提交 a891f9b3 编写于 作者: M Megvii Engine Team

docs(api/lite): add megenginelite.network api doc

GitOrigin-RevId: e0b8eb207426d0907f2dd6835d8cd00a20b8d4fa
上级 5ef1ac75
......@@ -11,7 +11,82 @@ from .tensor import *
class LiteOptions(Structure):
"""
the inference options will be used to config a network
the inference options which can optimize the network forwarding
performance
Attributes:
weight_preprocess: is the option which optimize the inference performance
with processing the weights of the network ahead
fuse_preprocess: fuse preprocess patten, like astype + pad_channel +
dimshuffle
fake_next_exec: whether only to perform non-computing tasks (like
memory allocation and queue initialization) for next exec. This will be
reset to false when the graph is executed.
var_sanity_check_first_run: Disable var sanity check on the first run.
Var sanity check is enabled on the first-time execution by default, and can
be used to find some potential memory access errors in the operator
const_shape: used to reduce memory usage and improve performance since some
static inference data structures can be omitted and some operators can be
compute before forwarding
force_dynamic_alloc: force dynamic allocate memory for all vars
force_output_dynamic_alloc: force dynamic allocate memory for output tensor
which are used as the input of CallbackCaller Operator
no_profiling_on_shape_change: do not re-profile to select best implement
algo when input shape changes (use previous algo)
jit_level: Execute supported operators with JIT (support MLIR,
NVRTC). Can only be used on Nvidia GPUs and X86 CPU, this value indicates JIT level:
level 1: for JIT execute with basic elemwise operator
level 2: for JIT execute elemwise and reduce operators
record_level: flags to optimize the inference performance with record the
kernel tasks in first run, hereafter the inference all need is to execute the
recorded tasks.
level = 0 means the normal inference
level = 1 means use record inference
level = 2 means record inference with free the extra memory
graph_opt_level: network optimization level:
0: disable
1: level-1: inplace arith transformations during graph construction
2: level-2: level-1, plus global optimization before graph compiling
3: also enable JIT
async_exec_level: level of dispatch on separate threads for different comp_node.
0: do not perform async dispatch
1: dispatch async if there are more than one comp node with limited queue
mask 0b10: async if there are multiple comp nodes with
mask 0b100: always async
Examples:
.. code-block::
from megenginelite import *
options = LiteOptions()
options.weight_preprocess = true
options.record_level = 1
options.fuse_preprocess = true
"""
_fields_ = [
......@@ -39,6 +114,7 @@ class LiteOptions(Structure):
]
def __init__(self):
self.weight_preprocess = False
self.fuse_preprocess = False
self.fake_next_exec = False
......@@ -76,17 +152,34 @@ class LiteOptions(Structure):
class LiteConfig(Structure):
"""
Configuration when load and compile the graph
Configuration when load and compile a network
Attributes:
has_compression: flag whether the model is compressed, the compress
method is stored in the model
bare_model_cryption_name: is the bare model cryption method name, bare
model is not pack model info inside
device_id: configure the device id of a network
use_loader_dynamic_param: when model forward with device loader of npu,
use_loader_dynamic_param used to flag whether the loader use device input or
output, if use device input or output it will set Non-zero , else set zero
device_type: configure the device type of a network
has_compression: flag whether the model is compressed, the compress
method will used to read the model
backend: configure the inference backend of a network, now only support
megengine
bare_model_cryption_name: is the bare model encryption method name, bare
model is not packed with json information, this encryption method name is
useful to decrypt the encrypted bare model
options: configuration of Options
Examples:
.. code-block::
from megenginelite import *
config = LiteConfig()
config.has_compression = false
config.device_type = LiteDeviceType.LITE_CPU
config.backend = LiteBackend.LITE_DEFAULT
config.bare_model_cryption_name = "AES_default".encode("utf-8")
"""
_fields_ = [
......@@ -161,23 +254,43 @@ class LiteExtraConfig(Structure):
class LiteIO(Structure):
"""
config the network input and output item
config the network input and output item, the input and output tensor
information will describe there
Attributes:
name: the tensor name in the graph corresponding to the IO
is_host: Used to mark where the input tensor comes from and where the output
tensor will copy to, if is_host is true, the input is from host and output copy
to host, otherwise in device. Sometimes the input is from device and output no need
copy to host, default is true.
io_type: The IO type, it can be SHAPE or VALUE, when SHAPE is set, the input or
output tensor value is invaid, only shape will be set, default is VALUE
config_layout: The layout of the config from user, if other layout is set before
forward or get after forward, this layout will by pass. if no other
layout is set before forward, this layout will work. if this layout is
no set, the model will forward with its origin layout. if in output, it
will used to check.
Note:
if other layout is set to input tensor before forwarding, this layout will not work
name: the tensor name in the graph corresponding to the IO
if no layout is set before forwarding, the model will forward with its origin layout
is_host: Used to mark where the input tensor comes from and the output where copy
to, if is_host is true, the input is from host and output copy to host,
otherwise device. Sometimes The input is from device and output no need
copy to host, default is true.
if layout is set in output tensor, it will used to check whether the layout computed from the network is correct
io_type: The IO type, it can be SHAPE or VALUE, when SHAPE is set, the input or
output tensor value is invaid, only shape will be set, default is VALUE
Examples:
.. code-block::
from megenginelite import *
io = LiteIO(
"data2",
is_host=True,
io_type=LiteIOType.LITE_IO_SHAPE,
layout=LiteLayout([2, 4, 4]),
)
config_layout: The layout of the config from user, if other layout is set before
forward or get after forward, this layout will by pass. if no other
layout is set before forward, this layout will work. if this layout is
no set, the model will forward with its origin layout. if in output, it
will used to check.
"""
_fields_ = [
......@@ -205,10 +318,16 @@ class LiteIO(Structure):
@property
def name(self):
"""
get the name of IO item
"""
return self._name.decode("utf-8")
@name.setter
def name(self, name):
"""
set the name of IO item
"""
if isinstance(name, str):
self._name = name.encode("utf-8")
else:
......@@ -229,9 +348,6 @@ class LiteIO(Structure):
class _LiteNetworkIO(Structure):
"""
the input and output information when load the network
"""
_fields_ = [
("inputs", POINTER(LiteIO)),
......@@ -249,7 +365,24 @@ class _LiteNetworkIO(Structure):
class LiteNetworkIO(object):
"""
the input and output information for user to construct _LiteNetWorkIO
the input and output information when load the network for user
the NetworkIO will remain in the network until the network is destroyed.
Attributes:
inputs: The all input tensors information that will configure to the network
outputs: The all output tensors information that will configure to the network
Examples:
.. code-block::
from megenginelite import *
input_io = LiteIO("data", is_host=False, io_type=LiteIOType.LITE_IO_VALUE)
io = LiteNetworkIO()
io.add_input(input_io)
output_io = LiteIO("out", is_host=True, layout=LiteLayout([1, 1000]))
io.add_output(output_io)
"""
def __init__(self, inputs=None, outputs=None):
......@@ -277,6 +410,9 @@ class LiteNetworkIO(object):
def add_input(
self, obj, is_host=True, io_type=LiteIOType.LITE_IO_VALUE, layout=None
):
"""
add input information into LiteNetworkIO
"""
if isinstance(obj, LiteIO):
self.inputs.append(obj)
else:
......@@ -286,6 +422,9 @@ class LiteNetworkIO(object):
def add_output(
self, obj, is_host=True, io_type=LiteIOType.LITE_IO_VALUE, layout=None
):
"""
add output information into LiteNetworkIO
"""
if isinstance(obj, LiteIO):
self.outputs.append(obj)
else:
......@@ -397,6 +536,27 @@ class _NetworkAPI(_LiteCObjBase):
class LiteNetwork(object):
"""
the network to load a model and forward
Examples:
.. code-block::
from megenginelite import *
config = LiteConfig()
config.device_type = LiteDeviceType.LITE_CPU
network = LiteNetwork(config)
network.load("model_path")
input_name = network.get_input_name(0)
input_tensor = network.get_io_tensor(input_name)
output_name = network.get_output_name(0)
output_tensor = network.get_io_tensor(output_name)
input_tensor.set_data_by_copy(input_data)
network.forward()
network.wait()
"""
_api = _NetworkAPI()._lib
......@@ -428,18 +588,33 @@ class LiteNetwork(object):
self._api.LITE_destroy_network(self._network)
def load(self, path):
"""
load network from given path
"""
c_path = c_char_p(path.encode("utf-8"))
self._api.LITE_load_model_from_path(self._network, c_path)
def forward(self):
"""
forward the network with filled input data and fill the output data
to the output tensor
"""
self._api.LITE_forward(self._network)
def wait(self):
"""
wait until forward finish in sync model
"""
self._api.LITE_wait(self._network)
def is_cpu_inplace_mode(self):
"""
whether the network run in cpu inpalce mode
Returns:
if use inpalce mode return True, else return False
"""
inplace = c_int()
self._api.LITE_is_cpu_inplace_mode(self._network, byref(inplace))
......@@ -449,13 +624,20 @@ class LiteNetwork(object):
"""
set cpu forward in inplace mode with which cpu forward only create one
thread
Note: this must be set before the network loaded
Note:
this must be set before the network loaded
"""
self._api.LITE_set_cpu_inplace_mode(self._network)
def use_tensorrt(self):
"""
Note: this must be set before the network loaded
use TensorRT
Note:
this must be set before the network loaded
"""
self._api.LITE_use_tensorrt(self._network)
......@@ -463,6 +645,9 @@ class LiteNetwork(object):
def device_id(self):
"""
get the device id
Returns:
the device id of current network used
"""
device_id = c_int()
self._api.LITE_get_device_id(self._network, byref(device_id))
......@@ -472,7 +657,10 @@ class LiteNetwork(object):
def device_id(self, device_id):
"""
set the device id
Note: this must be set before the network loaded
Note:
this must be set before the network loaded
"""
self._api.LITE_set_device_id(self._network, device_id)
......@@ -480,6 +668,9 @@ class LiteNetwork(object):
def stream_id(self):
"""
get the stream id
Returns:
the value of stream id set for detwork
"""
stream_id = c_int()
self._api.LITE_get_stream_id(self._network, byref(stream_id))
......@@ -489,7 +680,9 @@ class LiteNetwork(object):
def stream_id(self, stream_id):
"""
set the stream id
Note: this must be set before the network loaded
Note:
this must be set before the network loaded
"""
self._api.LITE_set_stream_id(self._network, stream_id)
......@@ -497,6 +690,9 @@ class LiteNetwork(object):
def threads_number(self):
"""
get the thread number of the netwrok
Returns:
the number of thread set in the network
"""
nr_thread = c_size_t()
self._api.LITE_get_cpu_threads_number(self._network, byref(nr_thread))
......@@ -506,13 +702,22 @@ class LiteNetwork(object):
def threads_number(self, nr_threads):
"""
set the network forward in multithread mode, and the thread number
Note: this must be set before the network loaded
Note:
this must be set before the network loaded
"""
self._api.LITE_set_cpu_threads_number(self._network, nr_threads)
def get_io_tensor(self, name, phase=LiteTensorPhase.LITE_IO):
"""
get input or output tensor by its name
Args:
name: the name of io tensor
phase: the type of LiteTensor, this is useful to separate input or output tensor with the same name
Returns:
the tensor with given name and type
"""
if type(name) == str:
c_name = c_char_p(name.encode("utf-8"))
......@@ -528,6 +733,12 @@ class LiteNetwork(object):
def get_input_name(self, index):
"""
get the input name by the index in the network
Args:
index: the index of the input name
Returns:
the name of input tesor with given index
"""
c_name = c_char_p()
self._api.LITE_get_input_name(self._network, index, byref(c_name))
......@@ -536,6 +747,12 @@ class LiteNetwork(object):
def get_output_name(self, index):
"""
get the output name by the index in the network
Args:
index: the index of the output name
Returns:
the name of output tesor with given index
"""
c_name = c_char_p()
self._api.LITE_get_output_name(self._network, index, byref(c_name))
......@@ -544,6 +761,9 @@ class LiteNetwork(object):
def get_all_input_name(self):
"""
get all the input tensor name in the network
Returns:
the names of all input tesor in the network
"""
nr_input = c_size_t()
self._api.LITE_get_all_input_name(self._network, byref(nr_input), None)
......@@ -557,6 +777,9 @@ class LiteNetwork(object):
def get_all_output_name(self):
"""
get all the output tensor name in the network
Returns:
the names of all output tesor in the network
"""
nr_output = c_size_t()
self._api.LITE_get_all_output_name(self._network, byref(nr_output), None)
......@@ -576,6 +799,9 @@ class LiteNetwork(object):
def share_weights_with(self, src_network):
"""
share weights with the loaded network
Args:
src_network: the network to share weights
"""
assert isinstance(src_network, LiteNetwork)
self._api.LITE_shared_weight_with_network(self._network, src_network._network)
......@@ -583,11 +809,21 @@ class LiteNetwork(object):
def share_runtime_memroy(self, src_network):
"""
share runtime memory with the srouce network
Args:
src_network: the network to share runtime memory
"""
assert isinstance(src_network, LiteNetwork)
self._api.LITE_share_runtime_memroy(self._network, src_network._network)
def async_with_callback(self, async_callback):
"""
set the network forwarding in async mode and set the AsyncCallback callback
function
Args:
async_callback: the callback to set for network
"""
callback = wrap_async_callback(async_callback)
self._api.LITE_set_async_callback(self._network, callback)
......@@ -596,6 +832,9 @@ class LiteNetwork(object):
when the network start forward, the callback will be called,
the start_callback with param mapping from LiteIO to the corresponding
LiteTensor
Args:
start_callback: the callback to set for network
"""
callback = start_finish_callback(start_callback)
self._api.LITE_set_start_callback(self._network, callback)
......@@ -605,28 +844,49 @@ class LiteNetwork(object):
when the network finish forward, the callback will be called,
the finish_callback with param mapping from LiteIO to the corresponding
LiteTensor
Args:
finish_callback: the callback to set for network
"""
callback = start_finish_callback(finish_callback)
self._api.LITE_set_finish_callback(self._network, callback)
def enable_profile_performance(self, profile_file):
"""
enable get the network performance profiled information and save into given file
Args:
profile_file: the file to save profile information
"""
c_file = profile_file.encode("utf-8")
self._api.LITE_enable_profile_performance(self._network, c_file)
def set_network_algo_workspace_limit(self, size_limit):
"""
set the opr workspace limitation in the target network, some opr
maybe use large of workspace to get good performance, set workspace limitation
can save memory but may influence the performance
Args:
size_limit: the byte size of workspace limitation
"""
self._api.LITE_set_network_algo_workspace_limit(self._network, size_limit)
def set_network_algo_policy(
self, policy, shared_batch_size=0, binary_equal_between_batch=False
):
"""
shared_batch_size: the batch size used by fastrun,
Non-zero value means that fastrun use this batch size
regardless of the batch size of the model. Zero means
fastrun use batch size of the model
binary_equal_between_batch: if the content of each input batch is
binary equal,whether the content of each output batch is
promised to be equal
set the network algorithm search policy for fast-run
Args:
shared_batch_size: the batch size used by fastrun,
Non-zero value means that fastrun use this batch size
regardless of the batch size of the model. Zero means
fastrun use batch size of the model
binary_equal_between_batch: if the content of each input batch is
binary equal,whether the content of each output batch is
promised to be equal
"""
self._api.LITE_set_network_algo_policy(self._network, policy)
......@@ -635,29 +895,68 @@ class LiteNetwork(object):
)
def io_txt_dump(self, txt_file):
"""
dump all input/output tensor of all operators to the output file, in txt
format, user can use this function to debug compute error
Args:
txt_file: the txt file
"""
c_file = txt_file.encode("utf-8")
self._api.LITE_enable_io_txt_dump(self._network, c_file)
def io_bin_dump(self, bin_dir):
"""
dump all input/output tensor of all operators to the output file, in
binary format, user can use this function to debug compute error
Args:
bin_dir: the binary file directory
"""
c_dir = bin_dir.encode("utf-8")
self._api.LITE_enable_io_bin_dump(self._network, c_dir)
def get_static_memory_alloc_info(self, log_dir="logs/test"):
"""
get static peak memory info showed by Graph visualization
Args:
log_dir: the directory to save information log
"""
c_log_dir = log_dir.encode("utf-8")
self._api.LITE_get_static_memory_alloc_info(self._network, c_log_dir)
def enable_global_layout_transform(self):
"""
set global layout transform optimization for network, global
layout optimization can auto determine the layout of every operator in
the network by profile, thus it can improve the performance of the
network forwarding
"""
self._api.LITE_enable_global_layout_transform(self._network)
def dump_layout_transform_model(self, model_file):
"""
dump network after global layout transform optimization to the
specific path
Args:
model_file: the file path to dump model
"""
c_file = model_file.encode("utf-8")
self._api.LITE_dump_layout_transform_model(self._network, c_file)
def get_model_io_info(model_path, config=None):
"""
get the model IO information before create the NetWork, this IO
information can be used to configuration the NetWork.
get the model io information before model loaded by model path.
Args:
model_path: the model path to get the model IO information
config the model configuration
Returns:
the input and output information in the network configuration
"""
api = _NetworkAPI()._lib
c_path = c_char_p(model_path.encode("utf-8"))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册