diff --git a/imperative/python/test/unit/functional/test_functional.py b/imperative/python/test/unit/functional/test_functional.py index 5b2d794186132de67871f29c022bfe8131fbf1d6..950ed4cfe63620347be10dee32d96705daa16032 100644 --- a/imperative/python/test/unit/functional/test_functional.py +++ b/imperative/python/test/unit/functional/test_functional.py @@ -7,12 +7,14 @@ import numpy as np import pytest from utils import opr_test +import megengine as mge import megengine.amp as amp import megengine.config as config import megengine.core.ops.builtin as builtin import megengine.core.tensor.dtype as dtype import megengine.functional as F import megengine.jit as jit +import megengine.module as M from megengine import Parameter, Tensor, is_cuda_available, tensor from megengine.autodiff import GradManager from megengine.core._trace_option import use_symbolic_shape @@ -1637,6 +1639,16 @@ def test_conv_transpose2d(): output_shape.numpy(), np.array([20, 33, 94, 300], dtype=np.int32) ) + @mge.jit.trace() + def func(): + deconv = M.ConvTranspose2d(16, 33, (3, 5), (2, 3), (3, 4)) + x = Tensor(np.random.rand(20, 16, 50, 100)) + for i in range(20): + y = deconv(x._broadcast(F.concat([x.shape, x.shape])[:4])) + mge._sync() + + func() + def test_conv_transpose3d(): m = ConvTranspose3d( diff --git a/imperative/src/impl/ops/convolution.cpp b/imperative/src/impl/ops/convolution.cpp index 03feae085eb17b0d291cfbc328ebe8701e9cea2c..66e4fd254ae26164e2fbf816aaa696a3ebc8c1f4 100644 --- a/imperative/src/impl/ops/convolution.cpp +++ b/imperative/src/impl/ops/convolution.cpp @@ -174,13 +174,15 @@ std::tuple, bool> infer_output_attrs_fallible( if (filter.ndim && diff.ndim) { // deduce_layout won't override existing dtype dnn_opr.opr().deduce_layout(filter, diff, output_layout); - if (inputs.size() == 3) { - if (!inputs[2].value.empty()) { - cg::copy_tensor_value_to_shape(output_layout, inputs[2].value); - output_layout.init_contiguous_stride(); - } else { - output_layout.ndim = 0; - } + } else { + dnn_opr.opr().deduce_dtype(filter.dtype, diff.dtype, output_layout.dtype); + } + if (inputs.size() == 3) { + if (!inputs[2].value.empty()) { + cg::copy_tensor_value_to_shape(output_layout, inputs[2].value); + output_layout.init_contiguous_stride(); + } else { + output_layout.ndim = 0; } } return {{{output_layout, inputs[0].comp_node}}, output_layout.ndim != 0}; @@ -202,8 +204,11 @@ SmallVector apply_on_physical_tensor( if (inputs.size() == 3) { cg::copy_tensor_value_to_shape( out_layout, inputs[2]->get_value().proxy_to_default_cpu()); - out_layout.init_contiguous_stride(); + } else { + dnn_opr.op()->deduce_layout( + inputs[0]->layout(), inputs[1]->layout(), out_layout); } + out_layout.init_contiguous_stride(); return out_layout; } }();