auto func2 = graph->compile({make_callback_copy(y4_pad, t2)});
func2->execute();
MGB_ASSERT_TENSOR_EQ(t1, t2);
#endif
}
#endif
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
......@@ -2642,7 +2642,7 @@ TEST(TestOprDNN, ConvBiasInt4NCHW) {
cn);
opr::ConvBias::Param param;
param.format = opr::ConvBias::Param::Format::NCHW;
param.nonlineMode = opr::ConvBias::Param::NonlineMode::IDENTITY;
param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
param.stride_h = param.stride_w = S;
param.pad_h = param.pad_w = P;
Policy policy;
......@@ -2719,7 +2719,7 @@ TEST(TestOprDNN, ConvBiasInt4NCHW64) {
cn);
opr::ConvBias::Param param;
param.format = opr::ConvBias::Param::Format::NCHW64;
param.nonlineMode = opr::ConvBias::Param::NonlineMode::IDENTITY;
param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
param.stride_h = param.stride_w = S;
param.pad_h = param.pad_w = P;
Policy policy;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册