提交 a22b2cf4 编写于 作者: M Megvii Engine Team

ci(copybara): add config files and fix format script

GitOrigin-RevId: 9bd9a7d66cd237a5b2798eadd6df1d7b73223bc3
上级 287cab49
module.exports = {
extends: ['@commitlint/config-conventional'],
rules: {
'scope-empty': [2, 'never'],
'footer-max-line-length': [0, 'never'],
'body-max-line-length': [0, 'never'],
},
ignores: [(commit) => commit.startsWith('revert:')]
};
## Build
Same as [MegEngine](/README.md) except passing the additional flag "-DMGE_BUILD_IMPERATIVE_RT=ON" to cmake configure command.
## Test
1. Make sure `make develop` is executed
2. Setup `PYTHONPATH`
```bash
export PYTHONPATH="$(git rev-parse --show-toplevel)/imperative/python"
```
3. Run `pytest` (pip install as needed)
```bash
cd $(git rev-parse --show-toplevel)/imperative/python/test
pytest
```
## Concepts
### Op and Tensor-like
An op is a subclass of `OpBase` representing some operation, for example
* `Elemwise`
* `Reduce`
Op can be parametrized. For example, `Elemwise` has a single parameter `mode`, which is required by its constructor.
A tensor-like is a subclass of `TensorBase` that defines how ops should apply on it, for example
* `RawTensor` launch kernel associated with op
* `Tracer` record information for autodiff
Op instances are callable with signature `(*args: TensorBase) -> Tuple[TensorBase]`. It will invoke the correct implementation for that specific op and tensor-like, e.g. launch kernel if `args` is `RawTensor`, record information for autodiff if `args` is `Tracer`.
### The `Const` Op
The `Const` op is a special op that is used to convert literal to tensor-likes. Although it does not really use any input, at least one should be provided, otherwise it can't know which specific tensor-like to return.
### Tensor Wrapper
Tensor-likes have a dataflow semantic, thus immutable. `TensorWrapper` provide a mutable layer on top of tensor-likes by replacing the wrapped tensor-like on demand.
## How to Wrap a MegBrain Op
1. Define the op
Most ops have been automatically generated in `ops.builtin` using `.oprdecl` files (take a look at [basic_arith.oprdecl](/src/opr/impl/basic_arith.oprdecl)). If your op is already there, skip to next step.
For other ops, this work can still be done automatically with the help of an Python op serializer that matches MegBrain's own.
Before proceeding, if you are unfamiliar with MegBrain's serializer, here is a brief introduction. Each MegBrain op has a registered name, which is found at `MGB_SEREG_OPR(this_is_the_name, ...)` in some `.sereg.h` file. The default serializer simply write the memory of struct returned by `opr->param()`.
You can create a serializer by subclassing `ops._internal.helper.OpDef` as follows
```python
class WhateverDef(OpDef): # must end with "Def"
name = 'Whatever' # name in MegBrain serialization registry
param_names = ('param',) # Does not have to be 'param', but it is a good practice to mirror
# C++ name, which is usually param(). It can also contain more
# than one element, for example if the C++ serializer writes
# `opr->param1()` followed by `opr->param2()`, you should use
# ('param1', 'param2') instead.
class Param:
def serialize(self):
c_struct_memory = bytes(...) # memory of a C++ `Param` struct
return b'\x00'*4 + c_struct_memory # remember to add 4 leading bytes
def __init__(self):
self.param = self.Param(...) # must assign to attribute(s) specified in param_names
```
A concrete example can be found at `ops._internal.misc_ops.DimshuffleDef`.
Lastly, make sure it is imported in `ops._internal.all_ops` and a corresponding op will show up in `ops.builtin`
2. Define a convenience function
Use `functional` as a reference.
Tips:
* an op instance has to be constructed before applying it
`op = WhateverOp(param=...)`
* apply an op by calling the op instance
`outputs = op(*inputs)`
* op always return a tuple
`result, = outputs`
* input can be any tensor-like
...@@ -16,7 +16,11 @@ while getopts 'd' OPT; do ...@@ -16,7 +16,11 @@ while getopts 'd' OPT; do
esac esac
done done
directories=(megengine test)
if [[ -d examples ]]; then
directories+=(examples)
fi
# do not isort megengine/__init__.py file, caused we must # do not isort megengine/__init__.py file, caused we must
# init library load path before load dependent lib in core # init library load path before load dependent lib in core
isort $ISORT_ARG -j $(nproc) -rc megengine test examples -s megengine/__init__.py isort $ISORT_ARG -j $(nproc) -rc "${directories[@]}" -s megengine/__init__.py
black $BLACK_ARG --target-version=py35 -- megengine test examples black $BLACK_ARG --target-version=py35 -- "${directories[@]}"
[isort]
multi_line_output = 3
include_trailing_comma = true
force_grid_wrap = 0
use_parentheses = true
line_length = 88
known_first_party = megbrain, megengine
sections = FUTURE,STDLIB,THIRDPARTY,FIRSTPARTY,LOCALFOLDER
default_section=THIRDPARTY
[tool:pytest]
norecursedirs=test/helpers
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册