Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
aa80d988
MegEngine
项目概览
MegEngine 天元
/
MegEngine
大约 1 年 前同步成功
通知
399
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
aa80d988
编写于
12月 14, 2021
作者:
M
Megvii Engine Team
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
feat(lite): add cv example
GitOrigin-RevId: eeef5f999eb38cca23e95cf0b27e456ab2e44cdc
上级
390d2bb5
变更
7
展开全部
显示空白变更内容
内联
并排
Showing
7 changed file
with
14013 addition
and
3 deletion
+14013
-3
lite/example/cpp_example/example.h
lite/example/cpp_example/example.h
+6
-3
lite/example/cpp_example/main.cpp
lite/example/cpp_example/main.cpp
+3
-0
lite/example/cpp_example/mge/cv/detect_yolox.cpp
lite/example/cpp_example/mge/cv/detect_yolox.cpp
+338
-0
lite/example/cpp_example/mge/cv/picture_classification.cpp
lite/example/cpp_example/mge/cv/picture_classification.cpp
+115
-0
lite/example/cpp_example/mge/cv/stb_image.h
lite/example/cpp_example/mge/cv/stb_image.h
+8640
-0
lite/example/cpp_example/mge/cv/stb_image_resize.h
lite/example/cpp_example/mge/cv/stb_image_resize.h
+2844
-0
lite/example/cpp_example/mge/cv/stb_image_write.h
lite/example/cpp_example/mge/cv/stb_image_write.h
+2067
-0
未找到文件。
lite/example/cpp_example/example.h
浏览文件 @
aa80d988
...
...
@@ -53,9 +53,7 @@ template <int>
struct
Register
;
#if LITE_BUILD_WITH_MGE
#if LITE_WITH_CUDA
bool
load_from_path_run_cuda
(
const
Args
&
args
);
#endif
bool
basic_load_from_path
(
const
Args
&
args
);
bool
basic_load_from_path_with_loader
(
const
Args
&
args
);
bool
basic_load_from_memory
(
const
Args
&
args
);
...
...
@@ -69,7 +67,12 @@ bool update_cryption_key(const Args& args);
bool
async_forward
(
const
Args
&
args
);
bool
set_input_callback
(
const
Args
&
arg
);
bool
set_output_callback
(
const
Args
&
arg
);
bool
picture_classification
(
const
Args
&
arg
);
bool
detect_yolox
(
const
Args
&
arg
);
#if LITE_WITH_CUDA
bool
load_from_path_run_cuda
(
const
Args
&
args
);
bool
device_input
(
const
Args
&
args
);
bool
device_input_output
(
const
Args
&
args
);
bool
pinned_host_input
(
const
Args
&
args
);
...
...
lite/example/cpp_example/main.cpp
浏览文件 @
aa80d988
...
...
@@ -167,6 +167,9 @@ REGIST_EXAMPLE("basic_c_interface", basic_c_interface);
REGIST_EXAMPLE
(
"device_io_c_interface"
,
device_io_c_interface
);
REGIST_EXAMPLE
(
"async_c_interface"
,
async_c_interface
);
REGIST_EXAMPLE
(
"picture_classification"
,
picture_classification
);
REGIST_EXAMPLE
(
"detect_yolox"
,
detect_yolox
);
#if LITE_WITH_CUDA
REGIST_EXAMPLE
(
"device_input"
,
device_input
);
REGIST_EXAMPLE
(
"device_input_output"
,
device_input_output
);
...
...
lite/example/cpp_example/mge/cv/detect_yolox.cpp
0 → 100644
浏览文件 @
aa80d988
/**
* \file example/cpp_example/cv/detect_yolox.cpp
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
*
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*/
#include <thread>
#include "../../example.h"
#if LITE_BUILD_WITH_MGE
#include <cstdio>
#include "misc.h"
#define STB_IMAGE_STATIC
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#define STB_IMAGE_RESIZE_STATIC
#define STB_IMAGE_RESIZE_IMPLEMENTATION
#include "stb_image_resize.h"
#define STB_IMAGE_WRITE_STATIC
#define STB_IMAGE_WRITE_IMPLEMENTATION
#include "stb_image_write.h"
#define NMS_THRESH 0.25
#define BBOX_CONF_THRESH 0.6
constexpr
int
INPUT_W
=
640
;
constexpr
int
INPUT_H
=
640
;
using
namespace
lite
;
using
namespace
example
;
namespace
{
void
preprocess_image
(
uint8_t
*
image
,
const
int
width
,
const
int
height
,
const
int
channel
,
std
::
shared_ptr
<
Tensor
>
tensor
)
{
auto
layout
=
tensor
->
get_layout
();
for
(
size_t
i
=
0
;
i
<
layout
.
ndim
;
i
++
)
{
printf
(
"model input shape[%zu]=%zu
\n
"
,
i
,
layout
.
shapes
[
i
]);
}
//! resize to target shape
float
r
=
std
::
min
(
INPUT_W
/
(
width
*
1.0
),
INPUT_H
/
(
height
*
1.0
));
int
unpad_w
=
r
*
width
;
int
unpad_h
=
r
*
height
;
std
::
shared_ptr
<
std
::
vector
<
uint8_t
>>
resize_int8
=
std
::
make_shared
<
std
::
vector
<
uint8_t
>>
(
unpad_w
*
unpad_h
*
channel
);
stbir_resize_uint8
(
image
,
width
,
height
,
0
,
resize_int8
->
data
(),
unpad_w
,
unpad_h
,
0
,
channel
);
std
::
shared_ptr
<
std
::
vector
<
uint8_t
>>
padded
;
if
(
unpad_h
!=
INPUT_H
||
unpad_w
!=
INPUT_W
)
{
padded
=
std
::
make_shared
<
std
::
vector
<
uint8_t
>>
(
INPUT_H
*
INPUT_W
*
channel
,
114
);
for
(
int
h
=
0
;
h
<
unpad_h
;
h
++
)
{
for
(
int
w
=
0
;
w
<
unpad_w
;
w
++
)
{
for
(
int
c
=
0
;
c
<
channel
;
c
++
)
{
(
*
padded
)[
h
*
INPUT_W
*
channel
+
w
*
channel
+
c
]
=
(
*
resize_int8
)[
h
*
unpad_w
*
channel
+
w
*
channel
+
c
];
}
}
}
}
else
{
padded
=
resize_int8
;
}
tensor
->
set_layout
({{
1
,
3
,
640
,
640
},
4
});
std
::
vector
<
float
>
mean
=
{
0.485
,
0.456
,
0.406
};
std
::
vector
<
float
>
std
=
{
0.229
,
0.224
,
0.225
};
//! convert form rgb to bgr, relayout from hwc to chw, normalization copy to tensor
float
*
in_data
=
static_cast
<
float
*>
(
tensor
->
get_memory_ptr
());
size_t
pixels
=
INPUT_H
*
INPUT_W
;
for
(
size_t
i
=
0
;
i
<
pixels
;
i
++
)
{
in_data
[
i
]
=
(
padded
->
at
(
i
*
channel
+
0
)
/
255.0
f
-
mean
[
0
])
/
std
[
0
];
in_data
[
i
+
1
*
pixels
]
=
(
padded
->
at
(
i
*
channel
+
1
)
/
255.0
f
-
mean
[
1
])
/
std
[
1
];
in_data
[
i
+
2
*
pixels
]
=
(
padded
->
at
(
i
*
channel
+
2
)
/
255.0
f
-
mean
[
2
])
/
std
[
2
];
}
}
struct
Rect
{
float
x
;
float
y
;
float
height
;
float
width
;
float
area
()
const
{
return
height
*
width
;
}
Rect
operator
&
(
Rect
other
)
const
{
Rect
ret
;
float
x_start
=
std
::
max
(
x
,
other
.
x
);
float
x_end
=
std
::
min
(
x
+
width
,
other
.
width
);
ret
.
x
=
x_start
;
ret
.
width
=
(
x_end
-
x_start
)
>
0
?
x_end
-
x_start
:
0
;
float
y_start
=
std
::
max
(
y
,
other
.
y
);
float
y_end
=
std
::
min
(
y
+
height
,
other
.
height
);
ret
.
y
=
y_start
;
ret
.
height
=
(
y_end
-
y_start
)
>
0
?
y_end
-
y_start
:
0
;
return
ret
;
}
};
struct
Object
{
Rect
rect
;
int
label
;
float
prob
;
};
struct
GridAndStride
{
int
grid0
;
int
grid1
;
int
stride
;
};
static
void
generate_grids_and_stride
(
const
int
target_size
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
GridAndStride
>&
grid_strides
)
{
for
(
auto
stride
:
strides
)
{
int
num_grid
=
target_size
/
stride
;
for
(
int
g1
=
0
;
g1
<
num_grid
;
g1
++
)
{
for
(
int
g0
=
0
;
g0
<
num_grid
;
g0
++
)
{
grid_strides
.
push_back
((
GridAndStride
){
g0
,
g1
,
stride
});
}
}
}
}
static
void
generate_yolox_proposals
(
std
::
vector
<
GridAndStride
>
grid_strides
,
const
float
*
feat_ptr
,
float
prob_threshold
,
std
::
vector
<
Object
>&
objects
)
{
const
int
num_class
=
80
;
const
int
num_anchors
=
grid_strides
.
size
();
for
(
int
anchor_idx
=
0
;
anchor_idx
<
num_anchors
;
anchor_idx
++
)
{
const
int
grid0
=
grid_strides
[
anchor_idx
].
grid0
;
const
int
grid1
=
grid_strides
[
anchor_idx
].
grid1
;
const
int
stride
=
grid_strides
[
anchor_idx
].
stride
;
const
int
basic_pos
=
anchor_idx
*
85
;
float
x_center
=
(
feat_ptr
[
basic_pos
+
0
]
+
grid0
)
*
stride
;
float
y_center
=
(
feat_ptr
[
basic_pos
+
1
]
+
grid1
)
*
stride
;
float
w
=
exp
(
feat_ptr
[
basic_pos
+
2
])
*
stride
;
float
h
=
exp
(
feat_ptr
[
basic_pos
+
3
])
*
stride
;
float
x0
=
x_center
-
w
*
0.5
f
;
float
y0
=
y_center
-
h
*
0.5
f
;
float
box_objectness
=
feat_ptr
[
basic_pos
+
4
];
for
(
int
class_idx
=
0
;
class_idx
<
num_class
;
class_idx
++
)
{
float
box_cls_score
=
feat_ptr
[
basic_pos
+
5
+
class_idx
];
float
box_prob
=
box_objectness
*
box_cls_score
;
if
(
box_prob
>
prob_threshold
)
{
Object
obj
;
obj
.
rect
.
x
=
x0
;
obj
.
rect
.
y
=
y0
;
obj
.
rect
.
width
=
w
;
obj
.
rect
.
height
=
h
;
obj
.
label
=
class_idx
;
obj
.
prob
=
box_prob
;
objects
.
push_back
(
obj
);
}
}
// class loop
}
// point anchor loop
}
void
qsort_descent_inplace
(
std
::
vector
<
Object
>&
faceobjects
,
int
left
,
int
right
)
{
int
i
=
left
;
int
j
=
right
;
float
p
=
faceobjects
[(
left
+
right
)
/
2
].
prob
;
while
(
i
<=
j
)
{
while
(
faceobjects
[
i
].
prob
>
p
)
i
++
;
while
(
faceobjects
[
j
].
prob
<
p
)
j
--
;
if
(
i
<=
j
)
{
// swap
std
::
swap
(
faceobjects
[
i
],
faceobjects
[
j
]);
i
++
;
j
--
;
}
}
if
(
left
<
j
)
qsort_descent_inplace
(
faceobjects
,
left
,
j
);
if
(
i
<
right
)
qsort_descent_inplace
(
faceobjects
,
i
,
right
);
}
void
qsort_descent_inplace
(
std
::
vector
<
Object
>&
objects
)
{
if
(
objects
.
empty
())
return
;
qsort_descent_inplace
(
objects
,
0
,
objects
.
size
()
-
1
);
}
inline
float
intersection_area
(
const
Object
&
a
,
const
Object
&
b
)
{
Rect
inter
=
a
.
rect
&
b
.
rect
;
return
inter
.
area
();
}
void
nms_sorted_bboxes
(
const
std
::
vector
<
Object
>&
faceobjects
,
std
::
vector
<
int
>&
picked
,
float
nms_threshold
)
{
picked
.
clear
();
const
int
n
=
faceobjects
.
size
();
std
::
vector
<
float
>
areas
(
n
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
areas
[
i
]
=
faceobjects
[
i
].
rect
.
area
();
}
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
const
Object
&
a
=
faceobjects
[
i
];
int
keep
=
1
;
for
(
int
j
=
0
;
j
<
(
int
)
picked
.
size
();
j
++
)
{
const
Object
&
b
=
faceobjects
[
picked
[
j
]];
// intersection over union
float
inter_area
=
intersection_area
(
a
,
b
);
float
union_area
=
areas
[
i
]
+
areas
[
picked
[
j
]]
-
inter_area
;
// float IoU = inter_area / union_area
if
(
inter_area
/
union_area
>
nms_threshold
)
keep
=
0
;
}
if
(
keep
)
picked
.
push_back
(
i
);
}
}
void
decode_outputs
(
const
float
*
prob
,
std
::
vector
<
Object
>&
objects
,
float
scale
,
const
int
img_w
,
const
int
img_h
)
{
std
::
vector
<
Object
>
proposals
;
std
::
vector
<
int
>
strides
=
{
8
,
16
,
32
};
std
::
vector
<
GridAndStride
>
grid_strides
;
generate_grids_and_stride
(
INPUT_W
,
strides
,
grid_strides
);
generate_yolox_proposals
(
grid_strides
,
prob
,
BBOX_CONF_THRESH
,
proposals
);
qsort_descent_inplace
(
proposals
);
std
::
vector
<
int
>
picked
;
nms_sorted_bboxes
(
proposals
,
picked
,
NMS_THRESH
);
int
count
=
picked
.
size
();
objects
.
resize
(
count
);
for
(
int
i
=
0
;
i
<
count
;
i
++
)
{
objects
[
i
]
=
proposals
[
picked
[
i
]];
// adjust offset to original unpadded
float
x0
=
(
objects
[
i
].
rect
.
x
)
/
scale
;
float
y0
=
(
objects
[
i
].
rect
.
y
)
/
scale
;
float
x1
=
(
objects
[
i
].
rect
.
x
+
objects
[
i
].
rect
.
width
)
/
scale
;
float
y1
=
(
objects
[
i
].
rect
.
y
+
objects
[
i
].
rect
.
height
)
/
scale
;
// clip
x0
=
std
::
max
(
std
::
min
(
x0
,
(
float
)(
img_w
-
1
)),
0.
f
);
y0
=
std
::
max
(
std
::
min
(
y0
,
(
float
)(
img_h
-
1
)),
0.
f
);
x1
=
std
::
max
(
std
::
min
(
x1
,
(
float
)(
img_w
-
1
)),
0.
f
);
y1
=
std
::
max
(
std
::
min
(
y1
,
(
float
)(
img_h
-
1
)),
0.
f
);
objects
[
i
].
rect
.
x
=
x0
;
objects
[
i
].
rect
.
y
=
y0
;
objects
[
i
].
rect
.
width
=
x1
-
x0
;
objects
[
i
].
rect
.
height
=
y1
-
y0
;
}
}
void
draw_objects
(
uint8_t
*
image
,
int
width
,
int
height
,
int
channel
,
const
std
::
vector
<
Object
>&
objects
)
{
for
(
size_t
i
=
0
;
i
<
objects
.
size
();
i
++
)
{
const
Object
&
obj
=
objects
[
i
];
printf
(
"Object: %d = %.5f at %.2f %.2f %.2f x %.2f
\n
"
,
obj
.
label
,
obj
.
prob
,
obj
.
rect
.
x
,
obj
.
rect
.
y
,
obj
.
rect
.
width
,
obj
.
rect
.
height
);
}
}
}
// namespace
bool
lite
::
example
::
detect_yolox
(
const
Args
&
args
)
{
std
::
string
network_path
=
args
.
model_path
;
std
::
string
input_path
=
args
.
input_path
;
int
width
,
height
,
channel
;
uint8_t
*
image
=
stbi_load
(
input_path
.
c_str
(),
&
width
,
&
height
,
&
channel
,
0
);
printf
(
"Input image %s with height=%d, width=%d, channel=%d
\n
"
,
input_path
.
c_str
(),
width
,
height
,
channel
);
//! create and load the network
std
::
shared_ptr
<
Network
>
network
=
std
::
make_shared
<
Network
>
();
network
->
load_model
(
network_path
);
//! set input data to input tensor
auto
input_tensor
=
network
->
get_io_tensor
(
"data"
);
preprocess_image
(
image
,
width
,
height
,
channel
,
input_tensor
);
network
->
forward
();
network
->
wait
();
float
*
predict_ptr
=
static_cast
<
float
*>
(
network
->
get_output_tensor
(
0
)
->
get_memory_ptr
());
float
scale
=
std
::
min
(
INPUT_W
/
(
width
*
1.0
),
INPUT_H
/
(
height
*
1.0
));
std
::
vector
<
Object
>
objects
;
decode_outputs
(
predict_ptr
,
objects
,
scale
,
width
,
height
);
draw_objects
(
image
,
width
,
height
,
channel
,
objects
);
stbi_image_free
(
image
);
return
0
;
}
#endif
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
lite/example/cpp_example/mge/cv/picture_classification.cpp
0 → 100644
浏览文件 @
aa80d988
/**
* \file example/cpp_example/cv/picture_classification.cpp
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
*
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*/
#include <thread>
#include "../../example.h"
#if LITE_BUILD_WITH_MGE
#include <cstdio>
#include "misc.h"
#define STB_IMAGE_STATIC
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#define STB_IMAGE_RESIZE_IMPLEMENTATION
#include "stb_image_resize.h"
#define STB_IMAGE_WRITE_IMPLEMENTATION
#include "stb_image_write.h"
using
namespace
lite
;
using
namespace
example
;
namespace
{
void
preprocess_image
(
std
::
string
pic_path
,
std
::
shared_ptr
<
Tensor
>
tensor
)
{
int
width
,
height
,
channel
;
uint8_t
*
image
=
stbi_load
(
pic_path
.
c_str
(),
&
width
,
&
height
,
&
channel
,
0
);
printf
(
"Input image %s with height=%d, width=%d, channel=%d
\n
"
,
pic_path
.
c_str
(),
width
,
height
,
channel
);
auto
layout
=
tensor
->
get_layout
();
auto
pixels
=
layout
.
shapes
[
2
]
*
layout
.
shapes
[
3
];
for
(
size_t
i
=
0
;
i
<
layout
.
ndim
;
i
++
)
{
printf
(
"model input shape[%zu]=%zu
\n
"
,
i
,
layout
.
shapes
[
i
]);
}
//! resize to tensor shape
std
::
shared_ptr
<
std
::
vector
<
uint8_t
>>
resize_int8
=
std
::
make_shared
<
std
::
vector
<
uint8_t
>>
(
pixels
*
channel
);
stbir_resize_uint8
(
image
,
width
,
height
,
0
,
resize_int8
->
data
(),
layout
.
shapes
[
2
],
layout
.
shapes
[
3
],
0
,
channel
);
stbi_image_free
(
image
);
//! convert form rgba to bgr, relayout from hwc to chw, normalization copy to tensor
float
*
in_data
=
static_cast
<
float
*>
(
tensor
->
get_memory_ptr
());
for
(
size_t
i
=
0
;
i
<
pixels
;
i
++
)
{
in_data
[
i
+
2
*
pixels
]
=
(
resize_int8
->
at
(
i
*
channel
+
0
)
-
123.675
)
/
58.395
;
in_data
[
i
+
1
*
pixels
]
=
(
resize_int8
->
at
(
i
*
channel
+
1
)
-
116.280
)
/
57.120
;
in_data
[
i
+
0
*
pixels
]
=
(
resize_int8
->
at
(
i
*
channel
+
2
)
-
103.530
)
/
57.375
;
}
}
void
classfication_process
(
std
::
shared_ptr
<
Tensor
>
tensor
,
float
&
score
,
size_t
&
class_id
)
{
auto
layout
=
tensor
->
get_layout
();
for
(
size_t
i
=
0
;
i
<
layout
.
ndim
;
i
++
)
{
printf
(
"model output shape[%zu]=%zu
\n
"
,
i
,
layout
.
shapes
[
i
]);
}
size_t
nr_data
=
tensor
->
get_tensor_total_size_in_byte
()
/
layout
.
get_elem_size
();
float
*
data
=
static_cast
<
float
*>
(
tensor
->
get_memory_ptr
());
score
=
data
[
0
];
class_id
=
0
;
float
sum
=
data
[
0
];
for
(
size_t
i
=
1
;
i
<
nr_data
;
i
++
)
{
if
(
score
<
data
[
i
])
{
score
=
data
[
i
];
class_id
=
i
;
}
sum
+=
data
[
i
];
}
printf
(
"output tensor sum is %f
\n
"
,
sum
);
}
}
// namespace
bool
lite
::
example
::
picture_classification
(
const
Args
&
args
)
{
std
::
string
network_path
=
args
.
model_path
;
std
::
string
input_path
=
args
.
input_path
;
//! create and load the network
std
::
shared_ptr
<
Network
>
network
=
std
::
make_shared
<
Network
>
();
network
->
load_model
(
network_path
);
//! set input data to input tensor
std
::
shared_ptr
<
Tensor
>
input_tensor
=
network
->
get_input_tensor
(
0
);
//! copy or forward data to network
preprocess_image
(
args
.
input_path
,
input_tensor
);
printf
(
"Begin forward.
\n
"
);
network
->
forward
();
network
->
wait
();
printf
(
"End forward.
\n
"
);
//! get the output data or read tensor set in network_in
size_t
class_id
;
float
score
;
auto
output_tensor
=
network
->
get_output_tensor
(
0
);
classfication_process
(
output_tensor
,
score
,
class_id
);
printf
(
"Picture %s is class_id %zu, with score %f
\n
"
,
args
.
input_path
.
c_str
(),
class_id
,
score
);
return
0
;
}
#endif
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
lite/example/cpp_example/mge/cv/stb_image.h
0 → 100644
浏览文件 @
aa80d988
此差异已折叠。
点击以展开。
lite/example/cpp_example/mge/cv/stb_image_resize.h
0 → 100644
浏览文件 @
aa80d988
此差异已折叠。
点击以展开。
lite/example/cpp_example/mge/cv/stb_image_write.h
0 → 100644
浏览文件 @
aa80d988
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录