提交 a45e0d18 编写于 作者: M Megvii Engine Team

fix(imperative): improve the imperative interface of mha

GitOrigin-RevId: 0e6da8ece5ed474ecd131d8b8e05db03ec5eae5c
上级 a92aea1f
...@@ -1333,16 +1333,34 @@ PADDING_MODES = [Doc('REPLICATE = 0', 'aaaaaa|abcdefgh|hhhhhhh'), ...@@ -1333,16 +1333,34 @@ PADDING_MODES = [Doc('REPLICATE = 0', 'aaaaaa|abcdefgh|hhhhhhh'),
(pdef('MultiHeadAttn') (pdef('MultiHeadAttn')
.add_fields('uint32', Doc('num_heads', 'Number of parallel attention heads.'), '1') .add_fields('uint32', Doc('num_heads', 'Number of parallel attention heads.'), '1')
.add_fields('uint32', Doc('embeding_size', 'Total dimension of the model.'), '0')
.add_fields('uint32', Doc('k_size', 'Total number of features for keys.'), '0')
.add_fields('uint32', Doc('v_size', 'Total number of features for values.'), '0')
.add_fields('uint32', Doc('qproj_size', 'query weight projection.'), '0')
.add_fields('uint32', Doc('kproj_size', 'key weight projection.'), '0')
.add_fields('uint32', Doc('vproj_size', 'value weight projection.'), '0')
.add_fields('uint32', Doc('oproj_size', 'output weight projection.'), '0')
.add_fields('bool', Doc('qbias', 'Whether to add query bias.'), 'false')
.add_fields('bool', Doc('kbias', 'Whether to add key bias.'), 'false')
.add_fields('bool', Doc('vbias', 'Whether to add value bias.'), 'false')
.add_fields('bool', Doc('obias', 'Whether to add out bias.'), 'false')
.add_fields('float32', Doc('sm_scaler', 'Softmax smoothing (1.0 >= smScaler >= 0.0) or sharpening (smScaler > 1.0) coefficient.'), '1.f') .add_fields('float32', Doc('sm_scaler', 'Softmax smoothing (1.0 >= smScaler >= 0.0) or sharpening (smScaler > 1.0) coefficient.'), '1.f')
.add_fields('uint32', Doc('input_order', 'The sequence data layout, allows the user to select 3! = 6 different data layouts or permutations of BEAM, BATCH and TIME dimensions.'), '0') .add_fields('uint32', Doc('input_order', 'The sequence data layout, allows the user to select 3! = 6 different data layouts or permutations of BEAM, BATCH and TIME dimensions.'), '0')
.add_enum('ATTN_MASK_TYPE',
Doc('NO_MASK = 0', 'Indicates that there is no mask.'),
Doc('DEFAULT_MASK = 1', 'Use the default mask which the upper right triangle of the mask is -inf, and the diagonal and lower left triangle are all 0.'),
Doc('CUDNN_STYLE_MASK = 2', 'Indicates the use of a cudnn style mask.'),
Doc('USER_DEFINED_MASK = 3', 'Use the user-defined mask.'), name_field="attn_mask_type")
.add_enum(Doc('TENSOR_COMBINATION_TYPE', 'Used to determine whether mask tensor and bias_kv tensor exist in the input. Note that bias_kv here is not kbias and vbias in the linear layer, and bias_kv here will be added to the K and V at sequence dimensions, where K and V are the matrices of key and value after projection, and K and V will be used to calculate the attention matrix.'),
Doc('NONE = 0', 'Indicates that there are no mask tensor and bias_kv tensor in the input.'),
Doc('ONLY_MASK = 1',
'Indicates that there is only mask tensor in input.'),
Doc('ONLY_BIASKV = 2', 'Indicates that there is only bias_kv tensor in input.'),
Doc('ALL = 3', 'Indicates that there are mask tensor and bias_kv tensor in the input.'), name_field="tensor_combination_type")
.add_fields('bool', Doc('add_zero_attn', 'Whether to add a new batch of zeros to the key and value sequences.'), 'false')
.add_fields('bool', Doc('need_weights', 'Whether to return the attention matrix, which is the output result of softmax.'), 'false')
.add_fields('bool', Doc('reslink', 'Whether to add input query to final output.'), 'false') .add_fields('bool', Doc('reslink', 'Whether to add input query to final output.'), 'false')
.add_fields('bool', Doc('training', 'Whether it is in training mode.'), 'true') .add_fields('bool', Doc('training', 'Whether it is in training mode.'), 'true')
.add_fields('bool', Doc('bias', 'Whether to add linear bias.'), 'false')
.add_fields('bool', Doc('attn_mask', 'Whether to add attn_mask.'), 'false')
.add_fields('bool', Doc('enable_qproj', 'enable query weight projection.'), 'true')
.add_fields('bool', Doc('enable_kproj', 'enable key weight projection.'), 'true')
.add_fields('bool', Doc('enable_vproj', 'enable value weight projection.'), 'true')
.add_fields('bool', Doc('enable_oproj', 'enable output weight projection.'), 'true')
.add_fields('uint64', Doc('seed', 'Random number seed for drop'), '0') .add_fields('uint64', Doc('seed', 'Random number seed for drop'), '0')
.add_fields('float32', Doc('attn_prob', 'Dropout probability on attention, is applied directly to the softmax output'), '0.f') .add_fields('float32', Doc('attn_prob', 'Dropout probability on attention, is applied directly to the softmax output'), '0.f')
.add_fields('float32', Doc('out_prob', 'Dropout probability on output, alters the multi-head attention output'), '0.f') .add_fields('float32', Doc('out_prob', 'Dropout probability on output, alters the multi-head attention output'), '0.f')
......
...@@ -109,14 +109,14 @@ void MultiHeadAttnStatus::set( ...@@ -109,14 +109,14 @@ void MultiHeadAttnStatus::set(
kSize = k.shape[2]; kSize = k.shape[2];
vSize = v.shape[2]; vSize = v.shape[2];
numHeads = p.num_heads; numHeads = p.num_heads;
qProjSize = p.enable_qproj ? qSize / numHeads : 0; qProjSize = p.qproj_size ? qSize / numHeads : 0;
kProjSize = p.enable_kproj ? kSize / numHeads : 0; kProjSize = p.kproj_size ? kSize / numHeads : 0;
vProjSize = p.enable_vproj ? vSize / numHeads : 0; vProjSize = p.vproj_size ? vSize / numHeads : 0;
oProjSize = p.enable_oproj ? qSize : 0; oProjSize = p.oproj_size ? qSize : 0;
attnMask = p.attn_mask; attnMask = p.attn_mask_type >= param::MultiHeadAttn::ATTN_MASK_TYPE::DEFAULT_MASK;
cudnnDataType_t cudnn_dtype = to_cudnn_dtype(q.dtype); cudnnDataType_t cudnn_dtype = to_cudnn_dtype(q.dtype);
auto flag = CUDNN_ATTN_QUERYMAP_ONE_TO_ONE; auto flag = CUDNN_ATTN_QUERYMAP_ONE_TO_ONE;
if (p.bias) if (p.qbias or p.kbias or p.vbias or p.obias)
flag = flag | CUDNN_ATTN_ENABLE_PROJ_BIASES; flag = flag | CUDNN_ATTN_ENABLE_PROJ_BIASES;
#if CUDNN_VERSION < 8600 #if CUDNN_VERSION < 8600
// TODO: CUDNN_VERSION < 8600 and out dropout > 0.0, we need to go to the proxy cuda // TODO: CUDNN_VERSION < 8600 and out dropout > 0.0, we need to go to the proxy cuda
...@@ -134,7 +134,9 @@ void MultiHeadAttnStatus::set( ...@@ -134,7 +134,9 @@ void MultiHeadAttnStatus::set(
vProjSize, oProjSize, seqLenQ, seqLenK, batchSize, 1)); vProjSize, oProjSize, seqLenQ, seqLenK, batchSize, 1));
#endif #endif
auxArray.set(batchSize, seqLenQ, seqLenK, p.attn_mask); auxArray.set(
batchSize, seqLenQ, seqLenK,
p.attn_mask_type >= param::MultiHeadAttn::ATTN_MASK_TYPE::DEFAULT_MASK);
if (p.training) if (p.training)
cudnnGetMultiHeadAttnBuffers( cudnnGetMultiHeadAttnBuffers(
...@@ -157,16 +159,18 @@ bool MultiHeadAttnStatus::is_initialized( ...@@ -157,16 +159,18 @@ bool MultiHeadAttnStatus::is_initialized(
return false; return false;
if (q.shape[0] != batchSize or q.shape[1] != seqLenQ or k.shape[1] != seqLenK or if (q.shape[0] != batchSize or q.shape[1] != seqLenQ or k.shape[1] != seqLenK or
q.shape[2] != qSize or k.shape[2] != kSize or v.shape[2] != vSize or q.shape[2] != qSize or k.shape[2] != kSize or v.shape[2] != vSize or
attnMask != p.attn_mask or numHeads != p.num_heads) { attnMask != (p.attn_mask_type >=
param::MultiHeadAttn::ATTN_MASK_TYPE::DEFAULT_MASK) or
numHeads != p.num_heads) {
return false; return false;
} }
if ((p.enable_qproj && (qProjSize == 0 or qProjSize != qSize / p.num_heads)) or if ((p.qproj_size && (qProjSize == 0 or qProjSize != qSize / p.num_heads)) or
(p.enable_kproj && (kProjSize == 0 or kProjSize != kSize / p.num_heads)) or (p.kproj_size && (kProjSize == 0 or kProjSize != kSize / p.num_heads)) or
(p.enable_vproj && (vProjSize == 0 or vProjSize != vSize / p.num_heads)) or (p.vproj_size && (vProjSize == 0 or vProjSize != vSize / p.num_heads)) or
(p.enable_oproj && (oProjSize == 0 or oProjSize != q.shape[2]))) (p.oproj_size && (oProjSize == 0 or oProjSize != q.shape[2])))
return false; return false;
if ((!p.enable_qproj && qProjSize != 0) or (!p.enable_kproj && kProjSize != 0) or if ((!p.qproj_size && qProjSize != 0) or (!p.kproj_size && kProjSize != 0) or
(!p.enable_vproj && vProjSize != 0) or (!p.enable_oproj && oProjSize != 0)) (!p.vproj_size && vProjSize != 0) or (!p.oproj_size && oProjSize != 0))
return false; return false;
if (!auxArray.is_initialized(batchSize, seqLenQ, seqLenK, attnMask)) if (!auxArray.is_initialized(batchSize, seqLenQ, seqLenK, attnMask))
return false; return false;
......
...@@ -163,7 +163,7 @@ void MultiHeadAttnBackwardImpl::exec( ...@@ -163,7 +163,7 @@ void MultiHeadAttnBackwardImpl::exec(
#else #else
#if CUDNN_VERSION < 8600 #if CUDNN_VERSION < 8600
megdnn_assert( megdnn_assert(
!param().bias, !(param().qbias or param().kbias or param().vbias or param().obias),
"If the cudnn version is lower than 8.6.0, param().bias must be false, " "If the cudnn version is lower than 8.6.0, param().bias must be false, "
"but got true, because there is an error in the " "but got true, because there is an error in the "
"dbias result during the backward calculation."); "dbias result during the backward calculation.");
......
...@@ -4,6 +4,8 @@ from builtins import min as _builtins_min ...@@ -4,6 +4,8 @@ from builtins import min as _builtins_min
from functools import lru_cache from functools import lru_cache
from typing import NamedTuple, Optional, Sequence, Tuple, Union from typing import NamedTuple, Optional, Sequence, Tuple, Union
import numpy as np
from ..core import _config from ..core import _config
from ..core._imperative_rt.core2 import ( from ..core._imperative_rt.core2 import (
Const, Const,
...@@ -54,6 +56,7 @@ from .tensor import ( ...@@ -54,6 +56,7 @@ from .tensor import (
squeeze, squeeze,
transpose, transpose,
zeros, zeros,
zeros_like,
) )
__all__ = [ __all__ = [
...@@ -2053,6 +2056,221 @@ def region_restricted_conv( ...@@ -2053,6 +2056,221 @@ def region_restricted_conv(
return output return output
def _mha_shape_check(
query: Tensor,
key: Tensor,
value: Tensor,
key_padding_mask: Optional[Tensor],
attn_mask: Optional[Tensor],
num_heads: int,
):
# Verifies the expected shape for `query, `key`, `value`, `key_padding_mask` and `attn_mask`
# and returns if the input is batched or not.
# Raises an error if `query` is not 2-D (unbatched) or 3-D (batched) tensor.
q_dim = query.ndim
k_dim = key.ndim
v_dim = value.ndim
kpm_dim = key_padding_mask.ndim if key_padding_mask is not None else 0
kpm_shape = key_padding_mask.shape if key_padding_mask is not None else None
am_dim = attn_mask.ndim if attn_mask is not None else 0
am_shape = attn_mask.shape if attn_mask is not None else None
# Shape check.
if q_dim == 3:
# Batched Inputs
is_batched = True
assert k_dim == 3 and v_dim == 3, (
"For batched (3-D) `query`, expected `key` and `value` to be 3-D"
f" but found {k_dim}-D and {v_dim}-D tensors respectively"
)
q_shape0, q_shape1, _ = query.shape
k_shape0, k_shape1, _ = key.shape
v_shape0, v_shape1, _ = value.shape
assert q_shape0 == k_shape0 and k_shape0 == v_shape0, (
"For batched (3-D) `query`, expected the batch sizes of `query`, `key` and `value` to be equal"
f" but found query batch size is {q_shape0}, key batch size is {k_shape0} and value batch size is {v_shape0} respectively"
)
assert k_shape1 == v_shape1, (
"For batched (3-D) `query`, expected the sequence length of `key` and `value` to be equal"
f" but found key seqlen is {k_shape1} and value seqlen is {v_shape1} respectively"
)
if key_padding_mask is not None:
assert kpm_dim == 2, (
"For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D"
f" but found {kpm_dim}-D tensor instead"
)
expected_shape0 = (k_shape0, k_shape1) # norm style
expected_shape1 = (2, k_shape0) # cudnn style
assert expected_shape0 == kpm_shape and expected_shape1 == kpm_shape, (
f"For batched (3-D) `query`, expected `key_padding_mask.shape` equal {expected_shape0} or {expected_shape1}"
f" but found {kpm_shape} instead"
)
if attn_mask is not None:
assert am_dim in (2, 3), (
"For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
f" but found {am_dim}-D tensor instead"
)
if am_dim == 2:
expected_shape0 = (q_shape1, k_shape1) # norm style
expected_shape1 = (2, q_shape1) # cudnn style
assert (
am_shape == expected_shape0 or am_shape == expected_shape1
), f"Expected `attn_mask` shape to be {expected_shape0} or {expected_shape1} but got {am_shape}"
if am_dim == 3:
expected_shape = (q_shape0 * num_heads, q_shape1, k_shape1)
assert (
am_shape == expected_shape
), f"Expected `attn_mask` shape to be {expected_shape0} but got {am_shape}"
elif q_dim == 2:
# Unbatched Inputs
is_batched = False
assert k_dim == 2 and v_dim == 2, (
"For unbatched (2-D) `query`, expected `key` and `value` to be 2-D"
f" but found {k_dim}-D and {v_dim}-D tensors respectively"
)
q_shape0, q_shape1 = query.shape
k_shape0, k_shape1 = key.shape
v_shape0, v_shape1 = value.shape
assert k_shape0 == v_shape0, (
"For unbatched (3-D) `query`, expected the sequence length of `key` and `value` to be equal"
f" but found key seqlen is {k_shape0} and query seqlen is {v_shape0} respectively"
)
if key_padding_mask is not None:
assert kpm_dim in (1, 2), (
"For unbatched (2-D) `query`, expected `key_padding_mask` to be `None`, 1-D or 2-D"
f" but found {kpm_dim}-D tensor instead"
)
expected_shape0 = k_shape0 # norm style
expected_shape1 = (2, 1) # cudnn style
assert expected_shape0 == kpm_shape or expected_shape1 == kpm_shape, (
f"For batched (3-D) `query`, expected `key_padding_mask.shape` equal {expected_shape0} or {expected_shape1}"
f" but found {kpm_shape} tensor instead"
)
if attn_mask is not None:
assert am_dim in (2, 3), (
"For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
f" but found {am_dim}-D tensor instead"
)
if am_dim == 2:
expected_shape0 = (q_shape0, k_shape0) # normal style mask
expected_shape1 = (2, q_shape0) # cudnn style mask
assert (
am_shape == expected_shape0 or am_shape == expected_shape1
), f"Expected `attn_mask` shape to be {expected_shape0} or {expected_shape1} but got {am_shape}"
if am_dim == 3:
expected_shape = (num_heads, q_shape0, k_shape0)
assert (
am_shape == expected_shape
), f"Expected `attn_mask` shape to be {expected_shape} but got {am_shape}"
else:
raise AssertionError(
f"query should be unbatched 2D or batched 3D tensor but received {q_dim}-D query tensor"
)
return is_batched
def _canonical_mask(
mask: Optional[Tensor],
mask_name: str,
other_type,
other_name: str,
target_type,
check_other: bool = True,
) -> Optional[Tensor]:
if mask is not None:
_mask_dtype = mask.dtype
_mask_is_float = (
_mask_dtype == np.float16
or _mask_dtype == np.float32
or _mask_dtype == np.float64
)
assert (
_mask_dtype == bool or _mask_is_float
), f"only bool and floating types of {mask_name} are supported"
if check_other and other_type is not None:
if _mask_dtype != other_type:
get_logger().warning(
f"Support for mismatched {mask_name} and {other_name} "
"is deprecated. Use same type for both instead."
)
if not _mask_is_float:
mask_ = zeros_like(mask).astype(target_type)
mask_[mask] = float("-inf")
return mask_
return mask
def _merge_masks(
attn_mask: Tensor,
key_padding_mask: Tensor,
query: Tensor,
key: Tensor,
add_bias_kv: bool = False,
add_zero_attn: bool = False,
is_causal: bool = False,
maybe_cudnn_style_mask: bool = False,
num_heads: int = 0,
):
r"""
Determine mask type and combine masks if necessary.
Note: This function will continue to improve with the iteration of MHA.
Args:
attn_mask: MHA's attention mask tensor, the shape is :math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`
key_padding_mask: MHA's padding mask tensor, the shape is :math:`(N, S)`
query: MHA's query, the shape is :math:`(N, L, E_q)`
key: MHA's key, the shape is :math:`(N, S, E_k)`
add_bias_kv: used to determine whether pad is needed on the sequence dimension of attn_mask and key_padding_mask, from MHA's ``add_bias_kv``.
add_zero_attn: used to determine whether pad is needed on the sequence dimension of attn_mask and key_padding_mask, from MHA's ``add_zero_attn``.
is_causal: MHA's is_causal, is_causal provides a hint that attn_mask is the causal mask.
maybe_cudnn_style_mask: MHA's maybe_cudnn_style_mask, like is_causal, maybe_cudnn_style_mask provides a hint that attn_mask and key_padding_mask is the cudnn style mask.
num_heads: MHA's head number.
Returns:
merged_mask: merged mask, may be None, the shape is :math:`(L, S)`, :math:`(2\cdotL + 2\cdotN)` or :math:`(N\cdot\text{num\_heads}, L, S)`
mask_type: merged mask type ``("no_mask", "default_mask", "cudnn_style_mask" or "user_defined_mask")``
"""
mask_type = "no_mask"
merged_mask = None
seq_qlen = query.shape[1]
seq_klen = key.shape[1]
attn_mask_np = attn_mask.numpy() if attn_mask is not None else None
# is_causal is used to hint whether to use a causal mask, where the upper right triangle is all -inf,
# and the diagonal and lower left triangle are all 0. But if attn_mask is given, attn_mask is used first.
if is_causal and attn_mask is None and key_padding_mask is None:
# At this point, merged_mask = None
mask_type = "default_mask"
elif is_causal and attn_mask is not None and key_padding_mask is None:
# At this point, merged_mask = attn_mask
default_mask_np = np.triu(
-float("inf") * np.ones((seq_qlen, seq_klen)), k=1
).astype("float32")
if (attn_mask_np == default_mask_np).all():
mask_type = "default_mask"
else:
mask_type = "user_defined_mask"
merged_mask = attn_mask
else:
if attn_mask is not None:
# At this point, merged_mask = attn_mask
default_mask_np = np.triu(
-float("inf") * np.ones((seq_qlen, seq_klen)), k=1
).astype("float32")
if (
attn_mask_np == default_mask_np
and (attn_mask_np == default_mask_np).all()
):
mask_type = "default_mask"
merged_mask = attn_mask
elif np.all(attn_mask_np == 0):
mask_type = "no_mask"
else:
mask_type = "user_defined_mask"
merged_mask = attn_mask
return merged_mask, mask_type
def multi_head_attention( def multi_head_attention(
query: Tensor, query: Tensor,
key: Tensor, key: Tensor,
...@@ -2062,23 +2280,34 @@ def multi_head_attention( ...@@ -2062,23 +2280,34 @@ def multi_head_attention(
attn_drop: float, attn_drop: float,
out_drop: float, out_drop: float,
io_weight_bias: Optional[Tensor], io_weight_bias: Optional[Tensor],
bias: bool = False, qproj_size: Optional[int] = None,
kproj_size: Optional[int] = None,
vproj_size: Optional[int] = None,
oproj_size: Optional[int] = None,
qbias: bool = False,
kbias: bool = False,
vbias: bool = False,
obias: bool = False,
bias_k: Optional[Tensor] = None,
bias_v: Optional[Tensor] = None,
add_zero_attn: bool = False,
key_padding_mask: Optional[Tensor] = None,
attn_mask: Optional[Tensor] = None,
need_weights: bool = False,
average_attn_weights: bool = False,
is_causal: bool = False,
maybe_cudnn_style_mask: bool = False,
reslink: bool = False, reslink: bool = False,
training: bool = True, training: bool = True,
attn_mask: bool = False,
enable_qproj: bool = True,
enable_kproj: bool = True,
enable_vproj: bool = True,
enable_oproj: bool = True,
): ):
r"""Allows the model to jointly attend to information r"""Allows the model to jointly attend to information
from different representation subspaces. from different representation subspaces.
See `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_. See `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
.. math:: .. math::
\text{MultiHeadAttn}\big(q,K,V, W_Q, W_V, W_O\big) = \sum^{nHeads-1}_{i=0}W_{O,i}h_i \text{MultiHeadAttn}\big(q, k, v, W_Q, W_K, W_V, W_O\big) = \sum^{nHeads-1}_{i=0}W_{O,i}h_i
where :math:`h_i=W_{V,i}V \text{Softmax}\Big( \text{smScaler} \cdot K^TW^T_{K,i}W_{Q,i}q \Big),\text{for }i\text{ = 0 ... nHeads-1}`. where :math:`h_i=W_{V,i}v \text{Softmax}\Big( \text{smScaler} \cdot k^TW^T_{K,i}W_{Q,i}q \Big),\text{for }i\text{ = 0 ... nHeads-1}`.
See :class:`~.module.MultiHeadAttn` for more details. See :class:`~.module.MultiHeadAttn` for more details.
...@@ -2091,21 +2320,133 @@ def multi_head_attention( ...@@ -2091,21 +2320,133 @@ def multi_head_attention(
num_heads: parallel attention heads. num_heads: parallel attention heads.
attn_drop: probability of an element to be zeroed, used in attention matrix. attn_drop: probability of an element to be zeroed, used in attention matrix.
out_drop: probability of an element to be zeroed, used in final output. out_drop: probability of an element to be zeroed, used in final output.
io_weight_bias: input/output projection weight/bias all in one, used for cudnn api. io_weight_bias: input/output projection weight/bias all in one.
bias: used to indicate a bias in io_weight_bias, used for cudnn api. The order of arrangement is: query weight, key weight, value weight, out weight, query bias, key bias, value bias, out bias, the following parameters will be used to indicate whether these items exist: qproj_size, kproj_size, vproj_size, oproj_size, qbias, kbias, vbias, obias.
Note: :math:`Y=X@W+B` is used here instead of :math:`Y=X@W^T+B` in pytorch.
qproj_size: indicates the projection size of query weight in io_weight_bias, 0 indicates disabled query projection and no query projection weight.
kproj_size: indicates the projection size of key weight in io_weight_bias, 0 indicates disabled key projection and no key projection weight.
vproj_size: indicates the projection size of value weight in io_weight_bias, 0 indicates disabled value projection and no value projection weight.
oproj_size: indicates the projection size of out weight in io_weight_bias, 0 indicates disabled output projection and no output projection weight.
qbias: indicates whether there is a query bias in io_weight_bias, this parameter is only valid when qproj_size > 0.
kbias: indicates whether there is a key bias in io_weight_bias, this parameter is only valid when kproj_size > 0.
vbias: indicates whether there is a value bias in io_weight_bias, this parameter is only valid when vproj_size > 0.
obias: indicates whether there is a out bias in io_weight_bias, this parameter is only valid when oproj_size > 0.
bias_k, bias_v: the bias of the key and value sequences to be added at sequence dim. distinguished from kbias and vbias, bias_kv here is not kbias and vbias in the linear layer, and bias_kv here will be added to the K and V at sequence dimensions, where K and V are the matrices of key and value after projection, and K and V will be used to calculate the attention matrix.
Note: Should be set to None, and configuration of this parameter is not supported now. The reason is that there is only cudnn implementation now, and we may try to loosen this option after submitting the commit that adds MHA proxy implementation.
add_zero_attn: if specified, adds a new batch of zeros to the key and value sequences at sequence dim. Default: ``False``.
Note: should be set to False, and configuration of this parameter is not supported now. The reason is that there is only cudnn implementation now, and we may try to loosen this option after submitting the commit that adds MHA proxy implementation.
key_padding_mask: if specified, a mask of shape :math:`(N, S)` indicating which elements within ``key`` to ignore for the purpose of
attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`. Binary and float masks are supported. For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value.
Note: Should be set to None, and configuration of this parameter is not supported now. The reason is that there is only cudnn implementation now, and we may try to loosen this option after submitting the commit that adds MHA proxy implementation.
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
Note: User-defined mask not supported now, only support no mask or default mask, where the upper right triangle is all -inf, and the diagonal and lower left triangle are all 0. The reason is that there is only cudnn implementation now, and we may try to loosen this option after submitting the commit that adds MHA proxy implementation.
need_weights: indicates whether to return the attention weight, which is the output result of softmax. Default: `True`
Note: Should be set to False, and configuration of this parameter is not supported now. The reason is that there is only cudnn implementation now, and we may try to loosen this option after submitting the commit that adds MHA proxy implementation.
average_attn_weights: if true, indicates that the returned ``attn_weights`` should be averaged across
heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads)
Note: Should be set to False, and configuration of this parameter is not supported now. The reason is that there is only cudnn implementation now, and we may try to loosen this option after submitting the commit that adds MHA proxy implementation.
is_causal: if specified, applies a causal mask as attention mask. Default: ``False``
Warning: ``is_causal`` provides a hint that ``attn_mask`` is the causal mask. Providing incorrect hints can result in incorrect execution, including forward and backward compatibility.
maybe_cudnn_style_mask: if specified, applies a cudnn style mask as attention mask. Default: ``False``
Note: In the cudnn style, the shape of the attn_mask is :math:`(2, L)`, and the shape of the key_padding_mask is :math:`(2, N)`.
Warning: like is_causal, maybe_cudnn_style_mask provides a hint that attn_mask and key_padding_mask is a cudnn style mask. Providing incorrect hints can result in incorrect execution, including forward and backward compatibility. In addition, if the ``_merge_masks`` function returns ``merge_type=cudnn_style_mask``, please ensure that other conditions are correct so that it can run the implementation of cudnn, otherwise an error will be reported.
Note: Should be set to False, and configuration of this parameter is not supported now. The reason is that the underlying implementation only accepts two types of mask type, namely "no_mask" and "default_mask", and we may try to loosen this option after submitting the commit that users can pass in custom attention mask tensors.
reslink: add input query to final output. reslink: add input query to final output.
Note: It is only valid if the input query is the same as the shape of the output.
training: will apply dropout if is ``True``. training: will apply dropout if is ``True``.
attn_mask: used to indicate whether to add a mask to the attention matrix.
By default, the upper right triangle of the mask is -inf, and the diagonal and lower left triangle are all 0.
Default: `True`
enable_qproj: enable query weight projection. Default: ``True``.
enable_kproj: enable key weight projection. Default: ``True``.
enable_vproj: enable value weight projection. Default: ``True``.
enable_oproj: enable output weight projection. Default: ``True``.
""" """
qproj_size = embed_dim if qproj_size is None else qproj_size
head_dim = embed_dim // num_heads kproj_size = embed_dim if kproj_size is None else kproj_size
vproj_size = embed_dim if vproj_size is None else vproj_size
oproj_size = embed_dim if oproj_size is None else oproj_size
if qbias:
assert (
qproj_size is not None and qproj_size > 0
), "when query projection bias is true, query projection weight must be given."
if kbias:
assert (
kproj_size is not None and kproj_size > 0
), "when key projection bias is true, key projection weight must be given"
if vbias:
assert (
vproj_size is not None and vproj_size > 0
), "when value projection bias is true, value projection weight must be given"
if obias:
assert (
oproj_size is not None and oproj_size > 0
), "when output projection bias is true, output projection weight must be given"
unsupport_reason = " The reason is that there is only cudnn implementation now, and we may try to loosen this option after submitting the commit that adds MHA proxy implementation."
assert add_zero_attn is False, (
"add_zero_attn should be False, and configuration of this parameter is not supported now."
+ unsupport_reason
)
assert key_padding_mask is None, (
"key_padding_mask should be None, and configuration of this parameter is not supported now."
+ unsupport_reason
)
assert need_weights == False, (
"need_weights should be set to False, and configuration of this parameter is not supported now."
+ unsupport_reason
)
assert average_attn_weights == False, (
"average_attn_weights should be set to False, and configuration of this parameter is not supported now."
+ unsupport_reason
)
assert maybe_cudnn_style_mask == False, (
"maybe_cudnn_style_mask should be set to False, and configuration of this parameter is not supported now."
+ unsupport_reason
)
assert bias_k is None, (
"bias_k should be None, and configuration of this parameter is not supported now."
+ unsupport_reason
)
assert bias_v is None, (
"bias_v should be None, and configuration of this parameter is not supported now."
+ unsupport_reason
)
head_dim = (qproj_size if qproj_size != 0 else embed_dim) // num_heads
smScaler = head_dim ** -0.5 smScaler = head_dim ** -0.5
k_size = key.shape[2]
v_size = value.shape[2]
is_batched = _mha_shape_check(
query, key, value, key_padding_mask, attn_mask, num_heads
)
if not is_batched:
query = expand_dims(query, 0)
key = expand_dims(key, 0)
value = expand_dims(value, 0)
if key_padding_mask is not None:
key_padding_mask = expand_dims(key_padding_mask, 0)
key_padding_mask = _canonical_mask(
mask=key_padding_mask,
mask_name="key_padding_mask",
other_type=attn_mask,
other_name="attn_mask",
target_type=query.dtype,
)
attn_mask = _canonical_mask(
mask=attn_mask,
mask_name="attn_mask",
other_type=None,
other_name="",
target_type=query.dtype,
check_other=False,
)
attn_mask_tensor, attn_mask_type = _merge_masks(
attn_mask=attn_mask,
key_padding_mask=key_padding_mask,
query=query,
key=key,
add_bias_kv=bias_k is not None and bias_v is not None,
add_zero_attn=add_zero_attn,
is_causal=is_causal,
maybe_cudnn_style_mask=maybe_cudnn_style_mask,
num_heads=num_heads,
)
op = builtin.MultiHeadAttn( op = builtin.MultiHeadAttn(
num_heads=num_heads, num_heads=num_heads,
...@@ -2116,16 +2457,25 @@ def multi_head_attention( ...@@ -2116,16 +2457,25 @@ def multi_head_attention(
training=training, training=training,
input_order=0, input_order=0,
seed=_get_global_rng_seed(), seed=_get_global_rng_seed(),
bias=bias, attn_mask_type=attn_mask_type,
attn_mask=attn_mask, add_zero_attn=add_zero_attn,
enable_qproj=enable_qproj, embeding_size=embed_dim,
enable_kproj=enable_kproj, k_size=k_size,
enable_vproj=enable_vproj, v_size=v_size,
enable_oproj=enable_oproj, qproj_size=qproj_size,
kproj_size=kproj_size,
vproj_size=vproj_size,
oproj_size=oproj_size,
qbias=qbias,
kbias=kbias,
vbias=vbias,
obias=obias,
need_weights=need_weights,
tensor_combination_type="none",
) )
out, reserveSpace = apply(op, query, key, value, io_weight_bias) out, reserveSpace = apply(op, query, key, value, io_weight_bias)
return out return out, None
from .loss import * # isort:skip from .loss import * # isort:skip
......
...@@ -9,7 +9,7 @@ from megengine import Parameter ...@@ -9,7 +9,7 @@ from megengine import Parameter
from ..device import get_cudnn_version, is_cuda_available from ..device import get_cudnn_version, is_cuda_available
from ..functional.nn import multi_head_attention from ..functional.nn import multi_head_attention
from ..tensor import Tensor from ..tensor import Tensor
from .init import ones_, zeros_ from .init import ones_, xavier_uniform_, zeros_
from .module import Module from .module import Module
...@@ -25,18 +25,36 @@ class MultiHeadAttention(Module): ...@@ -25,18 +25,36 @@ class MultiHeadAttention(Module):
Note: This API is experimental, and there is a possibility of subsequent changes. Currently, only the cuda platform is supported, and if the cudnn version >=8.6.0, the calculation results are completely correct; If the cudnn version >=8.0.4 but <8.6.0, if there is a bias, only the dbias result calculated from the backward is incorrect. If there is no bias, the forward and backward calculations are correct; If the cudnn version is less than 8.0.4, this operator is not supported. Note: This API is experimental, and there is a possibility of subsequent changes. Currently, only the cuda platform is supported, and if the cudnn version >=8.6.0, the calculation results are completely correct; If the cudnn version >=8.0.4 but <8.6.0, if there is a bias, only the dbias result calculated from the backward is incorrect. If there is no bias, the forward and backward calculations are correct; If the cudnn version is less than 8.0.4, this operator is not supported.
When the following conditions are met, you can go to the cudnn backend:
- ``cudnn version`` greater than or equal to 8.0.4 and ``bias`` is ``False`` and ``training`` is ``False``
- ``cudnn version`` greater than or equal to 8.6.0
- ``add_bias_kv`` is ``False``
- ``add_zero_attn`` is ``False``
- ``need_weights`` is ``False``
- ``average_attn_weights`` is ``False``
- ``maybe_cudnn_style_mask`` is ``True`` if support else ``False``
- ``attn_mask`` and ``key_padding_mask`` is cudnn style mask, i.e. the shape of the attn_mask is :math:`(2, L)`, and the shape of the key_padding_mask is :math:`(2, N)`.
- The shape of attn_mask is :math:`(2, L)`, where :math:`(0, :)` elements specify the start index, :math:`(1, :)` elements specify the end index, the start index is inclusive, and the end index is not exclusive. The start index (i.e. elements in `attn_mask[0, x]`) must be less than the corresponding end index (i.e. elements in `attn_mask[1, x]`). The end index must be less than or equal to :math:`S`, where :math:`S` is the source sequence length, :math:`L` is the target sequence length.
- The shape of key_padding_mask is :math:`(2, N)`, where :math:`(0, :)` elements specify the target sequence padding in cudnn style mask and the element must equal to or less than :math:`L`, :math:`(1, :)` elements specify the source sequence padding in cudnn style mask and the element must equal to or less than :math:`S`, where :math:`S` is the source sequence length, :math:`L` is the target sequence length.
- ``qbias``, ``kbias``, ``vbias`` and ``obias`` are equal
Args: Args:
embed_dim: Total dimension of the model. embed_dim: Total dimension of the model.
num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``). across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout). attn_dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
out_dropout: Dropout probability on ``output``. Default: ``0.0`` (no dropout).
bias: If specified, adds bias to input / output projection layers. Default: ``True``. bias: If specified, adds bias to input / output projection layers. Default: ``True``.
add_bias_kv: If specified, adds bias to the key and value sequences at sequence dim. Default: ``False``.
Different from kbias and vbias, bias_kv here is not kbias and vbias in the linear layer, and bias_kv here will be added to the K and V at sequence dimensions, where K and V are the matrices of key and value after projection, and K and V will be used to calculate the attention matrix.
Note: Should be set to False, and configuration of this parameter is not supported now. The reason is that there is only cudnn implementation now, and we may try to loosen this option after submitting the commit that adds MHA proxy implementation.
add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences.
Default: ``False``.
Note: Should be set to False, and configuration of this parameter is not supported now. The reason is that there is only cudnn implementation now, and we may try to loosen this option after submitting the commit that adds MHA proxy implementation.
kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``). kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``). vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
enable_qproj: enable query weight projection. Default: ``True``.
enable_kproj: enable key weight projection. Default: ``True``.
enable_vproj: enable value weight projection. Default: ``True``.
enable_oproj: enable output weight projection. Default: ``True``.
Examples:: Examples::
>>> import numpy as np >>> import numpy as np
...@@ -44,7 +62,7 @@ class MultiHeadAttention(Module): ...@@ -44,7 +62,7 @@ class MultiHeadAttention(Module):
>>> x = Tensor(np.arange(batch_size * seq_len * embed_dim).astype(np.float32).reshape(batch_size, seq_len, embed_dim)) >>> x = Tensor(np.arange(batch_size * seq_len * embed_dim).astype(np.float32).reshape(batch_size, seq_len, embed_dim))
>>> multihead_attn = M.MultiHeadAttention(embed_dim, num_heads) >>> multihead_attn = M.MultiHeadAttention(embed_dim, num_heads)
>>> if is_cuda_available() and get_cudnn_version() >= 8004: >>> if is_cuda_available() and get_cudnn_version() >= 8004:
... out = multihead_attn(x, x, x) ... out = multihead_attn(x, x, x)[0]
... out.numpy().shape ... out.numpy().shape
... else: ... else:
... print(np.zeros((2,4,4)).shape) ... print(np.zeros((2,4,4)).shape)
...@@ -57,84 +75,143 @@ class MultiHeadAttention(Module): ...@@ -57,84 +75,143 @@ class MultiHeadAttention(Module):
num_heads, num_heads,
attn_dropout=0.0, attn_dropout=0.0,
out_dropout=0.0, out_dropout=0.0,
bias=True,
add_bias_kv=False,
add_zero_attn=False,
kdim=None, kdim=None,
vdim=None, vdim=None,
bias=True,
enable_qproj=True,
enable_kproj=True,
enable_vproj=True,
enable_oproj=True,
**kwargs **kwargs
): ):
super().__init__(**kwargs) super().__init__(**kwargs)
self.embed_dim = embed_dim self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim self.add_bias_kv = add_bias_kv
self.add_zero_attn = add_zero_attn
self.num_heads = num_heads self.num_heads = num_heads
self.attn_dropout = attn_dropout self.attn_dropout = attn_dropout
self.out_dropout = out_dropout self.out_dropout = out_dropout
self.head_dim = embed_dim // num_heads self.head_dim = embed_dim // num_heads
self.unsupport_reason = " The reason is that there is only cudnn implementation now, and we may try to loosen this option after submitting the commit that adds MHA proxy implementation."
assert ( assert (
self.head_dim * num_heads == self.embed_dim self.head_dim * num_heads == self.embed_dim
), "embed_dim must be divisible by num_heads" ), "embed_dim must be divisible by num_heads"
assert ( assert add_bias_kv == False, (
self._qkv_same_embed_dim "add_bias_kv should be set to False, and configuration of this parameter is not supported now."
), "it does not support the case where q, k, and v are different." + self.unsupport_reason
self.bias = bias )
assert add_zero_attn == False, (
"add_zero_attn should be set to False, and configuration of this parameter is not supported now."
+ self.unsupport_reason
)
self.enable_qproj = enable_qproj self.bias = bias
self.enable_kproj = enable_kproj self.weight_bias_len = (
self.enable_vproj = enable_vproj self.embed_dim + self.kdim + self.vdim + self.embed_dim
self.enable_oproj = enable_oproj ) * self.embed_dim + (4 * self.embed_dim if self.bias else 0)
self.nproj = enable_qproj + enable_kproj + enable_vproj + enable_oproj
if self.bias:
io_weight = np.ones((embed_dim, self.nproj * embed_dim))
io_bias = np.zeros((1, self.nproj * embed_dim))
self.io_weight_bias = Parameter( self.io_weight_bias = Parameter(
np.concatenate((io_weight, io_bias), axis=0), dtype="float32" np.empty((1, self.weight_bias_len), dtype="float32")
) )
else: self.bias_k = (
self.io_weight_bias = Parameter( Parameter(np.empty((1, 1, embed_dim), dtype="float32"))
np.ones((self.nproj * embed_dim, embed_dim), dtype="float32") if self.add_bias_kv
else None
)
self.bias_v = (
Parameter(np.empty((1, 1, embed_dim), dtype="float32"))
if self.add_bias_kv
else None
) )
self.reset_parameters() self.reset_parameters()
def reset_parameters(self): def reset_parameters(self):
self.attn_dropout = 0.0 self.attn_dropout = 0.0
self.out_dropout = 0.0 self.out_dropout = 0.0
xavier_uniform_(self.io_weight_bias)
if self.bias: if self.bias:
io_weight = np.ones((self.embed_dim, self.nproj * self.embed_dim)) weight_len = (
io_bias = np.zeros((1, self.nproj * self.embed_dim)) self.embed_dim + self.kdim + self.vdim + self.embed_dim
self.io_weight_bias._reset(np.concatenate((io_weight, io_bias), axis=0)) ) * self.embed_dim
self.io_weight_bias[0, weight_len:,] = 0
if self.add_bias_kv:
xavier_uniform_(self.bias_k)
else:
self.bias_k = None
if self.add_bias_kv:
xavier_uniform_(self.bias_v)
else: else:
ones_(self.io_weight_bias) self.bias_v = None
def forward( def forward(
self, query, key, value, attn_mask: bool = True, self,
query: Tensor,
key: Tensor,
value: Tensor,
key_padding_mask: Optional[Tensor] = None,
attn_mask: Optional[Tensor] = None,
need_weights: bool = False,
average_attn_weights: bool = False,
is_causal: bool = False,
maybe_cudnn_style_mask: bool = False,
): ):
r""" r"""
Args: Args:
query: Query embeddings of shape :math:`(N, L, E_q)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, query: Query embeddings of shape :math:`(N, L, E_q)`,
and :math:`E_q` is the query embedding dimension ``embed_dim``. Queries are compared against where :math:`N` is the batch size, :math:`L` is the target sequence length, and :math:`E_q` is the query embedding dimension ``embed_dim``. Queries are compared against key-value pairs to produce the output. See "Attention Is All You Need" for more details.
key-value pairs to produce the output. See "Attention Is All You Need" for more details. key: Key embeddings of shape :math:`(N, S, E_k)`,
key: Key embeddings of shape :math:`(N, S, E_k)`, where :math:`N` is the batch size, :math:`S` is the source sequence length, and where :math:`N` is the batch size, :math:`S` is the source sequence length, and :math:`E_k` is the key embedding dimension ``kdim``. See "Attention Is All You Need" for more details.
:math:`E_k` is the key embedding dimension ``kdim``. See "Attention Is All You Need" for more details. value: Value embeddings of shape :math:`(N, S, E_v)`,
value: Value embeddings of shape :math:`(N, S, E_v)`, where :math:`N` is the batch size, :math:`S` is the source sequence length, and where :math:`N` is the batch size, :math:`S` is the source sequence length, and :math:`E_v` is the value embedding dimension ``vdim``. See "Attention Is All You Need" for more details.
:math:`E_v` is the value embedding dimension ``vdim``. See "Attention Is All You Need" for more details. key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key`` to ignore for the purpose of
attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`. Binary and float masks are supported. For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value.
:math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size, Note: Should be set to None, and configuration of this parameter is not supported now. The reason is that there is only cudnn implementation now, and we may try to loosen this option after submitting the commit that adds MHA proxy implementation.
:math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch. the batches while a 3D mask allows to specify a different mask for the entries of each batch.
Note: User-defined mask not supported now, only support no mask or default mask, where the upper right triangle is all -inf, and the diagonal and lower left triangle are all 0. The reason is that there is only cudnn implementation now, and we may try to loosen this option after submitting the commit that adds MHA proxy implementation.
need_weights: indicates whether to return the attention weight, which is the output result of softmax. Default: `True`
Note: Should be set to False, and configuration of this parameter is not supported now. The reason is that there is only cudnn implementation now, and we may try to loosen this option after submitting the commit that adds MHA proxy implementation.
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across
heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads)
Note: Should be set to False, and configuration of this parameter is not supported now. The reason is that there is only cudnn implementation now, and we may try to loosen this option after submitting the commit that adds MHA proxy implementation.
is_causal: If specified, applies a causal mask as attention mask. Default: ``False``
Warning: ``is_causal`` provides a hint that ``attn_mask`` is the causal mask. Providing incorrect hints can result in incorrect execution, including forward and backward compatibility.
maybe_cudnn_style_mask: if specified, applies a cudnn style mask as attention mask. Default: ``False``
Note: In the cudnn style, the shape of the attn_mask is :math:`(2, L)`, and the shape of the key_padding_mask is :math:`(2, N)`.
Warning: like is_causal, maybe_cudnn_style_mask provides a hint that attn_mask and key_padding_mask is a cudnn style mask. Providing incorrect hints can result in incorrect execution, including forward and backward compatibility. In addition, if the ``_merge_masks`` function returns ``merge_type=cudnn_style_mask``, please ensure that other conditions are correct so that it can run the implementation of cudnn, otherwise an error will be reported.
Note: Should be set to False, and configuration of this parameter is not supported now. The reason is that the underlying implementation only accepts two types of mask type, namely "no_mask" and "default_mask", and we may try to loosen this option after submitting the commit that users can pass in custom attention mask tensors.
Outputs: Outputs:
- **attn_output** - Attention outputs of shape :math:`(N, L, E)`, - **attn_output** - Attention outputs of shape :math:`(N, L, E)`,
where :math:`L` is the target sequence length, :math:`N` is where :math:`L` is the target sequence length, :math:`N` is
the batch size, and :math:`E` is the embedding dimension ``embed_dim``. the batch size, and :math:`E` is the embedding dimension ``embed_dim``.
- **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``,
returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N * \text{num\_heads}, L, S)`.
Note: Now only None will be returned. The reason is that there is only cudnn implementation now, and we may try to loosen this option after submitting the commit that adds MHA proxy implementation.
""" """
assert key_padding_mask is None, (
"key_padding_mask should be None, and configuration of this parameter is not supported now."
+ self.unsupport_reason
)
assert need_weights == False, (
"need_weights should be set to False, and configuration of this parameter is not supported now."
+ self.unsupport_reason
)
assert average_attn_weights == False, (
"average_attn_weights should be set to False, and configuration of this parameter is not supported now."
+ self.unsupport_reason
)
assert maybe_cudnn_style_mask == False, (
"maybe_cudnn_style_mask should be set to False, and configuration of this parameter is not supported now."
+ self.unsupport_reason
)
return multi_head_attention( return multi_head_attention(
query, query,
...@@ -145,13 +222,24 @@ class MultiHeadAttention(Module): ...@@ -145,13 +222,24 @@ class MultiHeadAttention(Module):
self.attn_dropout, self.attn_dropout,
self.out_dropout, self.out_dropout,
self.io_weight_bias, self.io_weight_bias,
self.bias, qproj_size=self.embed_dim,
kproj_size=self.embed_dim,
vproj_size=self.embed_dim,
oproj_size=self.embed_dim,
qbias=self.bias,
kbias=self.bias,
vbias=self.bias,
obias=self.bias,
bias_k=self.bias_k,
bias_v=self.bias_v,
add_zero_attn=self.add_zero_attn,
training=self.training, training=self.training,
key_padding_mask=key_padding_mask,
need_weights=need_weights,
attn_mask=attn_mask, attn_mask=attn_mask,
enable_qproj=self.enable_qproj, average_attn_weights=average_attn_weights,
enable_kproj=self.enable_kproj, is_causal=is_causal,
enable_vproj=self.enable_vproj, maybe_cudnn_style_mask=maybe_cudnn_style_mask,
enable_oproj=self.enable_oproj,
) )
def _module_info_string(self) -> str: def _module_info_string(self) -> str:
......
...@@ -296,11 +296,19 @@ struct OpMeth<MultiHeadAttn> { ...@@ -296,11 +296,19 @@ struct OpMeth<MultiHeadAttn> {
handle_seed == opdef.seed, handle_seed == opdef.seed,
"inconsistent multiheadattn seed: dropout op: %lu handle: %lu", "inconsistent multiheadattn seed: dropout op: %lu handle: %lu",
handle_seed, opdef.seed); handle_seed, opdef.seed);
return {opdef.num_heads, opdef.sm_scaler, opdef.input_order,
opdef.reslink, opdef.training, opdef.bias, return {opdef.num_heads, opdef.embeding_size,
opdef.attn_mask, opdef.enable_qproj, opdef.enable_kproj, opdef.k_size, opdef.v_size,
opdef.enable_vproj, opdef.enable_oproj, handle_seed, opdef.qproj_size, opdef.kproj_size,
opdef.attn_prob, opdef.out_prob}; opdef.vproj_size, opdef.oproj_size,
opdef.qbias, opdef.kbias,
opdef.vbias, opdef.obias,
opdef.sm_scaler, opdef.input_order,
opdef.attn_mask_type, opdef.tensor_combination_type,
opdef.add_zero_attn, opdef.need_weights,
opdef.reslink, opdef.training,
handle_seed, opdef.attn_prob,
opdef.out_prob};
} }
}; };
......
...@@ -20,6 +20,8 @@ ...@@ -20,6 +20,8 @@
cb(::megdnn::param::CvtColor::Mode); \ cb(::megdnn::param::CvtColor::Mode); \
cb(::megdnn::param::Elemwise::Mode); \ cb(::megdnn::param::Elemwise::Mode); \
cb(::megdnn::param::ElemwiseMultiType::Mode); \ cb(::megdnn::param::ElemwiseMultiType::Mode); \
cb(::megdnn::param::MultiHeadAttn::ATTN_MASK_TYPE); \
cb(::megdnn::param::MultiHeadAttn::TENSOR_COMBINATION_TYPE); \
cb(::megdnn::param::Padding::PaddingMode); \ cb(::megdnn::param::Padding::PaddingMode); \
cb(::megdnn::param::RNNCell::NonlineMode); \ cb(::megdnn::param::RNNCell::NonlineMode); \
cb(::megdnn::param::ROIAlignV0::Mode); \ cb(::megdnn::param::ROIAlignV0::Mode); \
......
c5a5d1bd44473912f14cecee3df6409e ../../dnn/scripts/opr_param_defs.py 0a8cd3cd50cadfaae0478ee70621618e ../../dnn/scripts/opr_param_defs.py
4ed3e8cbef0fa5f4d6824d8d55dec722 ../../src/core/include/megbrain/ir/ops.td 9e9636d66694dd7d5a7853247a5406f9 ../../src/core/include/megbrain/ir/ops.td
dc2d4ec8f4f5e203ce0a76bc20f62529 generated/opdef.h.inl 283dffd0e9cd28db5155c44cf4eda148 generated/opdef.h.inl
906957f12994d43c69248a6acfefa396 generated/opdef.cpp.inl 5e8d57337c3aec6f4b3b30ef9ba141f8 generated/opdef.cpp.inl
8817af8997ba0cc00048e71093755238 generated/opdef.py.inl 7f470236e4b5b00bdeaec321bc7187b5 generated/opdef.py.inl
c43ae8b706e3f3658fe3cc0f60061981 generated/opdef.cpy.inl 003addd357423b880cd06410f5bf624b generated/opdef.cpy.inl
71e1462bf4d882e2615c3c632cb671cc generated/enum_macro.h d468302f2d4b113913b76b5a181aae56 generated/enum_macro.h
...@@ -5200,28 +5200,54 @@ size_t MultiHeadAttn_hash_impl(const OpDef& def_) { ...@@ -5200,28 +5200,54 @@ size_t MultiHeadAttn_hash_impl(const OpDef& def_) {
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash(op_.num_heads), mgb::hash(op_.num_heads),
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash(op_.sm_scaler), mgb::hash(op_.embeding_size),
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash(op_.input_order), mgb::hash(op_.k_size),
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash(op_.reslink), mgb::hash(op_.v_size),
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash(op_.training), mgb::hash(op_.qproj_size),
mgb::hash_pair_combine(
mgb::hash(op_.kproj_size),
mgb::hash_pair_combine(
mgb::hash(op_.vproj_size),
mgb::hash_pair_combine(
mgb::hash(op_.oproj_size),
mgb::hash_pair_combine(
mgb::hash(op_.qbias),
mgb::hash_pair_combine(
mgb::hash(op_.kbias),
mgb::hash_pair_combine(
mgb::hash(op_.vbias),
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash(op_.bias), mgb::hash(op_.obias),
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash(op_.attn_mask), mgb::hash(op_.sm_scaler),
mgb::hash_pair_combine(
mgb::hash(op_.input_order),
mgb::hash_pair_combine(
mgb::hash(op_.attn_mask_type),
mgb::hash_pair_combine(
mgb::hash(op_.tensor_combination_type),
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash(op_.enable_qproj), mgb::hash(op_.add_zero_attn),
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash(op_.enable_kproj), mgb::hash(op_.need_weights),
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash(op_.enable_vproj), mgb::hash(op_.reslink),
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash(op_.enable_oproj), mgb::hash(op_.training),
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash(op_.attn_prob), mgb::hash(op_.attn_prob),
mgb::hash(op_.out_prob) mgb::hash(op_.out_prob))
)
)
)
)
)
)
)
)
) )
) )
) )
...@@ -5242,22 +5268,63 @@ bool MultiHeadAttn_is_same_st_impl(const OpDef& lhs_, const OpDef& rhs_) { ...@@ -5242,22 +5268,63 @@ bool MultiHeadAttn_is_same_st_impl(const OpDef& lhs_, const OpDef& rhs_) {
&&b_ = rhs_.cast_final_safe<MultiHeadAttn>(); &&b_ = rhs_.cast_final_safe<MultiHeadAttn>();
static_cast<void>(a_); static_cast<void>(a_);
static_cast<void>(b_); static_cast<void>(b_);
return a_.handle == b_.handle && a_.num_heads == b_.num_heads && a_.sm_scaler == b_.sm_scaler && a_.input_order == b_.input_order && a_.reslink == b_.reslink && a_.training == b_.training && a_.bias == b_.bias && a_.attn_mask == b_.attn_mask && a_.enable_qproj == b_.enable_qproj && a_.enable_kproj == b_.enable_kproj && a_.enable_vproj == b_.enable_vproj && a_.enable_oproj == b_.enable_oproj && a_.attn_prob == b_.attn_prob && a_.out_prob == b_.out_prob;} return a_.handle == b_.handle && a_.num_heads == b_.num_heads && a_.embeding_size == b_.embeding_size && a_.k_size == b_.k_size && a_.v_size == b_.v_size && a_.qproj_size == b_.qproj_size && a_.kproj_size == b_.kproj_size && a_.vproj_size == b_.vproj_size && a_.oproj_size == b_.oproj_size && a_.qbias == b_.qbias && a_.kbias == b_.kbias && a_.vbias == b_.vbias && a_.obias == b_.obias && a_.sm_scaler == b_.sm_scaler && a_.input_order == b_.input_order && a_.reslink == b_.reslink && a_.training == b_.training && a_.need_weights == b_.need_weights && a_.attn_mask_type == b_.attn_mask_type && a_.add_zero_attn == b_.add_zero_attn && a_.tensor_combination_type == b_.tensor_combination_type && a_.attn_prob == b_.attn_prob && a_.out_prob == b_.out_prob;}
std::vector<std::pair<const char*, std::string>> MultiHeadAttn_props_impl(const OpDef& def_) { std::vector<std::pair<const char*, std::string>> MultiHeadAttn_props_impl(const OpDef& def_) {
auto&& op_ = def_.cast_final_safe<MultiHeadAttn>(); auto&& op_ = def_.cast_final_safe<MultiHeadAttn>();
static_cast<void>(op_); static_cast<void>(op_);
std::vector<std::pair<const char*, std::string>> props_; std::vector<std::pair<const char*, std::string>> props_;
props_.emplace_back("num_heads", std::to_string(op_.num_heads)); props_.emplace_back("num_heads", std::to_string(op_.num_heads));
props_.emplace_back("embeding_size", std::to_string(op_.embeding_size));
props_.emplace_back("k_size", std::to_string(op_.k_size));
props_.emplace_back("v_size", std::to_string(op_.v_size));
props_.emplace_back("qproj_size", std::to_string(op_.qproj_size));
props_.emplace_back("kproj_size", std::to_string(op_.kproj_size));
props_.emplace_back("vproj_size", std::to_string(op_.vproj_size));
props_.emplace_back("oproj_size", std::to_string(op_.oproj_size));
props_.emplace_back("qbias", std::to_string(op_.qbias));
props_.emplace_back("kbias", std::to_string(op_.kbias));
props_.emplace_back("vbias", std::to_string(op_.vbias));
props_.emplace_back("obias", std::to_string(op_.obias));
props_.emplace_back("sm_scaler", std::to_string(op_.sm_scaler)); props_.emplace_back("sm_scaler", std::to_string(op_.sm_scaler));
props_.emplace_back("input_order", std::to_string(op_.input_order)); props_.emplace_back("input_order", std::to_string(op_.input_order));
switch (op_.attn_mask_type){
case MultiHeadAttn::ATTN_MASK_TYPE::NO_MASK:
props_.emplace_back("attn_mask_type", "NO_MASK");
break;
case MultiHeadAttn::ATTN_MASK_TYPE::DEFAULT_MASK:
props_.emplace_back("attn_mask_type", "DEFAULT_MASK");
break;
case MultiHeadAttn::ATTN_MASK_TYPE::CUDNN_STYLE_MASK:
props_.emplace_back("attn_mask_type", "CUDNN_STYLE_MASK");
break;
case MultiHeadAttn::ATTN_MASK_TYPE::USER_DEFINED_MASK:
props_.emplace_back("attn_mask_type", "USER_DEFINED_MASK");
break;
default:
props_.emplace_back("attn_mask_type", "INVALID");
break;
}
switch (op_.tensor_combination_type){
case MultiHeadAttn::TENSOR_COMBINATION_TYPE::NONE:
props_.emplace_back("tensor_combination_type", "NONE");
break;
case MultiHeadAttn::TENSOR_COMBINATION_TYPE::ONLY_MASK:
props_.emplace_back("tensor_combination_type", "ONLY_MASK");
break;
case MultiHeadAttn::TENSOR_COMBINATION_TYPE::ONLY_BIASKV:
props_.emplace_back("tensor_combination_type", "ONLY_BIASKV");
break;
case MultiHeadAttn::TENSOR_COMBINATION_TYPE::ALL:
props_.emplace_back("tensor_combination_type", "ALL");
break;
default:
props_.emplace_back("tensor_combination_type", "INVALID");
break;
}
props_.emplace_back("need_weights", std::to_string(op_.need_weights));
props_.emplace_back("add_zero_attn", std::to_string(op_.add_zero_attn));
props_.emplace_back("reslink", std::to_string(op_.reslink)); props_.emplace_back("reslink", std::to_string(op_.reslink));
props_.emplace_back("training", std::to_string(op_.training)); props_.emplace_back("training", std::to_string(op_.training));
props_.emplace_back("bias", std::to_string(op_.bias));
props_.emplace_back("attn_mask", std::to_string(op_.attn_mask));
props_.emplace_back("enable_qproj", std::to_string(op_.enable_qproj));
props_.emplace_back("enable_kproj", std::to_string(op_.enable_kproj));
props_.emplace_back("enable_vproj", std::to_string(op_.enable_vproj));
props_.emplace_back("enable_oproj", std::to_string(op_.enable_oproj));
props_.emplace_back("seed", std::to_string(op_.seed)); props_.emplace_back("seed", std::to_string(op_.seed));
props_.emplace_back("attn_prob", std::to_string(op_.attn_prob)); props_.emplace_back("attn_prob", std::to_string(op_.attn_prob));
props_.emplace_back("out_prob", std::to_string(op_.out_prob)); props_.emplace_back("out_prob", std::to_string(op_.out_prob));
......
...@@ -15043,6 +15043,176 @@ void _init_py_MeshIndexing(py::module m) { ...@@ -15043,6 +15043,176 @@ void _init_py_MeshIndexing(py::module m) {
mgb_assert(PyOp(OpDef)::ctype2pytype.emplace(MeshIndexing::typeinfo(), &py_type).second); mgb_assert(PyOp(OpDef)::ctype2pytype.emplace(MeshIndexing::typeinfo(), &py_type).second);
} }
template<> struct EnumTrait<MultiHeadAttn::ATTN_MASK_TYPE> {
static constexpr const char *name = "MultiHeadAttn.ATTN_MASK_TYPE";
static constexpr std::underlying_type_t<MultiHeadAttn::ATTN_MASK_TYPE> max = 4 - 1;
};
template<> PyTypeObject* EnumWrapper<MultiHeadAttn::ATTN_MASK_TYPE>::type = nullptr;
template<> const char*
EnumWrapper<MultiHeadAttn::ATTN_MASK_TYPE>::members[] = {"NO_MASK", "DEFAULT_MASK", "CUDNN_STYLE_MASK", "USER_DEFINED_MASK"};
template<> std::unordered_map<std::string, MultiHeadAttn::ATTN_MASK_TYPE>
EnumWrapper<MultiHeadAttn::ATTN_MASK_TYPE>::mem2value = {{normalize_enum("NO_MASK"), MultiHeadAttn::ATTN_MASK_TYPE::NO_MASK}, {normalize_enum("DEFAULT_MASK"), MultiHeadAttn::ATTN_MASK_TYPE::DEFAULT_MASK}, {normalize_enum("CUDNN_STYLE_MASK"), MultiHeadAttn::ATTN_MASK_TYPE::CUDNN_STYLE_MASK}, {normalize_enum("USER_DEFINED_MASK"), MultiHeadAttn::ATTN_MASK_TYPE::USER_DEFINED_MASK}};
template<> PyObject* EnumWrapper<MultiHeadAttn::ATTN_MASK_TYPE>::pyobj_insts[4] = {nullptr};
void _init_py_MultiHeadAttn_ATTN_MASK_TYPE(PyTypeObject& py_type) {
auto& e_type = EnumWrapper<MultiHeadAttn::ATTN_MASK_TYPE>::type;
static PyMethodDef tp_methods[] = {
{const_cast<char*>("dump"), (PyCFunction)EnumWrapper<MultiHeadAttn::ATTN_MASK_TYPE>::py_dump, METH_NOARGS, NULL},
{NULL} /* Sentinel */
};
static PyType_Slot slots[] = {
{Py_tp_repr, (void*)EnumWrapper<MultiHeadAttn::ATTN_MASK_TYPE>::py_repr},
{Py_tp_richcompare, (void*)EnumWrapper<MultiHeadAttn::ATTN_MASK_TYPE>::tp_richcompare},
{Py_tp_methods, tp_methods},
{0, NULL}
};
static PyType_Spec spec = {
// name
"megengine.core._imperative_rt.ops.MultiHeadAttn.ATTN_MASK_TYPE",
// basicsize
sizeof(EnumWrapper<MultiHeadAttn::ATTN_MASK_TYPE>),
// itemsize
0,
// flags
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HEAPTYPE,
// slots
slots
};
e_type = reinterpret_cast<PyTypeObject*>(PyType_FromSpec(&spec));
mgb_assert(
e_type->tp_setattro(
reinterpret_cast<PyObject*>(e_type),
py::cast("__name__").release().ptr(),
py::cast("ATTN_MASK_TYPE").release().ptr()) >= 0);
mgb_assert(
e_type->tp_setattro(
reinterpret_cast<PyObject*>(e_type),
py::cast("__module__").release().ptr(),
py::cast("megengine.core._imperative_rt.ops").release().ptr()) >= 0);
mgb_assert(
e_type->tp_setattro(
reinterpret_cast<PyObject*>(e_type),
py::cast("__qualname__").release().ptr(),
py::cast("MultiHeadAttn.ATTN_MASK_TYPE").release().ptr()) >= 0);
{
PyObject* inst = e_type->tp_alloc(e_type, 0);
reinterpret_cast<EnumWrapper<MultiHeadAttn::ATTN_MASK_TYPE>*>(inst)->value = MultiHeadAttn::ATTN_MASK_TYPE::NO_MASK;
mgb_assert(PyDict_SetItemString(e_type->tp_dict, "NO_MASK", inst) >= 0);
EnumWrapper<MultiHeadAttn::ATTN_MASK_TYPE>::pyobj_insts[0] = inst;
}{
PyObject* inst = e_type->tp_alloc(e_type, 0);
reinterpret_cast<EnumWrapper<MultiHeadAttn::ATTN_MASK_TYPE>*>(inst)->value = MultiHeadAttn::ATTN_MASK_TYPE::DEFAULT_MASK;
mgb_assert(PyDict_SetItemString(e_type->tp_dict, "DEFAULT_MASK", inst) >= 0);
EnumWrapper<MultiHeadAttn::ATTN_MASK_TYPE>::pyobj_insts[1] = inst;
}{
PyObject* inst = e_type->tp_alloc(e_type, 0);
reinterpret_cast<EnumWrapper<MultiHeadAttn::ATTN_MASK_TYPE>*>(inst)->value = MultiHeadAttn::ATTN_MASK_TYPE::CUDNN_STYLE_MASK;
mgb_assert(PyDict_SetItemString(e_type->tp_dict, "CUDNN_STYLE_MASK", inst) >= 0);
EnumWrapper<MultiHeadAttn::ATTN_MASK_TYPE>::pyobj_insts[2] = inst;
}{
PyObject* inst = e_type->tp_alloc(e_type, 0);
reinterpret_cast<EnumWrapper<MultiHeadAttn::ATTN_MASK_TYPE>*>(inst)->value = MultiHeadAttn::ATTN_MASK_TYPE::USER_DEFINED_MASK;
mgb_assert(PyDict_SetItemString(e_type->tp_dict, "USER_DEFINED_MASK", inst) >= 0);
EnumWrapper<MultiHeadAttn::ATTN_MASK_TYPE>::pyobj_insts[3] = inst;
}
Py_INCREF(e_type);
mgb_assert(PyDict_SetItemString(
py_type.tp_dict, "ATTN_MASK_TYPE", reinterpret_cast<PyObject*>(e_type)) >= 0);
}
template<> struct EnumTrait<MultiHeadAttn::TENSOR_COMBINATION_TYPE> {
static constexpr const char *name = "MultiHeadAttn.TENSOR_COMBINATION_TYPE";
static constexpr std::underlying_type_t<MultiHeadAttn::TENSOR_COMBINATION_TYPE> max = 4 - 1;
};
template<> PyTypeObject* EnumWrapper<MultiHeadAttn::TENSOR_COMBINATION_TYPE>::type = nullptr;
template<> const char*
EnumWrapper<MultiHeadAttn::TENSOR_COMBINATION_TYPE>::members[] = {"NONE", "ONLY_MASK", "ONLY_BIASKV", "ALL"};
template<> std::unordered_map<std::string, MultiHeadAttn::TENSOR_COMBINATION_TYPE>
EnumWrapper<MultiHeadAttn::TENSOR_COMBINATION_TYPE>::mem2value = {{normalize_enum("NONE"), MultiHeadAttn::TENSOR_COMBINATION_TYPE::NONE}, {normalize_enum("ONLY_MASK"), MultiHeadAttn::TENSOR_COMBINATION_TYPE::ONLY_MASK}, {normalize_enum("ONLY_BIASKV"), MultiHeadAttn::TENSOR_COMBINATION_TYPE::ONLY_BIASKV}, {normalize_enum("ALL"), MultiHeadAttn::TENSOR_COMBINATION_TYPE::ALL}};
template<> PyObject* EnumWrapper<MultiHeadAttn::TENSOR_COMBINATION_TYPE>::pyobj_insts[4] = {nullptr};
void _init_py_MultiHeadAttn_TENSOR_COMBINATION_TYPE(PyTypeObject& py_type) {
auto& e_type = EnumWrapper<MultiHeadAttn::TENSOR_COMBINATION_TYPE>::type;
static PyMethodDef tp_methods[] = {
{const_cast<char*>("dump"), (PyCFunction)EnumWrapper<MultiHeadAttn::TENSOR_COMBINATION_TYPE>::py_dump, METH_NOARGS, NULL},
{NULL} /* Sentinel */
};
static PyType_Slot slots[] = {
{Py_tp_repr, (void*)EnumWrapper<MultiHeadAttn::TENSOR_COMBINATION_TYPE>::py_repr},
{Py_tp_richcompare, (void*)EnumWrapper<MultiHeadAttn::TENSOR_COMBINATION_TYPE>::tp_richcompare},
{Py_tp_methods, tp_methods},
{0, NULL}
};
static PyType_Spec spec = {
// name
"megengine.core._imperative_rt.ops.MultiHeadAttn.TENSOR_COMBINATION_TYPE",
// basicsize
sizeof(EnumWrapper<MultiHeadAttn::TENSOR_COMBINATION_TYPE>),
// itemsize
0,
// flags
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HEAPTYPE,
// slots
slots
};
e_type = reinterpret_cast<PyTypeObject*>(PyType_FromSpec(&spec));
mgb_assert(
e_type->tp_setattro(
reinterpret_cast<PyObject*>(e_type),
py::cast("__name__").release().ptr(),
py::cast("TENSOR_COMBINATION_TYPE").release().ptr()) >= 0);
mgb_assert(
e_type->tp_setattro(
reinterpret_cast<PyObject*>(e_type),
py::cast("__module__").release().ptr(),
py::cast("megengine.core._imperative_rt.ops").release().ptr()) >= 0);
mgb_assert(
e_type->tp_setattro(
reinterpret_cast<PyObject*>(e_type),
py::cast("__qualname__").release().ptr(),
py::cast("MultiHeadAttn.TENSOR_COMBINATION_TYPE").release().ptr()) >= 0);
{
PyObject* inst = e_type->tp_alloc(e_type, 0);
reinterpret_cast<EnumWrapper<MultiHeadAttn::TENSOR_COMBINATION_TYPE>*>(inst)->value = MultiHeadAttn::TENSOR_COMBINATION_TYPE::NONE;
mgb_assert(PyDict_SetItemString(e_type->tp_dict, "NONE", inst) >= 0);
EnumWrapper<MultiHeadAttn::TENSOR_COMBINATION_TYPE>::pyobj_insts[0] = inst;
}{
PyObject* inst = e_type->tp_alloc(e_type, 0);
reinterpret_cast<EnumWrapper<MultiHeadAttn::TENSOR_COMBINATION_TYPE>*>(inst)->value = MultiHeadAttn::TENSOR_COMBINATION_TYPE::ONLY_MASK;
mgb_assert(PyDict_SetItemString(e_type->tp_dict, "ONLY_MASK", inst) >= 0);
EnumWrapper<MultiHeadAttn::TENSOR_COMBINATION_TYPE>::pyobj_insts[1] = inst;
}{
PyObject* inst = e_type->tp_alloc(e_type, 0);
reinterpret_cast<EnumWrapper<MultiHeadAttn::TENSOR_COMBINATION_TYPE>*>(inst)->value = MultiHeadAttn::TENSOR_COMBINATION_TYPE::ONLY_BIASKV;
mgb_assert(PyDict_SetItemString(e_type->tp_dict, "ONLY_BIASKV", inst) >= 0);
EnumWrapper<MultiHeadAttn::TENSOR_COMBINATION_TYPE>::pyobj_insts[2] = inst;
}{
PyObject* inst = e_type->tp_alloc(e_type, 0);
reinterpret_cast<EnumWrapper<MultiHeadAttn::TENSOR_COMBINATION_TYPE>*>(inst)->value = MultiHeadAttn::TENSOR_COMBINATION_TYPE::ALL;
mgb_assert(PyDict_SetItemString(e_type->tp_dict, "ALL", inst) >= 0);
EnumWrapper<MultiHeadAttn::TENSOR_COMBINATION_TYPE>::pyobj_insts[3] = inst;
}
Py_INCREF(e_type);
mgb_assert(PyDict_SetItemString(
py_type.tp_dict, "TENSOR_COMBINATION_TYPE", reinterpret_cast<PyObject*>(e_type)) >= 0);
}
PyOpDefBegin(MultiHeadAttn) // { PyOpDefBegin(MultiHeadAttn) // {
static PyGetSetDef py_getsetters[]; static PyGetSetDef py_getsetters[];
static PyMethodDef tp_methods[]; static PyMethodDef tp_methods[];
...@@ -15053,16 +15223,25 @@ PyOpDefBegin(MultiHeadAttn) // { ...@@ -15053,16 +15223,25 @@ PyOpDefBegin(MultiHeadAttn) // {
std::unordered_map<std::string, py::object> state { std::unordered_map<std::string, py::object> state {
{"num_heads", serialization<decltype(opdef.num_heads)>::dump(opdef.num_heads)}, {"num_heads", serialization<decltype(opdef.num_heads)>::dump(opdef.num_heads)},
{"embeding_size", serialization<decltype(opdef.embeding_size)>::dump(opdef.embeding_size)},
{"k_size", serialization<decltype(opdef.k_size)>::dump(opdef.k_size)},
{"v_size", serialization<decltype(opdef.v_size)>::dump(opdef.v_size)},
{"qproj_size", serialization<decltype(opdef.qproj_size)>::dump(opdef.qproj_size)},
{"kproj_size", serialization<decltype(opdef.kproj_size)>::dump(opdef.kproj_size)},
{"vproj_size", serialization<decltype(opdef.vproj_size)>::dump(opdef.vproj_size)},
{"oproj_size", serialization<decltype(opdef.oproj_size)>::dump(opdef.oproj_size)},
{"qbias", serialization<decltype(opdef.qbias)>::dump(opdef.qbias)},
{"kbias", serialization<decltype(opdef.kbias)>::dump(opdef.kbias)},
{"vbias", serialization<decltype(opdef.vbias)>::dump(opdef.vbias)},
{"obias", serialization<decltype(opdef.obias)>::dump(opdef.obias)},
{"sm_scaler", serialization<decltype(opdef.sm_scaler)>::dump(opdef.sm_scaler)}, {"sm_scaler", serialization<decltype(opdef.sm_scaler)>::dump(opdef.sm_scaler)},
{"input_order", serialization<decltype(opdef.input_order)>::dump(opdef.input_order)}, {"input_order", serialization<decltype(opdef.input_order)>::dump(opdef.input_order)},
{"attn_mask_type", serialization<decltype(opdef.attn_mask_type)>::dump(opdef.attn_mask_type)},
{"tensor_combination_type", serialization<decltype(opdef.tensor_combination_type)>::dump(opdef.tensor_combination_type)},
{"need_weights", serialization<decltype(opdef.need_weights)>::dump(opdef.need_weights)},
{"add_zero_attn", serialization<decltype(opdef.add_zero_attn)>::dump(opdef.add_zero_attn)},
{"reslink", serialization<decltype(opdef.reslink)>::dump(opdef.reslink)}, {"reslink", serialization<decltype(opdef.reslink)>::dump(opdef.reslink)},
{"training", serialization<decltype(opdef.training)>::dump(opdef.training)}, {"training", serialization<decltype(opdef.training)>::dump(opdef.training)},
{"bias", serialization<decltype(opdef.bias)>::dump(opdef.bias)},
{"attn_mask", serialization<decltype(opdef.attn_mask)>::dump(opdef.attn_mask)},
{"enable_qproj", serialization<decltype(opdef.enable_qproj)>::dump(opdef.enable_qproj)},
{"enable_kproj", serialization<decltype(opdef.enable_kproj)>::dump(opdef.enable_kproj)},
{"enable_vproj", serialization<decltype(opdef.enable_vproj)>::dump(opdef.enable_vproj)},
{"enable_oproj", serialization<decltype(opdef.enable_oproj)>::dump(opdef.enable_oproj)},
{"seed", serialization<decltype(opdef.seed)>::dump(opdef.seed)}, {"seed", serialization<decltype(opdef.seed)>::dump(opdef.seed)},
{"attn_prob", serialization<decltype(opdef.attn_prob)>::dump(opdef.attn_prob)}, {"attn_prob", serialization<decltype(opdef.attn_prob)>::dump(opdef.attn_prob)},
{"out_prob", serialization<decltype(opdef.out_prob)>::dump(opdef.out_prob)}, {"out_prob", serialization<decltype(opdef.out_prob)>::dump(opdef.out_prob)},
...@@ -15085,72 +15264,135 @@ PyOpDefBegin(MultiHeadAttn) // { ...@@ -15085,72 +15264,135 @@ PyOpDefBegin(MultiHeadAttn) // {
} }
{ {
auto&& iter = state.find("sm_scaler"); auto&& iter = state.find("embeding_size");
if (iter != state.end()) { if (iter != state.end()) {
opdef.sm_scaler = serialization<decltype(opdef.sm_scaler)>::load(iter->second); opdef.embeding_size = serialization<decltype(opdef.embeding_size)>::load(iter->second);
} }
} }
{ {
auto&& iter = state.find("input_order"); auto&& iter = state.find("k_size");
if (iter != state.end()) { if (iter != state.end()) {
opdef.input_order = serialization<decltype(opdef.input_order)>::load(iter->second); opdef.k_size = serialization<decltype(opdef.k_size)>::load(iter->second);
} }
} }
{ {
auto&& iter = state.find("reslink"); auto&& iter = state.find("v_size");
if (iter != state.end()) { if (iter != state.end()) {
opdef.reslink = serialization<decltype(opdef.reslink)>::load(iter->second); opdef.v_size = serialization<decltype(opdef.v_size)>::load(iter->second);
} }
} }
{ {
auto&& iter = state.find("training"); auto&& iter = state.find("qproj_size");
if (iter != state.end()) { if (iter != state.end()) {
opdef.training = serialization<decltype(opdef.training)>::load(iter->second); opdef.qproj_size = serialization<decltype(opdef.qproj_size)>::load(iter->second);
} }
} }
{ {
auto&& iter = state.find("bias"); auto&& iter = state.find("kproj_size");
if (iter != state.end()) { if (iter != state.end()) {
opdef.bias = serialization<decltype(opdef.bias)>::load(iter->second); opdef.kproj_size = serialization<decltype(opdef.kproj_size)>::load(iter->second);
} }
} }
{ {
auto&& iter = state.find("attn_mask"); auto&& iter = state.find("vproj_size");
if (iter != state.end()) { if (iter != state.end()) {
opdef.attn_mask = serialization<decltype(opdef.attn_mask)>::load(iter->second); opdef.vproj_size = serialization<decltype(opdef.vproj_size)>::load(iter->second);
} }
} }
{ {
auto&& iter = state.find("enable_qproj"); auto&& iter = state.find("oproj_size");
if (iter != state.end()) { if (iter != state.end()) {
opdef.enable_qproj = serialization<decltype(opdef.enable_qproj)>::load(iter->second); opdef.oproj_size = serialization<decltype(opdef.oproj_size)>::load(iter->second);
} }
} }
{ {
auto&& iter = state.find("enable_kproj"); auto&& iter = state.find("qbias");
if (iter != state.end()) { if (iter != state.end()) {
opdef.enable_kproj = serialization<decltype(opdef.enable_kproj)>::load(iter->second); opdef.qbias = serialization<decltype(opdef.qbias)>::load(iter->second);
} }
} }
{ {
auto&& iter = state.find("enable_vproj"); auto&& iter = state.find("kbias");
if (iter != state.end()) { if (iter != state.end()) {
opdef.enable_vproj = serialization<decltype(opdef.enable_vproj)>::load(iter->second); opdef.kbias = serialization<decltype(opdef.kbias)>::load(iter->second);
} }
} }
{ {
auto&& iter = state.find("enable_oproj"); auto&& iter = state.find("vbias");
if (iter != state.end()) { if (iter != state.end()) {
opdef.enable_oproj = serialization<decltype(opdef.enable_oproj)>::load(iter->second); opdef.vbias = serialization<decltype(opdef.vbias)>::load(iter->second);
}
}
{
auto&& iter = state.find("obias");
if (iter != state.end()) {
opdef.obias = serialization<decltype(opdef.obias)>::load(iter->second);
}
}
{
auto&& iter = state.find("sm_scaler");
if (iter != state.end()) {
opdef.sm_scaler = serialization<decltype(opdef.sm_scaler)>::load(iter->second);
}
}
{
auto&& iter = state.find("input_order");
if (iter != state.end()) {
opdef.input_order = serialization<decltype(opdef.input_order)>::load(iter->second);
}
}
{
auto&& iter = state.find("attn_mask_type");
if (iter != state.end()) {
opdef.attn_mask_type = serialization<decltype(opdef.attn_mask_type)>::load(iter->second);
}
}
{
auto&& iter = state.find("tensor_combination_type");
if (iter != state.end()) {
opdef.tensor_combination_type = serialization<decltype(opdef.tensor_combination_type)>::load(iter->second);
}
}
{
auto&& iter = state.find("need_weights");
if (iter != state.end()) {
opdef.need_weights = serialization<decltype(opdef.need_weights)>::load(iter->second);
}
}
{
auto&& iter = state.find("add_zero_attn");
if (iter != state.end()) {
opdef.add_zero_attn = serialization<decltype(opdef.add_zero_attn)>::load(iter->second);
}
}
{
auto&& iter = state.find("reslink");
if (iter != state.end()) {
opdef.reslink = serialization<decltype(opdef.reslink)>::load(iter->second);
}
}
{
auto&& iter = state.find("training");
if (iter != state.end()) {
opdef.training = serialization<decltype(opdef.training)>::load(iter->second);
} }
} }
...@@ -15190,9 +15432,9 @@ PyOpDefBegin(MultiHeadAttn) // { ...@@ -15190,9 +15432,9 @@ PyOpDefBegin(MultiHeadAttn) // {
PyOpDefEnd(MultiHeadAttn) PyOpDefEnd(MultiHeadAttn)
int PyOp(MultiHeadAttn)::py_init(PyObject *self, PyObject *args, PyObject *kwds) { int PyOp(MultiHeadAttn)::py_init(PyObject *self, PyObject *args, PyObject *kwds) {
static const char* kwlist[] = {"num_heads", "sm_scaler", "input_order", "reslink", "training", "bias", "attn_mask", "enable_qproj", "enable_kproj", "enable_vproj", "enable_oproj", "seed", "attn_prob", "out_prob", "handle", "scope", NULL}; static const char* kwlist[] = {"num_heads", "embeding_size", "k_size", "v_size", "qproj_size", "kproj_size", "vproj_size", "oproj_size", "qbias", "kbias", "vbias", "obias", "sm_scaler", "input_order", "attn_mask_type", "tensor_combination_type", "need_weights", "add_zero_attn", "reslink", "training", "seed", "attn_prob", "out_prob", "handle", "scope", NULL};
PyObject *num_heads = NULL, *sm_scaler = NULL, *input_order = NULL, *reslink = NULL, *training = NULL, *bias = NULL, *attn_mask = NULL, *enable_qproj = NULL, *enable_kproj = NULL, *enable_vproj = NULL, *enable_oproj = NULL, *seed = NULL, *attn_prob = NULL, *out_prob = NULL, *handle = NULL, *scope = NULL; PyObject *num_heads = NULL, *embeding_size = NULL, *k_size = NULL, *v_size = NULL, *qproj_size = NULL, *kproj_size = NULL, *vproj_size = NULL, *oproj_size = NULL, *qbias = NULL, *kbias = NULL, *vbias = NULL, *obias = NULL, *sm_scaler = NULL, *input_order = NULL, *attn_mask_type = NULL, *tensor_combination_type = NULL, *need_weights = NULL, *add_zero_attn = NULL, *reslink = NULL, *training = NULL, *seed = NULL, *attn_prob = NULL, *out_prob = NULL, *handle = NULL, *scope = NULL;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OOOOOOOOOOOOOOOO", const_cast<char**>(kwlist), &num_heads, &sm_scaler, &input_order, &reslink, &training, &bias, &attn_mask, &enable_qproj, &enable_kproj, &enable_vproj, &enable_oproj, &seed, &attn_prob, &out_prob, &handle, &scope)) if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OOOOOOOOOOOOOOOOOOOOOOOOO", const_cast<char**>(kwlist), &num_heads, &embeding_size, &k_size, &v_size, &qproj_size, &kproj_size, &vproj_size, &oproj_size, &qbias, &kbias, &vbias, &obias, &sm_scaler, &input_order, &attn_mask_type, &tensor_combination_type, &need_weights, &add_zero_attn, &reslink, &training, &seed, &attn_prob, &out_prob, &handle, &scope))
return -1; return -1;
if (num_heads) { if (num_heads) {
...@@ -15204,93 +15446,174 @@ int PyOp(MultiHeadAttn)::py_init(PyObject *self, PyObject *args, PyObject *kwds) ...@@ -15204,93 +15446,174 @@ int PyOp(MultiHeadAttn)::py_init(PyObject *self, PyObject *args, PyObject *kwds)
} CATCH_ALL(-1) } CATCH_ALL(-1)
} }
if (sm_scaler) { if (embeding_size) {
try { try {
// TODO: remove this guard which is used for pybind11 implicit conversion // TODO: remove this guard which is used for pybind11 implicit conversion
py::detail::loader_life_support guard{}; py::detail::loader_life_support guard{};
reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().sm_scaler = reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().embeding_size =
py::cast<decltype(MultiHeadAttn::sm_scaler)>(py::handle(sm_scaler)); py::cast<decltype(MultiHeadAttn::embeding_size)>(py::handle(embeding_size));
} CATCH_ALL(-1) } CATCH_ALL(-1)
} }
if (input_order) { if (k_size) {
try { try {
// TODO: remove this guard which is used for pybind11 implicit conversion // TODO: remove this guard which is used for pybind11 implicit conversion
py::detail::loader_life_support guard{}; py::detail::loader_life_support guard{};
reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().input_order = reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().k_size =
py::cast<decltype(MultiHeadAttn::input_order)>(py::handle(input_order)); py::cast<decltype(MultiHeadAttn::k_size)>(py::handle(k_size));
} CATCH_ALL(-1) } CATCH_ALL(-1)
} }
if (reslink) { if (v_size) {
try { try {
// TODO: remove this guard which is used for pybind11 implicit conversion // TODO: remove this guard which is used for pybind11 implicit conversion
py::detail::loader_life_support guard{}; py::detail::loader_life_support guard{};
reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().reslink = reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().v_size =
py::cast<decltype(MultiHeadAttn::reslink)>(py::handle(reslink)); py::cast<decltype(MultiHeadAttn::v_size)>(py::handle(v_size));
} CATCH_ALL(-1) } CATCH_ALL(-1)
} }
if (training) { if (qproj_size) {
try { try {
// TODO: remove this guard which is used for pybind11 implicit conversion // TODO: remove this guard which is used for pybind11 implicit conversion
py::detail::loader_life_support guard{}; py::detail::loader_life_support guard{};
reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().training = reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().qproj_size =
py::cast<decltype(MultiHeadAttn::training)>(py::handle(training)); py::cast<decltype(MultiHeadAttn::qproj_size)>(py::handle(qproj_size));
} CATCH_ALL(-1) } CATCH_ALL(-1)
} }
if (bias) { if (kproj_size) {
try {
// TODO: remove this guard which is used for pybind11 implicit conversion
py::detail::loader_life_support guard{};
reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().kproj_size =
py::cast<decltype(MultiHeadAttn::kproj_size)>(py::handle(kproj_size));
} CATCH_ALL(-1)
}
if (vproj_size) {
try {
// TODO: remove this guard which is used for pybind11 implicit conversion
py::detail::loader_life_support guard{};
reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().vproj_size =
py::cast<decltype(MultiHeadAttn::vproj_size)>(py::handle(vproj_size));
} CATCH_ALL(-1)
}
if (oproj_size) {
try {
// TODO: remove this guard which is used for pybind11 implicit conversion
py::detail::loader_life_support guard{};
reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().oproj_size =
py::cast<decltype(MultiHeadAttn::oproj_size)>(py::handle(oproj_size));
} CATCH_ALL(-1)
}
if (qbias) {
try {
// TODO: remove this guard which is used for pybind11 implicit conversion
py::detail::loader_life_support guard{};
reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().qbias =
py::cast<decltype(MultiHeadAttn::qbias)>(py::handle(qbias));
} CATCH_ALL(-1)
}
if (kbias) {
try { try {
// TODO: remove this guard which is used for pybind11 implicit conversion // TODO: remove this guard which is used for pybind11 implicit conversion
py::detail::loader_life_support guard{}; py::detail::loader_life_support guard{};
reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().bias = reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().kbias =
py::cast<decltype(MultiHeadAttn::bias)>(py::handle(bias)); py::cast<decltype(MultiHeadAttn::kbias)>(py::handle(kbias));
} CATCH_ALL(-1) } CATCH_ALL(-1)
} }
if (attn_mask) { if (vbias) {
try { try {
// TODO: remove this guard which is used for pybind11 implicit conversion // TODO: remove this guard which is used for pybind11 implicit conversion
py::detail::loader_life_support guard{}; py::detail::loader_life_support guard{};
reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().attn_mask = reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().vbias =
py::cast<decltype(MultiHeadAttn::attn_mask)>(py::handle(attn_mask)); py::cast<decltype(MultiHeadAttn::vbias)>(py::handle(vbias));
} CATCH_ALL(-1) } CATCH_ALL(-1)
} }
if (enable_qproj) { if (obias) {
try { try {
// TODO: remove this guard which is used for pybind11 implicit conversion // TODO: remove this guard which is used for pybind11 implicit conversion
py::detail::loader_life_support guard{}; py::detail::loader_life_support guard{};
reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().enable_qproj = reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().obias =
py::cast<decltype(MultiHeadAttn::enable_qproj)>(py::handle(enable_qproj)); py::cast<decltype(MultiHeadAttn::obias)>(py::handle(obias));
} CATCH_ALL(-1) } CATCH_ALL(-1)
} }
if (enable_kproj) { if (sm_scaler) {
try { try {
// TODO: remove this guard which is used for pybind11 implicit conversion // TODO: remove this guard which is used for pybind11 implicit conversion
py::detail::loader_life_support guard{}; py::detail::loader_life_support guard{};
reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().enable_kproj = reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().sm_scaler =
py::cast<decltype(MultiHeadAttn::enable_kproj)>(py::handle(enable_kproj)); py::cast<decltype(MultiHeadAttn::sm_scaler)>(py::handle(sm_scaler));
} CATCH_ALL(-1) } CATCH_ALL(-1)
} }
if (enable_vproj) { if (input_order) {
try { try {
// TODO: remove this guard which is used for pybind11 implicit conversion // TODO: remove this guard which is used for pybind11 implicit conversion
py::detail::loader_life_support guard{}; py::detail::loader_life_support guard{};
reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().enable_vproj = reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().input_order =
py::cast<decltype(MultiHeadAttn::enable_vproj)>(py::handle(enable_vproj)); py::cast<decltype(MultiHeadAttn::input_order)>(py::handle(input_order));
} CATCH_ALL(-1) } CATCH_ALL(-1)
} }
if (enable_oproj) { if (attn_mask_type) {
try { try {
// TODO: remove this guard which is used for pybind11 implicit conversion // TODO: remove this guard which is used for pybind11 implicit conversion
py::detail::loader_life_support guard{}; py::detail::loader_life_support guard{};
reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().enable_oproj = reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().attn_mask_type =
py::cast<decltype(MultiHeadAttn::enable_oproj)>(py::handle(enable_oproj)); py::cast<decltype(MultiHeadAttn::attn_mask_type)>(py::handle(attn_mask_type));
} CATCH_ALL(-1)
}
if (tensor_combination_type) {
try {
// TODO: remove this guard which is used for pybind11 implicit conversion
py::detail::loader_life_support guard{};
reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().tensor_combination_type =
py::cast<decltype(MultiHeadAttn::tensor_combination_type)>(py::handle(tensor_combination_type));
} CATCH_ALL(-1)
}
if (need_weights) {
try {
// TODO: remove this guard which is used for pybind11 implicit conversion
py::detail::loader_life_support guard{};
reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().need_weights =
py::cast<decltype(MultiHeadAttn::need_weights)>(py::handle(need_weights));
} CATCH_ALL(-1)
}
if (add_zero_attn) {
try {
// TODO: remove this guard which is used for pybind11 implicit conversion
py::detail::loader_life_support guard{};
reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().add_zero_attn =
py::cast<decltype(MultiHeadAttn::add_zero_attn)>(py::handle(add_zero_attn));
} CATCH_ALL(-1)
}
if (reslink) {
try {
// TODO: remove this guard which is used for pybind11 implicit conversion
py::detail::loader_life_support guard{};
reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().reslink =
py::cast<decltype(MultiHeadAttn::reslink)>(py::handle(reslink));
} CATCH_ALL(-1)
}
if (training) {
try {
// TODO: remove this guard which is used for pybind11 implicit conversion
py::detail::loader_life_support guard{};
reinterpret_cast<PyOp(MultiHeadAttn)*>(self)->inst().training =
py::cast<decltype(MultiHeadAttn::training)>(py::handle(training));
} CATCH_ALL(-1) } CATCH_ALL(-1)
} }
...@@ -15342,16 +15665,25 @@ int PyOp(MultiHeadAttn)::py_init(PyObject *self, PyObject *args, PyObject *kwds) ...@@ -15342,16 +15665,25 @@ int PyOp(MultiHeadAttn)::py_init(PyObject *self, PyObject *args, PyObject *kwds)
PyGetSetDef PyOp(MultiHeadAttn)::py_getsetters[] = { PyGetSetDef PyOp(MultiHeadAttn)::py_getsetters[] = {
{const_cast<char*>("num_heads"), py_get_generic(MultiHeadAttn, num_heads), py_set_generic(MultiHeadAttn, num_heads), const_cast<char*>("num_heads"), NULL}, {const_cast<char*>("num_heads"), py_get_generic(MultiHeadAttn, num_heads), py_set_generic(MultiHeadAttn, num_heads), const_cast<char*>("num_heads"), NULL},
{const_cast<char*>("embeding_size"), py_get_generic(MultiHeadAttn, embeding_size), py_set_generic(MultiHeadAttn, embeding_size), const_cast<char*>("embeding_size"), NULL},
{const_cast<char*>("k_size"), py_get_generic(MultiHeadAttn, k_size), py_set_generic(MultiHeadAttn, k_size), const_cast<char*>("k_size"), NULL},
{const_cast<char*>("v_size"), py_get_generic(MultiHeadAttn, v_size), py_set_generic(MultiHeadAttn, v_size), const_cast<char*>("v_size"), NULL},
{const_cast<char*>("qproj_size"), py_get_generic(MultiHeadAttn, qproj_size), py_set_generic(MultiHeadAttn, qproj_size), const_cast<char*>("qproj_size"), NULL},
{const_cast<char*>("kproj_size"), py_get_generic(MultiHeadAttn, kproj_size), py_set_generic(MultiHeadAttn, kproj_size), const_cast<char*>("kproj_size"), NULL},
{const_cast<char*>("vproj_size"), py_get_generic(MultiHeadAttn, vproj_size), py_set_generic(MultiHeadAttn, vproj_size), const_cast<char*>("vproj_size"), NULL},
{const_cast<char*>("oproj_size"), py_get_generic(MultiHeadAttn, oproj_size), py_set_generic(MultiHeadAttn, oproj_size), const_cast<char*>("oproj_size"), NULL},
{const_cast<char*>("qbias"), py_get_generic(MultiHeadAttn, qbias), py_set_generic(MultiHeadAttn, qbias), const_cast<char*>("qbias"), NULL},
{const_cast<char*>("kbias"), py_get_generic(MultiHeadAttn, kbias), py_set_generic(MultiHeadAttn, kbias), const_cast<char*>("kbias"), NULL},
{const_cast<char*>("vbias"), py_get_generic(MultiHeadAttn, vbias), py_set_generic(MultiHeadAttn, vbias), const_cast<char*>("vbias"), NULL},
{const_cast<char*>("obias"), py_get_generic(MultiHeadAttn, obias), py_set_generic(MultiHeadAttn, obias), const_cast<char*>("obias"), NULL},
{const_cast<char*>("sm_scaler"), py_get_generic(MultiHeadAttn, sm_scaler), py_set_generic(MultiHeadAttn, sm_scaler), const_cast<char*>("sm_scaler"), NULL}, {const_cast<char*>("sm_scaler"), py_get_generic(MultiHeadAttn, sm_scaler), py_set_generic(MultiHeadAttn, sm_scaler), const_cast<char*>("sm_scaler"), NULL},
{const_cast<char*>("input_order"), py_get_generic(MultiHeadAttn, input_order), py_set_generic(MultiHeadAttn, input_order), const_cast<char*>("input_order"), NULL}, {const_cast<char*>("input_order"), py_get_generic(MultiHeadAttn, input_order), py_set_generic(MultiHeadAttn, input_order), const_cast<char*>("input_order"), NULL},
{const_cast<char*>("attn_mask_type"), py_get_generic(MultiHeadAttn, attn_mask_type), py_set_generic(MultiHeadAttn, attn_mask_type), const_cast<char*>("attn_mask_type"), NULL},
{const_cast<char*>("tensor_combination_type"), py_get_generic(MultiHeadAttn, tensor_combination_type), py_set_generic(MultiHeadAttn, tensor_combination_type), const_cast<char*>("tensor_combination_type"), NULL},
{const_cast<char*>("need_weights"), py_get_generic(MultiHeadAttn, need_weights), py_set_generic(MultiHeadAttn, need_weights), const_cast<char*>("need_weights"), NULL},
{const_cast<char*>("add_zero_attn"), py_get_generic(MultiHeadAttn, add_zero_attn), py_set_generic(MultiHeadAttn, add_zero_attn), const_cast<char*>("add_zero_attn"), NULL},
{const_cast<char*>("reslink"), py_get_generic(MultiHeadAttn, reslink), py_set_generic(MultiHeadAttn, reslink), const_cast<char*>("reslink"), NULL}, {const_cast<char*>("reslink"), py_get_generic(MultiHeadAttn, reslink), py_set_generic(MultiHeadAttn, reslink), const_cast<char*>("reslink"), NULL},
{const_cast<char*>("training"), py_get_generic(MultiHeadAttn, training), py_set_generic(MultiHeadAttn, training), const_cast<char*>("training"), NULL}, {const_cast<char*>("training"), py_get_generic(MultiHeadAttn, training), py_set_generic(MultiHeadAttn, training), const_cast<char*>("training"), NULL},
{const_cast<char*>("bias"), py_get_generic(MultiHeadAttn, bias), py_set_generic(MultiHeadAttn, bias), const_cast<char*>("bias"), NULL},
{const_cast<char*>("attn_mask"), py_get_generic(MultiHeadAttn, attn_mask), py_set_generic(MultiHeadAttn, attn_mask), const_cast<char*>("attn_mask"), NULL},
{const_cast<char*>("enable_qproj"), py_get_generic(MultiHeadAttn, enable_qproj), py_set_generic(MultiHeadAttn, enable_qproj), const_cast<char*>("enable_qproj"), NULL},
{const_cast<char*>("enable_kproj"), py_get_generic(MultiHeadAttn, enable_kproj), py_set_generic(MultiHeadAttn, enable_kproj), const_cast<char*>("enable_kproj"), NULL},
{const_cast<char*>("enable_vproj"), py_get_generic(MultiHeadAttn, enable_vproj), py_set_generic(MultiHeadAttn, enable_vproj), const_cast<char*>("enable_vproj"), NULL},
{const_cast<char*>("enable_oproj"), py_get_generic(MultiHeadAttn, enable_oproj), py_set_generic(MultiHeadAttn, enable_oproj), const_cast<char*>("enable_oproj"), NULL},
{const_cast<char*>("seed"), py_get_generic(MultiHeadAttn, seed), py_set_generic(MultiHeadAttn, seed), const_cast<char*>("seed"), NULL}, {const_cast<char*>("seed"), py_get_generic(MultiHeadAttn, seed), py_set_generic(MultiHeadAttn, seed), const_cast<char*>("seed"), NULL},
{const_cast<char*>("attn_prob"), py_get_generic(MultiHeadAttn, attn_prob), py_set_generic(MultiHeadAttn, attn_prob), const_cast<char*>("attn_prob"), NULL}, {const_cast<char*>("attn_prob"), py_get_generic(MultiHeadAttn, attn_prob), py_set_generic(MultiHeadAttn, attn_prob), const_cast<char*>("attn_prob"), NULL},
{const_cast<char*>("out_prob"), py_get_generic(MultiHeadAttn, out_prob), py_set_generic(MultiHeadAttn, out_prob), const_cast<char*>("out_prob"), NULL}, {const_cast<char*>("out_prob"), py_get_generic(MultiHeadAttn, out_prob), py_set_generic(MultiHeadAttn, out_prob), const_cast<char*>("out_prob"), NULL},
...@@ -15376,7 +15708,7 @@ PyMethodDef PyOp(MultiHeadAttn)::py_init_methoddef = { ...@@ -15376,7 +15708,7 @@ PyMethodDef PyOp(MultiHeadAttn)::py_init_methoddef = {
"__init__", "__init__",
(PyCFunction)PyOp(MultiHeadAttn)::py_init_proxy, (PyCFunction)PyOp(MultiHeadAttn)::py_init_proxy,
METH_VARARGS | METH_KEYWORDS, METH_VARARGS | METH_KEYWORDS,
"__init__(self, num_heads: int = ..., sm_scaler: float = ..., input_order: int = ..., reslink: bool = ..., training: bool = ..., bias: bool = ..., attn_mask: bool = ..., enable_qproj: bool = ..., enable_kproj: bool = ..., enable_vproj: bool = ..., enable_oproj: bool = ..., seed: int = ..., attn_prob: float = ..., out_prob: float = ..., handle: int = ...) -> None\n" "__init__(self, num_heads: int = ..., embeding_size: int = ..., k_size: int = ..., v_size: int = ..., qproj_size: int = ..., kproj_size: int = ..., vproj_size: int = ..., oproj_size: int = ..., qbias: bool = ..., kbias: bool = ..., vbias: bool = ..., obias: bool = ..., sm_scaler: float = ..., input_order: int = ..., attn_mask_type: Union[str, ATTN_MASK_TYPE] = ..., tensor_combination_type: Union[str, TENSOR_COMBINATION_TYPE] = ..., need_weights: bool = ..., add_zero_attn: bool = ..., reslink: bool = ..., training: bool = ..., seed: int = ..., attn_prob: float = ..., out_prob: float = ..., handle: int = ...) -> None\n"
}; };
void _init_py_MultiHeadAttn(py::module m) { void _init_py_MultiHeadAttn(py::module m) {
...@@ -15398,6 +15730,8 @@ void _init_py_MultiHeadAttn(py::module m) { ...@@ -15398,6 +15730,8 @@ void _init_py_MultiHeadAttn(py::module m) {
PyObject* descr = PyDescr_NewMethod(&PyOpType(MultiHeadAttn), &PyOp(MultiHeadAttn)::py_init_methoddef); PyObject* descr = PyDescr_NewMethod(&PyOpType(MultiHeadAttn), &PyOp(MultiHeadAttn)::py_init_methoddef);
PyDict_SetItemString(py_type.tp_dict, "__init__", descr); PyDict_SetItemString(py_type.tp_dict, "__init__", descr);
mgb_assert(PyType_Ready(&py_type) >= 0); mgb_assert(PyType_Ready(&py_type) >= 0);
_init_py_MultiHeadAttn_ATTN_MASK_TYPE(py_type);
_init_py_MultiHeadAttn_TENSOR_COMBINATION_TYPE(py_type);
PyType_Modified(&py_type); PyType_Modified(&py_type);
m.add_object("MultiHeadAttn", reinterpret_cast<PyObject*>(&py_type)); m.add_object("MultiHeadAttn", reinterpret_cast<PyObject*>(&py_type));
......
...@@ -1398,26 +1398,37 @@ class MultiHeadAttn : public OpDefImplBase<MultiHeadAttn> { ...@@ -1398,26 +1398,37 @@ class MultiHeadAttn : public OpDefImplBase<MultiHeadAttn> {
MGB_DYN_TYPE_OBJ_FINAL_DECL; MGB_DYN_TYPE_OBJ_FINAL_DECL;
public: public:
using ATTN_MASK_TYPE = ::megdnn::param::MultiHeadAttn::ATTN_MASK_TYPE;
using TENSOR_COMBINATION_TYPE = ::megdnn::param::MultiHeadAttn::TENSOR_COMBINATION_TYPE;
uint32_t num_heads = 1; uint32_t num_heads = 1;
uint32_t embeding_size = 0;
uint32_t k_size = 0;
uint32_t v_size = 0;
uint32_t qproj_size = 0;
uint32_t kproj_size = 0;
uint32_t vproj_size = 0;
uint32_t oproj_size = 0;
bool qbias = false;
bool kbias = false;
bool vbias = false;
bool obias = false;
float sm_scaler = 1.f; float sm_scaler = 1.f;
uint32_t input_order = 0; uint32_t input_order = 0;
ATTN_MASK_TYPE attn_mask_type = ::megdnn::param::MultiHeadAttn::ATTN_MASK_TYPE::NO_MASK;
TENSOR_COMBINATION_TYPE tensor_combination_type = ::megdnn::param::MultiHeadAttn::TENSOR_COMBINATION_TYPE::NONE;
bool need_weights = false;
bool add_zero_attn = false;
bool reslink = false; bool reslink = false;
bool training = true; bool training = true;
bool bias = false;
bool attn_mask = false;
bool enable_qproj = true;
bool enable_kproj = true;
bool enable_vproj = true;
bool enable_oproj = true;
uint64_t seed = 0; uint64_t seed = 0;
float attn_prob = 0.f; float attn_prob = 0.f;
float out_prob = 0.f; float out_prob = 0.f;
size_t handle; size_t handle;
MultiHeadAttn() = default; MultiHeadAttn() = default;
MultiHeadAttn(uint32_t num_heads_, float sm_scaler_, uint32_t input_order_, bool reslink_, bool training_, bool bias_, bool attn_mask_, bool enable_qproj_, bool enable_kproj_, bool enable_vproj_, bool enable_oproj_, uint64_t seed_, float attn_prob_, float out_prob_, size_t handle_, std::string scope_ = {}): num_heads(num_heads_), sm_scaler(sm_scaler_), input_order(input_order_), reslink(reslink_), training(training_), bias(bias_), attn_mask(attn_mask_), enable_qproj(enable_qproj_), enable_kproj(enable_kproj_), enable_vproj(enable_vproj_), enable_oproj(enable_oproj_), seed(seed_), attn_prob(attn_prob_), out_prob(out_prob_), handle(handle_) { set_scope(scope_); } MultiHeadAttn(uint32_t num_heads_, uint32_t embeding_size_, uint32_t k_size_, uint32_t v_size_, uint32_t qproj_size_, uint32_t kproj_size_, uint32_t vproj_size_, uint32_t oproj_size_, bool qbias_, bool kbias_, bool vbias_, bool obias_, float sm_scaler_, uint32_t input_order_, ATTN_MASK_TYPE attn_mask_type_, TENSOR_COMBINATION_TYPE tensor_combination_type_, bool need_weights_, bool add_zero_attn_, bool reslink_, bool training_, uint64_t seed_, float attn_prob_, float out_prob_, size_t handle_, std::string scope_ = {}): num_heads(num_heads_), embeding_size(embeding_size_), k_size(k_size_), v_size(v_size_), qproj_size(qproj_size_), kproj_size(kproj_size_), vproj_size(vproj_size_), oproj_size(oproj_size_), qbias(qbias_), kbias(kbias_), vbias(vbias_), obias(obias_), sm_scaler(sm_scaler_), input_order(input_order_), attn_mask_type(attn_mask_type_), tensor_combination_type(tensor_combination_type_), need_weights(need_weights_), add_zero_attn(add_zero_attn_), reslink(reslink_), training(training_), seed(seed_), attn_prob(attn_prob_), out_prob(out_prob_), handle(handle_) { set_scope(scope_); }
MultiHeadAttn(::megdnn::param::MultiHeadAttn packed_param_0, size_t handle_): num_heads(packed_param_0.num_heads), sm_scaler(packed_param_0.sm_scaler), input_order(packed_param_0.input_order), reslink(packed_param_0.reslink), training(packed_param_0.training), bias(packed_param_0.bias), attn_mask(packed_param_0.attn_mask), enable_qproj(packed_param_0.enable_qproj), enable_kproj(packed_param_0.enable_kproj), enable_vproj(packed_param_0.enable_vproj), enable_oproj(packed_param_0.enable_oproj), seed(packed_param_0.seed), attn_prob(packed_param_0.attn_prob), out_prob(packed_param_0.out_prob), handle(handle_) {} MultiHeadAttn(::megdnn::param::MultiHeadAttn packed_param_0, size_t handle_): num_heads(packed_param_0.num_heads), embeding_size(packed_param_0.embeding_size), k_size(packed_param_0.k_size), v_size(packed_param_0.v_size), qproj_size(packed_param_0.qproj_size), kproj_size(packed_param_0.kproj_size), vproj_size(packed_param_0.vproj_size), oproj_size(packed_param_0.oproj_size), qbias(packed_param_0.qbias), kbias(packed_param_0.kbias), vbias(packed_param_0.vbias), obias(packed_param_0.obias), sm_scaler(packed_param_0.sm_scaler), input_order(packed_param_0.input_order), attn_mask_type(packed_param_0.attn_mask_type), tensor_combination_type(packed_param_0.tensor_combination_type), need_weights(packed_param_0.need_weights), add_zero_attn(packed_param_0.add_zero_attn), reslink(packed_param_0.reslink), training(packed_param_0.training), seed(packed_param_0.seed), attn_prob(packed_param_0.attn_prob), out_prob(packed_param_0.out_prob), handle(handle_) {}
::megdnn::param::MultiHeadAttn param() const { ::megdnn::param::MultiHeadAttn param() const {
return {num_heads, sm_scaler, input_order, reslink, training, bias, attn_mask, enable_qproj, enable_kproj, enable_vproj, enable_oproj, seed, attn_prob, out_prob}; return {num_heads, embeding_size, k_size, v_size, qproj_size, kproj_size, vproj_size, oproj_size, qbias, kbias, vbias, obias, sm_scaler, input_order, attn_mask_type, tensor_combination_type, need_weights, add_zero_attn, reslink, training, seed, attn_prob, out_prob};
} }
}; };
......
...@@ -1479,20 +1479,59 @@ MeshIndexingInst ...@@ -1479,20 +1479,59 @@ MeshIndexingInst
py::class_<MultiHeadAttn, std::shared_ptr<MultiHeadAttn>, OpDef> MultiHeadAttnInst(m, "MultiHeadAttn"); py::class_<MultiHeadAttn, std::shared_ptr<MultiHeadAttn>, OpDef> MultiHeadAttnInst(m, "MultiHeadAttn");
py::enum_<MultiHeadAttn::ATTN_MASK_TYPE>(MultiHeadAttnInst, "ATTN_MASK_TYPE")
.value("NO_MASK", MultiHeadAttn::ATTN_MASK_TYPE::NO_MASK)
.value("DEFAULT_MASK", MultiHeadAttn::ATTN_MASK_TYPE::DEFAULT_MASK)
.value("CUDNN_STYLE_MASK", MultiHeadAttn::ATTN_MASK_TYPE::CUDNN_STYLE_MASK)
.value("USER_DEFINED_MASK", MultiHeadAttn::ATTN_MASK_TYPE::USER_DEFINED_MASK)
.def(py::init([](const std::string& in) {
auto&& str = normalize_enum(in);
if (str == "NO_MASK") return MultiHeadAttn::ATTN_MASK_TYPE::NO_MASK;
if (str == "DEFAULT_MASK") return MultiHeadAttn::ATTN_MASK_TYPE::DEFAULT_MASK;
if (str == "CUDNN_STYLE_MASK") return MultiHeadAttn::ATTN_MASK_TYPE::CUDNN_STYLE_MASK;
if (str == "USER_DEFINED_MASK") return MultiHeadAttn::ATTN_MASK_TYPE::USER_DEFINED_MASK;
throw py::cast_error("invalid enum value " + in);
}));
py::implicitly_convertible<std::string, MultiHeadAttn::ATTN_MASK_TYPE>();
py::enum_<MultiHeadAttn::TENSOR_COMBINATION_TYPE>(MultiHeadAttnInst, "TENSOR_COMBINATION_TYPE")
.value("NONE", MultiHeadAttn::TENSOR_COMBINATION_TYPE::NONE)
.value("ONLY_MASK", MultiHeadAttn::TENSOR_COMBINATION_TYPE::ONLY_MASK)
.value("ONLY_BIASKV", MultiHeadAttn::TENSOR_COMBINATION_TYPE::ONLY_BIASKV)
.value("ALL", MultiHeadAttn::TENSOR_COMBINATION_TYPE::ALL)
.def(py::init([](const std::string& in) {
auto&& str = normalize_enum(in);
if (str == "NONE") return MultiHeadAttn::TENSOR_COMBINATION_TYPE::NONE;
if (str == "ONLY_MASK") return MultiHeadAttn::TENSOR_COMBINATION_TYPE::ONLY_MASK;
if (str == "ONLY_BIASKV") return MultiHeadAttn::TENSOR_COMBINATION_TYPE::ONLY_BIASKV;
if (str == "ALL") return MultiHeadAttn::TENSOR_COMBINATION_TYPE::ALL;
throw py::cast_error("invalid enum value " + in);
}));
py::implicitly_convertible<std::string, MultiHeadAttn::TENSOR_COMBINATION_TYPE>();
MultiHeadAttnInst MultiHeadAttnInst
.def(py::init<uint32_t, float, uint32_t, bool, bool, bool, bool, bool, bool, bool, bool, uint64_t, float, float, size_t, std::string>(), py::arg("num_heads") = 1, py::arg("sm_scaler") = 1.f, py::arg("input_order") = 0, py::arg("reslink") = false, py::arg("training") = true, py::arg("bias") = false, py::arg("attn_mask") = false, py::arg("enable_qproj") = true, py::arg("enable_kproj") = true, py::arg("enable_vproj") = true, py::arg("enable_oproj") = true, py::arg("seed") = 0, py::arg("attn_prob") = 0.f, py::arg("out_prob") = 0.f, py::arg("handle"), py::arg("scope") = {}) .def(py::init<uint32_t, uint32_t, uint32_t, uint32_t, uint32_t, uint32_t, uint32_t, uint32_t, bool, bool, bool, bool, float, uint32_t, ::megdnn::param::MultiHeadAttn::ATTN_MASK_TYPE, ::megdnn::param::MultiHeadAttn::TENSOR_COMBINATION_TYPE, bool, bool, bool, bool, uint64_t, float, float, size_t, std::string>(), py::arg("num_heads") = 1, py::arg("embeding_size") = 0, py::arg("k_size") = 0, py::arg("v_size") = 0, py::arg("qproj_size") = 0, py::arg("kproj_size") = 0, py::arg("vproj_size") = 0, py::arg("oproj_size") = 0, py::arg("qbias") = false, py::arg("kbias") = false, py::arg("vbias") = false, py::arg("obias") = false, py::arg("sm_scaler") = 1.f, py::arg("input_order") = 0, py::arg("attn_mask_type") = ::megdnn::param::MultiHeadAttn::ATTN_MASK_TYPE::NO_MASK, py::arg("tensor_combination_type") = ::megdnn::param::MultiHeadAttn::TENSOR_COMBINATION_TYPE::NONE, py::arg("need_weights") = false, py::arg("add_zero_attn") = false, py::arg("reslink") = false, py::arg("training") = true, py::arg("seed") = 0, py::arg("attn_prob") = 0.f, py::arg("out_prob") = 0.f, py::arg("handle"), py::arg("scope") = {})
.def(py::init<>()) .def(py::init<>())
.def_readwrite("num_heads", &MultiHeadAttn::num_heads) .def_readwrite("num_heads", &MultiHeadAttn::num_heads)
.def_readwrite("embeding_size", &MultiHeadAttn::embeding_size)
.def_readwrite("k_size", &MultiHeadAttn::k_size)
.def_readwrite("v_size", &MultiHeadAttn::v_size)
.def_readwrite("qproj_size", &MultiHeadAttn::qproj_size)
.def_readwrite("kproj_size", &MultiHeadAttn::kproj_size)
.def_readwrite("vproj_size", &MultiHeadAttn::vproj_size)
.def_readwrite("oproj_size", &MultiHeadAttn::oproj_size)
.def_readwrite("qbias", &MultiHeadAttn::qbias)
.def_readwrite("kbias", &MultiHeadAttn::kbias)
.def_readwrite("vbias", &MultiHeadAttn::vbias)
.def_readwrite("obias", &MultiHeadAttn::obias)
.def_readwrite("sm_scaler", &MultiHeadAttn::sm_scaler) .def_readwrite("sm_scaler", &MultiHeadAttn::sm_scaler)
.def_readwrite("input_order", &MultiHeadAttn::input_order) .def_readwrite("input_order", &MultiHeadAttn::input_order)
.def_readwrite("attn_mask_type", &MultiHeadAttn::attn_mask_type)
.def_readwrite("tensor_combination_type", &MultiHeadAttn::tensor_combination_type)
.def_readwrite("need_weights", &MultiHeadAttn::need_weights)
.def_readwrite("add_zero_attn", &MultiHeadAttn::add_zero_attn)
.def_readwrite("reslink", &MultiHeadAttn::reslink) .def_readwrite("reslink", &MultiHeadAttn::reslink)
.def_readwrite("training", &MultiHeadAttn::training) .def_readwrite("training", &MultiHeadAttn::training)
.def_readwrite("bias", &MultiHeadAttn::bias)
.def_readwrite("attn_mask", &MultiHeadAttn::attn_mask)
.def_readwrite("enable_qproj", &MultiHeadAttn::enable_qproj)
.def_readwrite("enable_kproj", &MultiHeadAttn::enable_kproj)
.def_readwrite("enable_vproj", &MultiHeadAttn::enable_vproj)
.def_readwrite("enable_oproj", &MultiHeadAttn::enable_oproj)
.def_readwrite("seed", &MultiHeadAttn::seed) .def_readwrite("seed", &MultiHeadAttn::seed)
.def_readwrite("attn_prob", &MultiHeadAttn::attn_prob) .def_readwrite("attn_prob", &MultiHeadAttn::attn_prob)
.def_readwrite("out_prob", &MultiHeadAttn::out_prob) .def_readwrite("out_prob", &MultiHeadAttn::out_prob)
......
...@@ -558,7 +558,6 @@ def RegionRestrictedConvolution: MgbHashableOp<"RegionRestrictedConvolution", [C ...@@ -558,7 +558,6 @@ def RegionRestrictedConvolution: MgbHashableOp<"RegionRestrictedConvolution", [C
def RegionRestrictedConvolutionBackwardData: MgbHashableOp<"RegionRestrictedConvolutionBackwardData", [ConvolutionParam]>; def RegionRestrictedConvolutionBackwardData: MgbHashableOp<"RegionRestrictedConvolutionBackwardData", [ConvolutionParam]>;
def MaskedFill: MgbHashableOp<"MaskedFill", [FillParam]>; def MaskedFill: MgbHashableOp<"MaskedFill", [FillParam]>;
def MultiHeadAttn: MgbHashableOp<"MultiHeadAttn", [MultiHeadAttnParam]> { def MultiHeadAttn: MgbHashableOp<"MultiHeadAttn", [MultiHeadAttnParam]> {
let extraArguments = (ins let extraArguments = (ins
MgbSizeTAddr:$handle MgbSizeTAddr:$handle
...@@ -571,28 +570,54 @@ def MultiHeadAttn: MgbHashableOp<"MultiHeadAttn", [MultiHeadAttnParam]> { ...@@ -571,28 +570,54 @@ def MultiHeadAttn: MgbHashableOp<"MultiHeadAttn", [MultiHeadAttnParam]> {
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash($_self.num_heads), mgb::hash($_self.num_heads),
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash($_self.sm_scaler), mgb::hash($_self.embeding_size),
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash($_self.input_order), mgb::hash($_self.k_size),
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash($_self.reslink), mgb::hash($_self.v_size),
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash($_self.training), mgb::hash($_self.qproj_size),
mgb::hash_pair_combine(
mgb::hash($_self.kproj_size),
mgb::hash_pair_combine(
mgb::hash($_self.vproj_size),
mgb::hash_pair_combine(
mgb::hash($_self.oproj_size),
mgb::hash_pair_combine(
mgb::hash($_self.qbias),
mgb::hash_pair_combine(
mgb::hash($_self.kbias),
mgb::hash_pair_combine(
mgb::hash($_self.vbias),
mgb::hash_pair_combine(
mgb::hash($_self.obias),
mgb::hash_pair_combine(
mgb::hash($_self.sm_scaler),
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash($_self.bias), mgb::hash($_self.input_order),
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash($_self.attn_mask), mgb::hash($_self.attn_mask_type),
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash($_self.enable_qproj), mgb::hash($_self.tensor_combination_type),
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash($_self.enable_kproj), mgb::hash($_self.add_zero_attn),
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash($_self.enable_vproj), mgb::hash($_self.need_weights),
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash($_self.enable_oproj), mgb::hash($_self.reslink),
mgb::hash_pair_combine(
mgb::hash($_self.training),
mgb::hash_pair_combine( mgb::hash_pair_combine(
mgb::hash($_self.attn_prob), mgb::hash($_self.attn_prob),
mgb::hash($_self.out_prob) mgb::hash($_self.out_prob))
)
)
)
)
)
)
)
)
) )
) )
) )
...@@ -608,7 +633,7 @@ def MultiHeadAttn: MgbHashableOp<"MultiHeadAttn", [MultiHeadAttnParam]> { ...@@ -608,7 +633,7 @@ def MultiHeadAttn: MgbHashableOp<"MultiHeadAttn", [MultiHeadAttnParam]> {
) )
); );
}]; }];
let cmpFunction = [{return $0.handle == $1.handle && $0.num_heads == $1.num_heads && $0.sm_scaler == $1.sm_scaler && $0.input_order == $1.input_order && $0.reslink == $1.reslink && $0.training == $1.training && $0.bias == $1.bias && $0.attn_mask == $1.attn_mask && $0.enable_qproj == $1.enable_qproj && $0.enable_kproj == $1.enable_kproj && $0.enable_vproj == $1.enable_vproj && $0.enable_oproj == $1.enable_oproj && $0.attn_prob == $1.attn_prob && $0.out_prob == $1.out_prob;}]; let cmpFunction = [{return $0.handle == $1.handle && $0.num_heads == $1.num_heads && $0.embeding_size == $1.embeding_size && $0.k_size == $1.k_size && $0.v_size == $1.v_size && $0.qproj_size == $1.qproj_size && $0.kproj_size == $1.kproj_size && $0.vproj_size == $1.vproj_size && $0.oproj_size == $1.oproj_size && $0.qbias == $1.qbias && $0.kbias == $1.kbias && $0.vbias == $1.vbias && $0.obias == $1.obias && $0.sm_scaler == $1.sm_scaler && $0.input_order == $1.input_order && $0.reslink == $1.reslink && $0.training == $1.training && $0.need_weights == $1.need_weights && $0.attn_mask_type == $1.attn_mask_type && $0.add_zero_attn == $1.add_zero_attn && $0.tensor_combination_type == $1.tensor_combination_type && $0.attn_prob == $1.attn_prob && $0.out_prob == $1.out_prob;}];
} }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册