Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
a605f38b
MegEngine
项目概览
MegEngine 天元
/
MegEngine
1 年多 前同步成功
通知
404
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
a605f38b
编写于
8月 02, 2021
作者:
M
Megvii Engine Team
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refactor(opmeth): add OpMethCache struct
GitOrigin-RevId: c1ebe156725236eda08971b0978eab7c93219953
上级
0213dbe5
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
137 addition
and
73 deletion
+137
-73
imperative/python/src/common.cpp
imperative/python/src/common.cpp
+1
-1
imperative/python/src/grad.cpp
imperative/python/src/grad.cpp
+14
-31
imperative/src/impl/op_def.cpp
imperative/src/impl/op_def.cpp
+30
-3
imperative/src/impl/op_trait.h
imperative/src/impl/op_trait.h
+1
-0
imperative/src/impl/proxy_graph_detail.cpp
imperative/src/impl/proxy_graph_detail.cpp
+1
-38
imperative/src/include/megbrain/imperative/graph_cache.h
imperative/src/include/megbrain/imperative/graph_cache.h
+90
-0
未找到文件。
imperative/python/src/common.cpp
浏览文件 @
a605f38b
...
...
@@ -52,7 +52,7 @@ std::string get_default_device() {
}
void
init_common
(
py
::
module
m
)
{
auto
&&
PyCompNode
=
py
::
class_
<
CompNode
>
(
m
,
"CompNode"
)
auto
PyCompNode
=
py
::
class_
<
CompNode
>
(
m
,
"CompNode"
)
.
def
(
py
::
init
())
.
def
(
py
::
init
(
py
::
overload_cast
<
const
std
::
string
&>
(
&
CompNode
::
load
)))
.
def_property_readonly
(
"logical_name"
,
[](
const
CompNode
&
cn
)
{
...
...
imperative/python/src/grad.cpp
浏览文件 @
a605f38b
...
...
@@ -34,53 +34,36 @@ struct GradSlotWeakPtr {
size_t
idx
;
};
struct
BackwardGraphCache
:
std
::
unordered_map
<
uint64_t
,
std
::
shared_ptr
<
OptimizedBackwardGraphResult
>>
,
CompNodeDepedentObject
{
std
::
shared_ptr
<
void
>
on_comp_node_finalize
()
override
{
clear
();
return
{};
}
}
backward_graph_cache
;
std
::
shared_ptr
<
OptimizedBackwardGraphResult
>
make_backward_graph
(
ApplyContext
&
ctx
,
const
apply_result_t
&
outputs
)
{
// hash
static_assert
(
alignof
(
size_t
)
%
alignof
(
bool
)
==
0
)
;
size_t
buf_size
=
(
1
+
ctx
.
nargs
*
2
)
*
sizeof
(
size_t
)
+
ctx
.
nargs
*
sizeof
(
bool
)
;
alignas
(
alignof
(
size_t
))
std
::
byte
buf
[
buf_size
]
;
size_t
*
size_t_ptr
=
reinterpret_cast
<
size_t
*>
(
buf
)
;
bool
*
bool_ptr
=
reinterpret_cast
<
bool
*>
(
size_t_ptr
+
(
1
+
ctx
.
nargs
*
2
)
);
bool
*
bool_ptr0
=
bool_ptr
;
*
(
size_t_ptr
++
)
=
ctx
.
op
->
hash
(
);
using
OptimizedBackwardGraphCache
=
OpMethResultCache
<
std
::
shared_ptr
<
OptimizedBackwardGraphResult
>
,
SmallVector
<
bool
>>
;
thread_local
OptimizedBackwardGraphCache
cache
;
decltype
(
cache
)
::
key_t
cache_key
{
ctx
.
op
}
;
SmallVector
<
LogicalTensorDesc
>&
input_descs
=
cache_key
.
inputs
;
SmallVector
<
bool
>&
input_requires_grad
=
std
::
get
<
0
>
(
cache_key
.
extras
);
input_descs
.
resize
(
ctx
.
nargs
)
;
input_requires_grad
.
resize
(
ctx
.
nargs
);
for
(
size_t
i
=
0
;
i
<
ctx
.
nargs
;
++
i
)
{
*
(
size_t_ptr
++
)
=
mgb
::
hash
(
ctx
.
args
[
i
]
->
dtype
().
handle
()
);
*
(
size_t_ptr
++
)
=
mgb
::
hash
(
ctx
.
args
[
i
]
->
comp_node
()
);
*
(
bool_ptr
++
)
=
!
ctx
.
args
[
i
]
->
m_grad_info_dict
.
empty
(
);
input_descs
[
i
].
layout
.
dtype
=
ctx
.
args
[
i
]
->
dtype
(
);
input_descs
[
i
].
comp_node
=
ctx
.
args
[
i
]
->
comp_node
(
);
input_requires_grad
[
i
]
=
python
::
input_requires_grad
(
ctx
,
i
);
}
mgb_assert
(
bool_ptr0
==
reinterpret_cast
<
bool
*>
(
size_t_ptr
)
&&
bool_ptr
==
reinterpret_cast
<
bool
*>
(
buf
+
buf_size
));
uint64_t
key
=
XXHash
{}.
update
(
buf
,
buf_size
).
digest
();
auto
&&
iter
=
backward_graph_cache
.
find
(
key
);
if
(
iter
!=
backward_graph_
cache
.
end
())
{
auto
iter
=
cache
.
find
(
cache_
key
);
if
(
iter
!=
cache
.
end
())
{
return
iter
->
second
;
}
// slow path
SmallVector
<
LogicalTensorDesc
>
inputs
(
ctx
.
nargs
);
SmallVector
<
bool
>
input_requires_grad
(
ctx
.
nargs
,
false
);
SmallVector
<
bool
>
output_has_grad
(
outputs
.
size
(),
true
);
for
(
size_t
i
=
0
;
i
<
ctx
.
nargs
;
++
i
)
{
inputs
[
i
].
comp_node
=
ctx
.
args
[
i
]
->
comp_node
();
inputs
[
i
].
layout
.
dtype
=
ctx
.
args
[
i
]
->
dtype
();
input_requires_grad
[
i
]
=
python
::
input_requires_grad
(
ctx
,
i
);
}
std
::
shared_ptr
<
OptimizedBackwardGraphResult
>
ret
;
auto
bg
=
OpDef
::
make_backward_graph
(
*
ctx
.
op
,
inputs
,
input_requires_grad
,
output_has_grad
);
*
ctx
.
op
,
input
_desc
s
,
input_requires_grad
,
output_has_grad
);
if
(
!
bg
.
graph
.
empty
())
{
ret
=
std
::
make_shared
<
OptimizedBackwardGraphResult
>
(
bg
);
}
backward_graph_cache
.
emplace
(
key
,
ret
);
cache
.
emplace
(
cache_
key
,
ret
);
return
ret
;
}
...
...
imperative/src/impl/op_def.cpp
浏览文件 @
a605f38b
...
...
@@ -85,7 +85,14 @@ EncodedSubraph OpDef::make_backward_graph(
const
SmallVector
<
LogicalTensorDesc
>&
inputs
,
const
SmallVector
<
bool
>&
input_requires_grad
,
const
SmallVector
<
bool
>&
output_has_grad
)
{
return
def
.
trait
()
->
make_backward_graph
(
def
,
inputs
,
input_requires_grad
,
output_has_grad
);
using
BackwardGraphCache
=
OpMethResultCache
<
EncodedSubraph
,
SmallVector
<
bool
>
,
SmallVector
<
bool
>>
;
thread_local
BackwardGraphCache
cache
;
decltype
(
cache
)
::
key_t
cache_key
{
const_cast
<
OpDef
&>
(
def
).
shared_from_this
(),
inputs
,
{
input_requires_grad
,
output_has_grad
}};
auto
iter
=
cache
.
find
(
cache_key
);
if
(
iter
==
cache
.
end
())
{
iter
=
cache
.
insert
({
cache_key
,
def
.
trait
()
->
make_backward_graph
(
def
,
inputs
,
input_requires_grad
,
output_has_grad
)}).
first
;
}
return
iter
->
second
;
}
std
::
vector
<
std
::
pair
<
const
char
*
,
std
::
string
>>
OpDef
::
props
(
...
...
@@ -94,7 +101,7 @@ std::vector<std::pair<const char*, std::string>> OpDef::props(
}
std
::
string
OpDef
::
to_string
()
const
{
std
::
string
builder
=
"{"
;
std
::
string
builder
=
trait
()
->
make_name
(
*
this
)
+
"{"
;
for
(
auto
&&
[
name
,
value
]
:
props
(
*
this
))
{
builder
+=
name
;
builder
+=
": "
;
...
...
@@ -170,7 +177,7 @@ std::string Subgraph::repr() const {
if
(
auto
*
p
=
op
->
try_cast_final
<
OprAttr
>
())
{
buf
<<
p
->
type
;
}
else
{
buf
<<
op
->
dyn_typeinfo
()
->
name
;
buf
<<
op
->
make_name
()
;
}
for
(
size_t
i
:
ins
)
{
buf
<<
" "
;
...
...
@@ -196,6 +203,26 @@ std::string Subgraph::repr() const {
return
buf
.
str
();
}
bool
Subgraph
::
is_single
()
const
{
if
(
exprs
.
size
()
!=
1
)
{
return
false
;
}
auto
&
expr
=
exprs
.
at
(
0
);
return
expr
.
inputs
==
inputs
&&
expr
.
outputs
==
outputs
;
}
std
::
shared_ptr
<
OpDef
>
Subgraph
::
as_single
()
const
{
if
(
is_single
())
{
return
exprs
.
at
(
0
).
op
;
}
else
{
return
nullptr
;
}
}
bool
Subgraph
::
operator
==
(
const
Subgraph
&
rhs
)
const
{
mgb_assert
(
false
,
"Not Implemented"
);
}
}
// namespace imperative
}
// namespace mgb
...
...
imperative/src/impl/op_trait.h
浏览文件 @
a605f38b
...
...
@@ -12,6 +12,7 @@
#pragma once
#include "megbrain/imperative/op_def.h"
#include "megbrain/imperative/graph_cache.h"
namespace
mgb
{
namespace
imperative
{
...
...
imperative/src/impl/proxy_graph_detail.cpp
浏览文件 @
a605f38b
...
...
@@ -113,49 +113,12 @@ void execute(const OpDef& def,
// return graph->infer_output_attrs_fallible(def, inputs);
// }
namespace
{
size_t
get_backward_graph_hash_key
(
const
OpDef
&
def
,
const
SmallVector
<
LogicalTensorDesc
>&
inputs
,
const
SmallVector
<
bool
>&
input_requires_grad
,
const
SmallVector
<
bool
>&
output_has_grad
)
{
XXHash
state
;
size_t
length
=
0
,
data
[
3
+
2
*
inputs
.
size
()];
data
[
length
++
]
=
def
.
hash
();
for
(
auto
&&
i
:
inputs
)
{
data
[
length
++
]
=
mgb
::
hash
(
i
.
layout
.
dtype
.
handle
());
data
[
length
++
]
=
mgb
::
hash
(
i
.
comp_node
);
}
data
[
length
++
]
=
mgb
::
hash
(
input_requires_grad
);
data
[
length
++
]
=
mgb
::
hash
(
output_has_grad
);
mgb_assert
(
length
==
3
+
2
*
inputs
.
size
());
state
.
update
(
data
,
length
*
sizeof
(
size_t
));
return
state
.
digest
();
}
struct
BackwardGraphCache
:
std
::
unordered_map
<
size_t
,
EncodedSubraph
>
,
CompNodeDepedentObject
{
std
::
shared_ptr
<
void
>
on_comp_node_finalize
()
override
{
clear
();
return
{};
}
}
backward_graph_cache
;
}
// anonymous namespace
EncodedSubraph
make_backward_graph
(
const
OpDef
&
def
,
const
SmallVector
<
LogicalTensorDesc
>&
inputs
,
const
SmallVector
<
bool
>&
input_requires_grad
,
const
SmallVector
<
bool
>&
output_has_grad
)
{
auto
hash_key
=
get_backward_graph_hash_key
(
def
,
inputs
,
input_requires_grad
,
output_has_grad
);
auto
&&
iter
=
backward_graph_cache
.
find
(
hash_key
);
if
(
iter
!=
backward_graph_cache
.
end
())
{
return
iter
->
second
;
}
auto
&&
graph
=
ProxyGraph
::
get_default_graph
();
auto
res
=
graph
->
make_backward_graph
(
def
,
inputs
,
input_requires_grad
,
output_has_grad
);
backward_graph_cache
.
emplace
(
hash_key
,
res
);
return
res
;
return
ProxyGraph
::
get_default_graph
()
->
make_backward_graph
(
def
,
inputs
,
input_requires_grad
,
output_has_grad
);
}
}
// namespace proxy_graph_detail
...
...
imperative/src/include/megbrain/imperative/graph_cache.h
0 → 100644
浏览文件 @
a605f38b
/**
* \file imperative/src/include/megbrain/imperative/graph_builder.h
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
*
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
*/
#pragma once
#include "megbrain/imperative/subgraph.h"
#include "megbrain/imperative/op_def.h"
namespace
mgb
{
namespace
imperative
{
template
<
typename
...
TExtraArgs
>
struct
OpMethArgs
{
std
::
shared_ptr
<
OpDef
>
op
;
SmallVector
<
LogicalTensorDesc
>
inputs
;
std
::
tuple
<
TExtraArgs
...
>
extras
;
size_t
hash
()
const
;
bool
operator
==
(
const
OpMethArgs
&
rhs
)
const
{
if
(
bool
(
op
)
^
bool
(
rhs
.
op
))
{
return
false
;
}
if
(
op
&&
rhs
.
op
&&
!
op
->
is_same
(
*
rhs
.
op
))
{
return
false
;
}
if
(
inputs
.
size
()
!=
rhs
.
inputs
.
size
())
{
return
false
;
}
size_t
nr_inputs
=
inputs
.
size
();
for
(
size_t
i
=
0
;
i
<
nr_inputs
;
++
i
)
{
if
(
inputs
[
i
].
comp_node
!=
rhs
.
inputs
[
i
].
comp_node
)
{
return
false
;
}
if
(
inputs
[
i
].
layout
.
dtype
!=
rhs
.
inputs
[
i
].
layout
.
dtype
)
{
return
false
;
}
}
return
extras
==
rhs
.
extras
;
}
struct
hash_t
{
size_t
operator
()(
const
OpMethArgs
&
key
)
const
{
return
key
.
hash
();
}
};
};
template
<
typename
...
TExtraArgs
>
inline
size_t
OpMethArgs
<
TExtraArgs
...
>::
hash
()
const
{
XXHash
state
;
size_t
length
=
0
;
size_t
data
[
1
+
2
*
inputs
.
size
()
+
sizeof
...(
TExtraArgs
)];
auto
append
=
[
&
](
size_t
hash
)
{
data
[
length
++
]
=
hash
;
};
append
(
op
->
hash
());
for
(
auto
&&
i
:
inputs
)
{
append
(
mgb
::
hash
(
i
.
layout
.
dtype
.
handle
()));
append
(
mgb
::
hash
(
i
.
comp_node
));
}
std
::
apply
([
&
](
auto
&&
...
extras
){
(
append
(
mgb
::
hash
(
extras
)),
...);
},
extras
);
mgb_assert
(
length
==
sizeof
(
data
)
/
sizeof
(
size_t
));
state
.
update
(
data
,
sizeof
(
data
));
return
state
.
digest
();
}
template
<
typename
TValue
,
typename
...
TExtraArgs
>
struct
OpMethResultCache
:
std
::
unordered_map
<
OpMethArgs
<
TExtraArgs
...
>
,
TValue
,
typename
OpMethArgs
<
TExtraArgs
...
>::
hash_t
>
,
CompNodeDepedentObject
{
std
::
shared_ptr
<
void
>
on_comp_node_finalize
()
override
{
static_cast
<
std
::
unordered_map
<
OpMethArgs
<
TExtraArgs
...
>
,
TValue
,
typename
OpMethArgs
<
TExtraArgs
...
>::
hash_t
>*>
(
this
)
->
clear
();
// clear();
return
{};
}
using
key_t
=
OpMethArgs
<
TExtraArgs
...
>
;
};
}
// namespace imperative
}
// namespace mgb
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录