Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
87de704a
MegEngine
项目概览
MegEngine 天元
/
MegEngine
1 年多 前同步成功
通知
404
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
87de704a
编写于
3月 02, 2022
作者:
M
Megvii Engine Team
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
feat(gopt): fuse conv h_swish
GitOrigin-RevId: a3d12991fbb2e16a5e91b41fe3f3143257515c2a
上级
4adba378
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
85 addition
and
14 deletion
+85
-14
dnn/src/arm_common/conv_bias/postprocess_helper.h
dnn/src/arm_common/conv_bias/postprocess_helper.h
+7
-0
dnn/src/arm_common/elemwise_helper/kimpl/hswish.h
dnn/src/arm_common/elemwise_helper/kimpl/hswish.h
+6
-0
dnn/test/common/conv_bias.cpp
dnn/test/common/conv_bias.cpp
+4
-4
dnn/test/cuda/conv_bias.cpp
dnn/test/cuda/conv_bias.cpp
+2
-1
dnn/test/x86/conv_bias.cpp
dnn/test/x86/conv_bias.cpp
+12
-6
src/gopt/impl/inference.cpp
src/gopt/impl/inference.cpp
+8
-3
src/gopt/test/inference.cpp
src/gopt/test/inference.cpp
+46
-0
未找到文件。
dnn/src/arm_common/conv_bias/postprocess_helper.h
浏览文件 @
87de704a
...
...
@@ -392,6 +392,13 @@ struct PostProcess<ctype, dtype, megdnn::PostprocessMode::ADD_BIAS> {
MIDOUT_END(); \
break; \
} \
case param::ConvBias::NonlineMode::H_SWISH: { \
MIDOUT_BEGIN(_midout_tag, _bias_id, 1) { \
cb(_bmode, HSwishOp<_src_type MEGDNN_COMMA _dst_type>, __VA_ARGS__); \
} \
MIDOUT_END(); \
break; \
} \
default: \
megdnn_assert(0); \
break; \
...
...
dnn/src/arm_common/elemwise_helper/kimpl/hswish.h
浏览文件 @
87de704a
...
...
@@ -137,6 +137,12 @@ struct HSwishOp<dt_qint32, dt_qint8> : HSwishOpBase<dt_qint32, dt_qint8> {
return
QConverter
::
convert
<
int8x8_t
,
float32x4_t
>
(
vitem0
);
}
int8x8_t
operator
()(
const
float32x4_t
&
src
)
const
{
auto
vitem0
=
vmulq_f32
(
src
,
this
->
vscale_src
);
H_SWISH_KERN_N1
(
f32
,
vitem0
);
vitem0
=
vmulq_f32
(
vitem0
,
this
->
vscale_dst
);
return
QConverter
::
convert
<
int8x8_t
,
float32x4_t
>
(
vitem0
);
}
};
template
<
>
...
...
dnn/test/common/conv_bias.cpp
浏览文件 @
87de704a
...
...
@@ -421,7 +421,7 @@ std::vector<TestArg> get_int8_nchw44_args(
using
NLMode
=
param
::
ConvBias
::
NonlineMode
;
// clang-format off
for
(
auto
nlmode
:
{
NLMode
::
IDENTITY
,
NLMode
::
RELU
})
{
for
(
auto
nlmode
:
{
NLMode
::
IDENTITY
,
NLMode
::
RELU
,
NLMode
::
H_SWISH
})
{
for
(
auto
mode
:
{
param
::
ConvBias
::
Mode
::
CROSS_CORRELATION
})
{
for
(
size_t
b
:
{
1
,
2
})
{
for
(
size_t
ic
:
{
8
,
16
})
{
...
...
@@ -542,7 +542,7 @@ std::vector<TestArg> get_int8_nchw4_args_small_batch(size_t kernel_size) {
using
NLMode
=
param
::
ConvBias
::
NonlineMode
;
// clang-format off
for
(
auto
nlmode
:
{
NLMode
::
IDENTITY
,
NLMode
::
RELU
})
{
for
(
auto
nlmode
:
{
NLMode
::
IDENTITY
,
NLMode
::
RELU
,
NLMode
::
H_SWISH
})
{
for
(
auto
mode
:
{
param
::
ConvBias
::
Mode
::
CROSS_CORRELATION
})
{
for
(
size_t
b
:
{
12
,
8
,
4
})
{
for
(
size_t
ic
:
{
16
,
32
})
{
...
...
@@ -577,7 +577,7 @@ std::vector<TestArg> get_int8_nchw4_small_channel_args(size_t kernel_size) {
using
NLMode
=
param
::
ConvBias
::
NonlineMode
;
// clang-format off
for
(
auto
nlmode
:
{
NLMode
::
IDENTITY
,
NLMode
::
RELU
})
{
for
(
auto
nlmode
:
{
NLMode
::
IDENTITY
,
NLMode
::
RELU
,
NLMode
::
H_SWISH
})
{
for
(
auto
mode
:
{
param
::
ConvBias
::
Mode
::
CROSS_CORRELATION
})
{
for
(
size_t
b
:
{
64
,
16
})
{
for
(
size_t
ic
:
{
4
,
12
})
{
...
...
@@ -696,7 +696,7 @@ std::vector<TestArg> get_int8_nchw4_tensorcore_args(size_t kernel_size) {
using
NLMode
=
param
::
ConvBias
::
NonlineMode
;
// clang-format off
for
(
auto
nlmode
:
{
NLMode
::
IDENTITY
,
NLMode
::
RELU
})
{
for
(
auto
nlmode
:
{
NLMode
::
IDENTITY
,
NLMode
::
RELU
,
NLMode
::
H_SWISH
})
{
for
(
auto
mode
:
{
param
::
ConvBias
::
Mode
::
CROSS_CORRELATION
})
{
size_t
b
=
64
,
oc
=
128
;
for
(
size_t
ic
:
{
32
,
64
})
{
...
...
dnn/test/cuda/conv_bias.cpp
浏览文件 @
87de704a
...
...
@@ -1291,7 +1291,8 @@ TEST_F(CUDA, CONV_BIAS_FORWARD_TENSORCORE_INT8) {
param
.
format
=
ConvBias
::
Param
::
Format
::
NCHW32
;
using
NonlineMode
=
ConvBias
::
Param
::
NonlineMode
;
for
(
NonlineMode
mode
:
{
NonlineMode
::
IDENTITY
,
NonlineMode
::
RELU
})
{
for
(
NonlineMode
mode
:
{
NonlineMode
::
IDENTITY
,
NonlineMode
::
RELU
,
NonlineMode
::
H_SWISH
})
{
for
(
size_t
batch
:
{
2
})
{
for
(
size_t
ic
:
{
64
,
32
})
{
for
(
size_t
oc
:
{
32
})
{
...
...
dnn/test/x86/conv_bias.cpp
浏览文件 @
87de704a
...
...
@@ -1083,7 +1083,8 @@ TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_FP32) {
for
(
size_t
p
:
{
0
,
2
})
for
(
size_t
size
:
{
8
,
24
})
for
(
NonlineMode
nonline_mode
:
{
NonlineMode
::
IDENTITY
,
NonlineMode
::
RELU
})
{
{
NonlineMode
::
IDENTITY
,
NonlineMode
::
RELU
,
NonlineMode
::
H_SWISH
})
{
run
(
oc
,
ic
,
size
,
size
,
kernel
,
p
,
nonline_mode
);
}
...
...
@@ -1185,7 +1186,8 @@ TEST_F(X86, CONV_BIAS_IM2COLMATMUL_FP32_RECORD) {
1
,
oc
,
(
h
+
2
*
p
-
kernel
)
/
param
.
stride_h
+
1
,
(
w
+
2
*
p
-
kernel
)
/
param
.
stride_w
+
1
});
};
for
(
NonlineMode
nonline_mode
:
{
NonlineMode
::
IDENTITY
,
NonlineMode
::
RELU
})
{
for
(
NonlineMode
nonline_mode
:
{
NonlineMode
::
IDENTITY
,
NonlineMode
::
RELU
,
NonlineMode
::
H_SWISH
})
{
run
(
1
,
1
,
24
,
24
,
2
,
2
,
nonline_mode
);
}
...
...
@@ -1230,7 +1232,8 @@ TEST_F(X86, CONV_BIAS_IM2COLMATMUL_FP32_NOPACK_PREPROCESS) {
for
(
size_t
p
:
{
0
,
2
})
for
(
size_t
size
:
{
8
,
24
})
for
(
NonlineMode
nonline_mode
:
{
NonlineMode
::
IDENTITY
,
NonlineMode
::
RELU
})
{
{
NonlineMode
::
IDENTITY
,
NonlineMode
::
RELU
,
NonlineMode
::
H_SWISH
})
{
run
(
oc
,
ic
,
size
,
size
,
kernel
,
p
,
nonline_mode
);
}
...
...
@@ -1285,7 +1288,8 @@ TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_FP32_6x16) {
for
(
size_t
p
:
{
0
,
2
})
for
(
size_t
size
:
{
8
,
24
})
for
(
NonlineMode
nonline_mode
:
{
NonlineMode
::
IDENTITY
,
NonlineMode
::
RELU
})
{
{
NonlineMode
::
IDENTITY
,
NonlineMode
::
RELU
,
NonlineMode
::
H_SWISH
})
{
run
(
oc
,
ic
,
size
,
size
,
kernel
,
p
,
nonline_mode
);
}
...
...
@@ -1351,7 +1355,8 @@ TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_FP32_PACKA) {
for
(
size_t
p
:
{
0
,
1
})
for
(
size_t
size
:
{
8
,
24
})
for
(
NonlineMode
nonline_mode
:
{
NonlineMode
::
IDENTITY
,
NonlineMode
::
RELU
})
{
{
NonlineMode
::
IDENTITY
,
NonlineMode
::
RELU
,
NonlineMode
::
H_SWISH
})
{
run
(
oc
,
ic
,
size
,
size
,
kernel
,
p
,
nonline_mode
);
}
...
...
@@ -1418,7 +1423,8 @@ TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_FP32_PACKA_FILTER_PREPROCESS) {
for
(
size_t
p
:
{
0
,
1
})
for
(
size_t
size
:
{
8
,
24
})
for
(
NonlineMode
nonline_mode
:
{
NonlineMode
::
IDENTITY
,
NonlineMode
::
RELU
})
{
{
NonlineMode
::
IDENTITY
,
NonlineMode
::
RELU
,
NonlineMode
::
H_SWISH
})
{
run
(
oc
,
ic
,
size
,
size
,
kernel
,
p
,
nonline_mode
);
}
...
...
src/gopt/impl/inference.cpp
浏览文件 @
87de704a
...
...
@@ -1827,6 +1827,10 @@ void FuseConvBiasNonlinPass::apply(OptState& state) const {
elem
->
param
().
mode
==
Mode
::
FUSE_ADD_SIGMOID
||
elem
->
param
().
mode
==
Mode
::
SIGMOID
)
{
return
NonlineMode
::
SIGMOID
;
}
else
if
(
elem
->
param
().
mode
==
Mode
::
FUSE_ADD_H_SWISH
||
elem
->
param
().
mode
==
Mode
::
H_SWISH
)
{
return
NonlineMode
::
H_SWISH
;
}
else
{
return
NonlineMode
::
IDENTITY
;
}
...
...
@@ -1836,8 +1840,8 @@ void FuseConvBiasNonlinPass::apply(OptState& state) const {
bool
can_be_fused
=
true
;
can_be_fused
&=
(
elem
->
input
().
size
()
==
2
);
can_be_fused
&=
(
elem
->
param
().
mode
==
Mode
::
FUSE_ADD_RELU
)
||
(
elem
->
param
().
mode
==
Mode
::
FUSE_ADD_
TANH
)
||
(
elem
->
param
().
mode
==
Mode
::
FUSE_ADD_
SIGMOID
);
(
elem
->
param
().
mode
==
Mode
::
FUSE_ADD_
SIGMOID
)
||
(
elem
->
param
().
mode
==
Mode
::
FUSE_ADD_
H_SWISH
);
return
can_be_fused
;
};
...
...
@@ -1853,7 +1857,8 @@ void FuseConvBiasNonlinPass::apply(OptState& state) const {
bool
can_be_fused
=
true
;
can_be_fused
&=
(
elem
->
input
().
size
()
==
1
);
can_be_fused
&=
(
elem
->
param
().
mode
==
Mode
::
RELU
)
||
(
elem
->
param
().
mode
==
Mode
::
SIGMOID
);
(
elem
->
param
().
mode
==
Mode
::
SIGMOID
)
||
(
elem
->
param
().
mode
==
Mode
::
H_SWISH
);
return
can_be_fused
;
};
...
...
src/gopt/test/inference.cpp
浏览文件 @
87de704a
...
...
@@ -1937,6 +1937,52 @@ TEST(TestGoptInference, ConvBiasNonlinearityFusePass2) {
MGB_ASSERT_TENSOR_NEAR
(
host_y
,
host_y_opt
,
1e-4
);
}
TEST
(
TestGoptInference
,
ConvBiasNonlinearityFusePassHswish
)
{
// hwcd4 is only supported in naive handle
NaiveMegDNNHandleScope
naive_megdnn_handle
;
auto
cn
=
CompNode
::
load
(
"cpu0"
);
HostTensorGenerator
<>
gen
;
auto
graph
=
ComputingGraph
::
make
();
graph
->
options
().
graph_opt_level
=
0
;
auto
mkvar
=
[
&
](
const
char
*
name
,
const
TensorShape
&
shp
)
{
return
opr
::
Host2DeviceCopy
::
make
(
*
graph
,
gen
(
shp
,
cn
)).
rename
(
name
);
};
auto
mkcvar
=
[
&
](
const
char
*
name
,
const
TensorShape
&
shp
)
{
return
opr
::
SharedDeviceTensor
::
make
(
*
graph
,
*
gen
(
shp
,
cn
)).
rename
(
name
);
};
opr
::
Convolution
::
Param
param
;
auto
x
=
mkvar
(
"x"
,
{
5
,
8
,
16
,
24
}),
w1
=
mkcvar
(
"w1"
,
{
4
,
8
,
1
,
1
}),
w2
=
mkcvar
(
"w2"
,
{
4
,
8
,
1
,
1
});
auto
b1
=
mkcvar
(
"b1"
,
{
1
,
4
,
1
,
1
});
auto
y_cut
=
opr
::
Convolution
::
make
(
x
,
w1
,
param
);
auto
y
=
opr
::
Elemwise
::
make
({
y_cut
+
b1
},
opr
::
Elemwise
::
Param
::
Mode
::
H_SWISH
);
y
=
opr
::
Elemwise
::
make
({
y
},
opr
::
Elemwise
::
Param
::
Mode
::
RELU
);
auto
y_cut2
=
opr
::
Convolution
::
make
(
x
,
w2
,
param
);
y_cut2
=
opr
::
Elemwise
::
make
({
y_cut2
},
opr
::
Elemwise
::
Param
::
Mode
::
H_SWISH
);
y_cut2
=
opr
::
Elemwise
::
make
({
y_cut2
},
opr
::
Elemwise
::
Param
::
Mode
::
RELU
);
y
=
y
+
y_cut2
;
SymbolVar
y_opt
;
auto
options
=
gopt
::
OptimizeForInferenceOptions
{};
options
.
enable_nhwcd4
().
enable_fuse_conv_bias_nonlinearity
();
unpack_vector
(
gopt
::
optimize_for_inference
({
y
},
options
),
y_opt
);
ASSERT_EQ
(
opr
::
ConvBias
::
Param
::
NonlineMode
::
H_SWISH
,
find_opr
<
opr
::
ConvBias
>
(
y_opt
).
param
().
nonlineMode
);
graph
->
compile
({{
y_opt
,
{}}})
->
to_json
()
->
writeto_fpath
(
output_file
(
"TestGoptInference.FuseConvBiasNonlinPassHswish.json"
));
HostTensorND
host_y
,
host_y_opt
;
auto
func
=
graph
->
compile
(
{
make_callback_copy
(
y
,
host_y
),
make_callback_copy
(
y_opt
,
host_y_opt
)});
func
->
execute
();
MGB_ASSERT_TENSOR_NEAR
(
host_y
,
host_y_opt
,
1e-4
);
}
TEST
(
TestGoptInference
,
ConvBiasNonlinearityFusePass_FullBias
)
{
NaiveMegDNNHandleScope
naive_megdnn_handle
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录