提交 6ce212d2 编写于 作者: M Megvii Engine Team

refactor(mgb): refactor group conv

GitOrigin-RevId: 7afd3126900938661927c047aac87cb4aeaa9f13
上级 febd0b17
......@@ -42,24 +42,11 @@ ConvBiasForwardImpl::AlgoPack::AlgoPack() {
conv_algos.push_back(&matmul);
conv_algos.push_back(&matmul8x8x32);
conv_algos.push_back(&batched_matmul);
conv_algos.reserve(conv_algos.size() * 2);
//! add gconv algos by AlgoGroupConvGeneral
size_t algo_size = conv_algos.size();
for (size_t i = 3; i < algo_size; ++i) {
gconv_refhold.emplace_back(new AlgoGroupConvGeneral(conv_algos[i]));
algo2gconv[conv_algos[i]] = gconv_refhold.back().get();
conv_algos.push_back(gconv_refhold.back().get());
}
conv_algos.push_back(&group);
for (auto&& algo : conv_algos) {
all_algos.push_back(algo);
}
non_cudnn_algos.push_back(all_algos.rbegin()[4]); // group inplace_matmul
non_cudnn_algos.push_back(all_algos.rbegin()[3]); // group matmul
non_cudnn_algos.push_back(all_algos.rbegin()[2]); // group matmul_8x8x32
non_cudnn_algos.push_back(all_algos.rbegin()[1]); // group batched_matmul
non_cudnn_algos.push_back(all_algos.rbegin()[0]); // group 1x1
all_algos.push_back(&bfloat16);
bfloat16_algos.push_back(&bfloat16);
......@@ -118,7 +105,7 @@ ConvBiasForwardImpl::AlgoPack ConvBiasForwardImpl::sm_algo_pack;
MEGDNN_DEF_GET_ALGO_FROM_DESC(ConvBiasForwardImpl)
ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs(
ConvBiasForwardImpl* o, const TensorLayout& src,
const ConvBiasForwardImpl* o, const TensorLayout& src,
const TensorLayout& filter, const TensorLayout& bias,
const TensorLayout& z, const TensorLayout& dst,
const PreprocessedFilter* preprocessed_filter)
......@@ -127,7 +114,7 @@ ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs(
dst, preprocessed_filter) {}
ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs(
ConvBiasForwardImpl* o, const TensorLayout& src,
const ConvBiasForwardImpl* o, const TensorLayout& src,
const TensorLayout& filter, const CanonizedFilterMeta& filter_meta,
const TensorLayout& bias, const TensorLayout& z,
const TensorLayout& dst, const PreprocessedFilter* preprocessed_filter)
......
......@@ -78,15 +78,15 @@ public:
AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::CUDA; }
struct SizeArgs : public conv_bias::BiasForwardSizeArgs {
ConvBiasForwardImpl* opr;
const ConvBiasForwardImpl* opr;
const PreprocessedFilter* preprocessed_filter;
std::string to_string() const;
SizeArgs(ConvBiasForwardImpl* opr, const TensorLayout& src,
SizeArgs(const ConvBiasForwardImpl* opr, const TensorLayout& src,
const TensorLayout& filter, const TensorLayout& bias,
const TensorLayout& z, const TensorLayout& dst,
const PreprocessedFilter* preprocessed_filter = nullptr);
SizeArgs(ConvBiasForwardImpl* opr, const TensorLayout& src,
SizeArgs(const ConvBiasForwardImpl* opr, const TensorLayout& src,
const TensorLayout& filter,
const CanonizedFilterMeta& filter_meta,
const TensorLayout& bias, const TensorLayout& z,
......@@ -434,27 +434,24 @@ private:
//! implement group conv by another algo
class ConvBiasForwardImpl::AlgoGroupConvGeneral final : public AlgoBase {
public:
AlgoGroupConvGeneral(AlgoBase* impl);
bool is_available(const SizeArgs& args) const override;
size_t get_workspace_in_bytes(const SizeArgs& args) const override;
void exec(const ExecArgs& args) const override;
const char* name() const override { return m_name.c_str(); }
std::vector<SearchItem> get_subopr_list(
const TensorLayoutArray& layouts,
const OperatorBase* opr) const override;
AlgoAttribute attribute() const override {
auto ret = AlgoAttribute::DEFAULT;
#define cb(attr) \
if (m_impl->contain_attribute_all(attr)) { \
ret |= attr; \
const char* name() const override {
if (m_name.empty()) {
m_name = ConvBiasForward::algo_name<DirectParam>("CUDA:GROUP_CONV",
{});
}
MEGDNN_FOREACH_ALGO_ATTRIBUTE_INHERITABLE(cb)
#undef cb
if (m_impl->contain_attribute_all(AlgoAttribute::REPRODUCIBLE)) {
ret |= AlgoAttribute::REPRODUCIBLE;
return m_name.c_str();
}
return ret;
AlgoAttribute attribute() const override {
return AlgoAttribute::REPRODUCIBLE;
}
static void modify_size_args(SizeArgs& args, TensorLayout& src_pg,
......@@ -463,8 +460,7 @@ public:
private:
WorkspaceBundle get_workspace_bundle(void* ptr, const SizeArgs& args) const;
AlgoBase* m_impl;
std::string m_name;
mutable std::string m_name;
};
#if CUDA_VERSION >= 10000
......@@ -1087,9 +1083,8 @@ public:
std::vector<AlgoInt4Int4NHWCIMMAImplicitGemm> int4_int4_nhwc_imma;
std::vector<AlgoUInt4Int4NHWCIMMAImplicitGemm> uint4_int4_nhwc_imma;
#endif
std::vector<std::unique_ptr<AlgoGroupConvGeneral>> gconv_refhold;
AlgoGroupConvGeneral group;
AlgoBFloat16 bfloat16;
std::unordered_map<AlgoBase*, AlgoGroupConvGeneral*> algo2gconv;
AlgoBase* cudnn_conv_bias_act_from_enum(cudnnConvolutionFwdAlgo_t algo);
......
......@@ -9,6 +9,7 @@
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*/
#include <utility>
#include "src/common/conv_bias.h"
#include "src/cuda/conv_bias/algo.h"
......@@ -16,36 +17,80 @@ using namespace megdnn;
using namespace cuda;
using namespace conv_bias;
void ConvBiasForwardImpl::AlgoGroupConvGeneral::modify_size_args(
ConvBiasForwardImpl::AlgoBase::SizeArgs& args, TensorLayout& src_pg,
TensorLayout& dst_pg, TensorLayout& bias_pg) {
src_pg = *args.src_layout;
dst_pg = *args.dst_layout;
bias_pg = *args.bias_layout;
namespace {
std::pair<TensorLayoutArray, ConvBiasForwardImpl::Param> sub_opr_config(
const ConvBiasForwardImpl::AlgoBase::SizeArgs& args) {
TensorLayout src_pg = *args.src_layout;
SmallVector<size_t> flt_shape(0);
std::vector<ptrdiff_t> flt_stride(0);
size_t idx = 0;
// check if the first dim is group
if (args.filter_layout->ndim > args.src_layout->ndim)
++idx;
for (; idx < args.filter_layout->ndim; ++idx) {
flt_shape.push_back(args.filter_layout->shape[idx]);
flt_stride.push_back(args.filter_layout->stride[idx]);
}
TensorLayout filter_pg(flt_shape, flt_stride,
args.filter_layout->dtype,
args.filter_layout->format);
TensorLayout bias_pg = *args.bias_layout;
TensorLayout z_pg = *args.z_layout;
TensorLayout dst_pg = *args.dst_layout;
auto nr_grp = args.filter_meta.group;
args.filter_meta.group = 1;
size_t c_pos;
if (args.filter_meta.format == Param::Format::NCHW ||
args.filter_meta.format == Param::Format::NCHW4) {
if (args.filter_meta.format == megdnn::param::ConvBias::Format::NCHW ||
args.filter_meta.format == megdnn::param::ConvBias::Format::NCHW4) {
c_pos = 1;
} else {
megdnn_assert(args.filter_meta.format == Param::Format::NHWC,
megdnn_assert(args.filter_meta.format ==
megdnn::param::ConvBias::Format::NHWC,
"invalid conv format");
c_pos = 3;
}
src_pg.shape[c_pos] /= nr_grp;
dst_pg.shape[c_pos] /= nr_grp;
bias_pg.ndim = 0;
args.src_layout = &src_pg;
args.dst_layout = &dst_pg;
args.bias_layout = &bias_pg;
args.nonlinear_mode = Param::NonlineMode::IDENTITY;
dst_pg.shape[c_pos] /= nr_grp;
megdnn::param::ConvBias param = args.opr->param();
param.sparse = megdnn::param::ConvBias::Sparse::DENSE;
param.nonlineMode =
megdnn::param::ConvBias::NonlineMode::IDENTITY;
std::pair<TensorLayoutArray, ConvBiasForwardImpl::Param> ret;
ret.first = {src_pg, filter_pg, bias_pg, z_pg, dst_pg};
ret.second = param;
return ret;
}
ConvBiasForwardImpl::AlgoGroupConvGeneral::AlgoGroupConvGeneral(AlgoBase* impl)
: m_impl{impl} {
m_name = ConvBiasForward::algo_name<DirectParam>(
ssprintf("%s:%s", "CUDA:GROUP_CONV", impl->name()), {});
std::pair<TensorLayoutArray, std::unique_ptr<ConvBiasForward>> prepare_sub_opr(
const ConvBiasForwardImpl::AlgoBase::SizeArgs& args) {
auto convbias_opr = args.handle->create_operator<ConvBias>();
set_execution_policy<ConvBiasForward, ConvBiasForward*>(
args.opr, convbias_opr.get());
auto&& config = sub_opr_config(args);
convbias_opr->param() = config.second;
return {config.first, std::move(convbias_opr)};
}
} // namespace
std::vector<Algorithm::SearchItem>
ConvBiasForwardImpl::AlgoGroupConvGeneral::get_subopr_list(
const TensorLayoutArray& layouts, const OperatorBase* opr) const {
AlgoBase::SizeArgs args{static_cast<const ConvBiasForwardImpl*>(opr),
layouts[0],
layouts[1],
layouts[2],
layouts[3],
layouts[4]};
auto&& config = sub_opr_config(args);
std::string param_str;
Algorithm::serialize_write_pod(config.second, param_str);
return {{Algorithm::OprType::CONVBIAS_FORWARD, param_str, config.first}};
}
bool ConvBiasForwardImpl::AlgoGroupConvGeneral::is_available(
......@@ -62,10 +107,10 @@ bool ConvBiasForwardImpl::AlgoGroupConvGeneral::is_available(
param.format == param::ConvBias::Format::NCHW32)
return false;
auto sub_args = args;
TensorLayout src_pg, dst_pg, bias_pg;
modify_size_args(sub_args, src_pg, dst_pg, bias_pg);
return m_impl->is_available(sub_args);
auto config = prepare_sub_opr(args);
return get_algorithm(static_cast<ConvBiasForwardImpl*>(config.second.get()),
config.first[0], config.first[1], config.first[2],
config.first[3], config.first[4]);
}
WorkspaceBundle ConvBiasForwardImpl::AlgoGroupConvGeneral::get_workspace_bundle(
......@@ -80,12 +125,12 @@ WorkspaceBundle ConvBiasForwardImpl::AlgoGroupConvGeneral::get_workspace_bundle(
sizes.push_back(dst_layout.span().dist_byte());
}
auto sub_args = args;
sub_args.dst_layout = &dst_layout;
TensorLayout src_pg, dst_pg, bias_pg;
modify_size_args(sub_args, src_pg, dst_pg, bias_pg);
sizes.insert(sizes.begin(),
m_impl->get_workspace_in_bytes(sub_args));
auto config = prepare_sub_opr(args);
size_t mm_ws = config.second->get_workspace_in_bytes(
config.first[0], config.first[1], config.first[2],
config.first[3], config.first[4], nullptr);
sizes.insert(sizes.begin(), mm_ws);
return {ptr, std::move(sizes)};
}
......@@ -109,28 +154,13 @@ void ConvBiasForwardImpl::AlgoGroupConvGeneral::exec(
auto sub_args = args;
sub_args.dst_tensor = &conv_dst_tensor;
sub_args.dst_layout = &conv_dst_tensor.layout;
TensorND tsrc{*args.src_tensor}, tdst{conv_dst_tensor},
tbias{*args.bias_tensor};
SmallVector<size_t> flt_shape(0);
std::vector<ptrdiff_t> flt_stride(0);
size_t idx = 0;
// check if the first dim is group
if (args.filter_tensor->layout.ndim > args.src_layout->ndim)
++idx;
for (; idx < args.filter_tensor->layout.ndim; ++idx) {
flt_shape.push_back(args.filter_tensor->layout[idx]);
flt_stride.push_back(args.filter_tensor->layout.stride[idx]);
}
TensorND tflt{args.filter_tensor->raw_ptr,
TensorLayout{flt_shape, flt_stride,
args.filter_tensor->layout.dtype,
args.filter_tensor->layout.format}};
modify_size_args(sub_args, tsrc.layout, tdst.layout, tbias.layout);
sub_args.src_tensor = &tsrc;
sub_args.dst_tensor = &tdst;
sub_args.filter_tensor = &tflt;
sub_args.bias_tensor = &tbias;
auto config = prepare_sub_opr(sub_args);
TensorND tsrc{args.src_tensor->raw_ptr, config.first[0]};
TensorND tfilter{args.filter_tensor->raw_ptr, config.first[1]};
TensorND tbias{args.bias_tensor->raw_ptr, config.first[2]};
TensorND tz{args.z_tensor->raw_ptr, config.first[3]};
TensorND tdst{conv_dst_tensor.raw_ptr, config.first[4]};
size_t c_pos;
if (args.filter_meta.format == Param::Format::NCHW ||
......@@ -150,16 +180,17 @@ void ConvBiasForwardImpl::AlgoGroupConvGeneral::exec(
strd_dst = tdst.layout.stride[c_pos] * fm.ocpg *
tdst.layout.dtype.size(),
strd_flt = fm.icpg * fm.ocpg * fm.spatial[0] * fm.spatial[1] *
tflt.layout.dtype.size();
tfilter.layout.dtype.size();
if (args.filter_meta.format == Param::Format::NCHW4) {
strd_src >>= 2;
strd_dst >>= 2;
}
for (uint32_t g = 0; g < grp; ++g) {
m_impl->exec(sub_args);
config.second->exec(tsrc, tfilter, tbias,
tz, tdst, nullptr, bundle.get_workspace(0));
incr_voidp(tsrc.raw_ptr, strd_src);
incr_voidp(tdst.raw_ptr, strd_dst);
incr_voidp(tflt.raw_ptr, strd_flt);
incr_voidp(tfilter.raw_ptr, strd_flt);
}
}
handle_bias_and_nonlinear(args.handle, args.nonlinear_mode,
......
......@@ -193,24 +193,16 @@ ConvBiasForward::Algorithm* ConvBiasForwardImpl::get_algorithm_heuristic(
return algo;
}
if (args.filter_meta.group > 1) {
auto orig_args = conv_args;
TensorLayout src, dst, bias;
AlgoGroupConvGeneral::modify_size_args(conv_args, src, dst, bias);
if (auto algo = get_1x1_algo(conv_args)) {
return sm_algo_pack.algo2gconv.at(algo);
}
if (is_cudnn_supported(conv_args)) {
if (auto algo = get_cudnn_algo(cudnn_conv_from_enum_wrapper)) {
return sm_algo_pack.algo2gconv.at(algo);
}
}
conv_args = orig_args;
if (auto algo = get_1x1_algo(args)) {
return algo;
}
if (auto algo = get_1x1_algo(args)) {
if (args.filter_meta.group > 1) {
if (auto algo = megdnn::get_algo_match_attribute<ConvBiasForwardImpl>(
&sm_algo_pack.group, positive_attr, negative_attr)){
return algo;
}
}
if (sm_algo_pack.fallback_nchw_qs8.is_available_attribute(
args, positive_attr, negative_attr, workspace_limit_in_bytes)) {
......
......@@ -39,25 +39,9 @@ ConvolutionBackwardDataImpl::AlgoPack::AlgoPack() {
int8_algos.push_back(&int8_nchw_dotprod);
all_algos.push_back(&int8_nchw_dotprod);
all_algos.reserve(all_algos.size() * 2);
// add gconv algos by AlgoGroupConvGeneral
auto all_algos_data = all_algos.data();
size_t group_algo_start = 2;
for (size_t i = group_algo_start; i < all_algos.size(); ++i) {
gconv.push_back({all_algos[i]});
}
for (size_t i = group_algo_start; i < all_algos.size(); ++i) {
algo2gconv[all_algos[i]] = &gconv[i - group_algo_start];
}
for (auto&& i : gconv) {
all_algos.push_back(&i);
}
megdnn_assert(all_algos_data == all_algos.data());
non_cudnn_algos.push_back(all_algos.rbegin()[0]); // group matmul
all_algos.push_back(&bfloat16);
bfloat16_algos.push_back(&bfloat16);
all_algos.push_back(&group);
for (auto&& algo : all_algos) {
m_all_algos_map.emplace(algo->info().desc, algo);
......@@ -80,13 +64,13 @@ ConvolutionBackwardDataImpl::AlgoPack::cudnn_from_enum(
ConvolutionBackwardDataImpl::AlgoPack ConvolutionBackwardDataImpl::sm_algo_pack;
ConvolutionBackwardDataImpl::AlgoBase::SizeArgs::SizeArgs(
ConvolutionBackwardDataImpl* o, const TensorLayout& filter,
const ConvolutionBackwardDataImpl* o, const TensorLayout& filter,
const TensorLayout& diff, const TensorLayout& grad)
: SizeArgs(o, filter, o->make_canonized_filter_meta(grad.ndim, filter),
diff, grad) {}
ConvolutionBackwardDataImpl::AlgoBase::SizeArgs::SizeArgs(
ConvolutionBackwardDataImpl* o, const TensorLayout& filter,
const ConvolutionBackwardDataImpl* o, const TensorLayout& filter,
const CanonizedFilterMeta& filter_meta, const TensorLayout& diff,
const TensorLayout& grad)
: handle{concrete_handle(o->handle())},
......@@ -97,7 +81,7 @@ ConvolutionBackwardDataImpl::AlgoBase::SizeArgs::SizeArgs(
opr{o} {}
ConvolutionBackwardDataImpl::AlgoBase::ExecArgs::ExecArgs(
ConvolutionBackwardDataImpl* opr, _megdnn_tensor_in filter,
const ConvolutionBackwardDataImpl* opr, _megdnn_tensor_in filter,
_megdnn_tensor_in diff, _megdnn_tensor_out grad,
_megdnn_workspace workspace)
: SizeArgs(opr, filter.layout, diff.layout, grad.layout),
......
......@@ -49,15 +49,17 @@ public:
HandleImpl* handle;
CanonizedFilterMeta filter_meta;
const TensorLayout *diff_layout, *grad_layout, *filter_layout;
ConvolutionBackwardDataImpl* opr;
const ConvolutionBackwardDataImpl* opr;
std::string to_string() const;
void init_desc(convolution::CUDNNBwdDataDescs& desc) const {
desc.set(filter_meta, *diff_layout, *grad_layout, opr->param());
}
SizeArgs(ConvolutionBackwardDataImpl* opr, const TensorLayout& filter,
const TensorLayout& diff, const TensorLayout& grad);
SizeArgs(ConvolutionBackwardDataImpl* opr, const TensorLayout& filter,
SizeArgs(const ConvolutionBackwardDataImpl* opr,
const TensorLayout& filter, const TensorLayout& diff,
const TensorLayout& grad);
SizeArgs(const ConvolutionBackwardDataImpl* opr,
const TensorLayout& filter,
const CanonizedFilterMeta& filter_meta,
const TensorLayout& diff, const TensorLayout& grad);
......@@ -70,7 +72,7 @@ public:
const TensorND *filter_tensor, *diff_tensor, *grad_tensor;
Workspace workspace;
ExecArgs(ConvolutionBackwardDataImpl* opr, _megdnn_tensor_in filter,
ExecArgs(const ConvolutionBackwardDataImpl* opr, _megdnn_tensor_in filter,
_megdnn_tensor_in diff, _megdnn_tensor_out grad,
_megdnn_workspace workspace);
};
......@@ -219,35 +221,26 @@ private:
//! implement group conv by another algo
class ConvolutionBackwardDataImpl::AlgoGroupConvGeneral final
: public AlgoBase {
AlgoBase* m_impl;
std::string m_name;
public:
AlgoGroupConvGeneral(AlgoBase* impl);
bool is_available(const SizeArgs& args) const override;
size_t get_workspace_in_bytes(const SizeArgs& args) const override;
void exec(const ExecArgs& args) const override;
const char* name() const override { return m_name.c_str(); }
std::vector<SearchItem> get_subopr_list(
const TensorLayoutArray& layouts,
const OperatorBase* opr) const override;
const char* name() const override {
return "CUDA:GROUP_CONV_BACKWARD_DATA";
}
static void modify_size_args(SizeArgs& args, TensorLayout& diff_pg,
TensorLayout& grad_pg);
MEGDNN_DECL_ALGO_TYPE(CUDA_GROUP_CONV_GENERAL)
AlgoAttribute attribute() const override {
auto ret = AlgoAttribute::DEFAULT;
#define cb(attr) \
if (m_impl->contain_attribute_all(attr)) { \
ret |= attr; \
}
MEGDNN_FOREACH_ALGO_ATTRIBUTE_INHERITABLE(cb)
#undef cb
if (m_impl->contain_attribute_all(AlgoAttribute::REPRODUCIBLE)) {
ret |= AlgoAttribute::REPRODUCIBLE;
}
return ret;
return AlgoAttribute::REPRODUCIBLE;
}
private:
WorkspaceBundle get_workspace_bundle(void* ptr, const SizeArgs& args) const;
};
class ConvolutionBackwardDataImpl::AlgoInt8NCHW4DotProdImplicitGemm final
......@@ -319,9 +312,8 @@ public:
AlgoMatmul matmul;
AlgoChanwise chanwise;
AlgoChanwiseSmall chanwise_small;
std::vector<AlgoGroupConvGeneral> gconv;
std::unordered_map<AlgoBase*, AlgoGroupConvGeneral*> algo2gconv;
AlgoBFloat16 bfloat16;
AlgoGroupConvGeneral group;
std::vector<AlgoInt8NCHW4DotProdImplicitGemm> int8_nchw4_dotprod;
AlgoInt8NCHWDotProdImplicitGemm int8_nchw_dotprod;
......
......@@ -16,24 +16,63 @@ using namespace megdnn;
using namespace cuda;
using namespace convolution;
void ConvolutionBackwardDataImpl::AlgoGroupConvGeneral::modify_size_args(
ConvolutionBackwardDataImpl::AlgoBase::SizeArgs& args,
TensorLayout& diff_pg, TensorLayout& grad_pg) {
diff_pg = *args.diff_layout;
grad_pg = *args.grad_layout;
namespace {
std::pair<TensorLayoutArray, Convolution::Param> sub_opr_config(
const ConvolutionBackwardDataImpl::AlgoBase::SizeArgs& args) {
SmallVector<size_t> flt_shape(0);
std::vector<ptrdiff_t> flt_stride(0);
size_t idx = 0;
// check if the first dim is group
if (args.filter_layout->ndim > args.diff_layout->ndim)
++idx;
for (; idx < args.filter_layout->ndim; ++idx) {
flt_shape.push_back(args.filter_layout->shape[idx]);
flt_stride.push_back(args.filter_layout->stride[idx]);
}
TensorLayout filter_pg(flt_shape, flt_stride, args.filter_layout->dtype,
args.filter_layout->format);
TensorLayout diff_pg = *args.diff_layout;
TensorLayout grad_pg = *args.grad_layout;
auto nr_grp = args.filter_meta.group;
args.filter_meta.group = 1;
diff_pg.shape[1] /= nr_grp;
grad_pg.shape[1] /= nr_grp;
args.diff_layout = &diff_pg;
args.grad_layout = &grad_pg;
size_t c_pos = 1;
diff_pg.shape[c_pos] /= nr_grp;
grad_pg.shape[c_pos] /= nr_grp;
megdnn::param::Convolution param = args.opr->param();
param.sparse = megdnn::param::ConvBias::Sparse::DENSE;
std::pair<TensorLayoutArray, ConvolutionBackwardDataImpl::Param> ret;
ret.first = {filter_pg, diff_pg, grad_pg};
ret.second = param;
return ret;
}
std::pair<TensorLayoutArray, std::unique_ptr<ConvolutionBackwardData>>
prepare_sub_opr(const ConvolutionBackwardDataImpl::AlgoBase::SizeArgs& args) {
auto conv_bwd_data_opr =
args.handle->create_operator<ConvolutionBackwardData>();
set_execution_policy<ConvolutionBackwardData, ConvolutionBackwardData*>(
args.opr, conv_bwd_data_opr.get());
auto&& config = sub_opr_config(args);
conv_bwd_data_opr->param() = config.second;
return {config.first, std::move(conv_bwd_data_opr)};
}
} // namespace
std::vector<Algorithm::SearchItem>
ConvolutionBackwardDataImpl::AlgoGroupConvGeneral::get_subopr_list(
const TensorLayoutArray& layouts, const OperatorBase* opr) const {
AlgoBase::SizeArgs args{
static_cast<const ConvolutionBackwardDataImpl*>(opr), layouts[0],
layouts[1], layouts[2]};
auto&& config = sub_opr_config(args);
ConvolutionBackwardDataImpl::AlgoGroupConvGeneral::AlgoGroupConvGeneral(
AlgoBase* impl)
: m_impl{impl} {
m_name = "group_conv:";
m_name += impl->name();
std::string param_str;
Algorithm::serialize_write_pod(config.second, param_str);
return {{Algorithm::OprType::CONVOLUTION_BACKWARD_DATA, param_str,
config.first}};
}
bool ConvolutionBackwardDataImpl::AlgoGroupConvGeneral::is_available(
......@@ -46,45 +85,61 @@ bool ConvolutionBackwardDataImpl::AlgoGroupConvGeneral::is_available(
}
if (args.filter_meta.group <= 1)
return false;
auto sub_args = args;
TensorLayout diff_pg, grad_pg;
modify_size_args(sub_args, diff_pg, grad_pg);
return m_impl->is_available(sub_args);
if (args.filter_meta.format !=
megdnn::param::Convolution::Format::NCHW) {
return false;
}
auto config = prepare_sub_opr(args);
return get_algorithm(
static_cast<ConvolutionBackwardDataImpl*>(config.second.get()),
config.first[0], config.first[1], config.first[2]);
}
WorkspaceBundle
ConvolutionBackwardDataImpl::AlgoGroupConvGeneral::get_workspace_bundle(
void* ptr, const SizeArgs& args) const {
auto config = prepare_sub_opr(args);
size_t sizes = config.second->get_workspace_in_bytes(
config.first[0], config.first[1], config.first[2]);
return {ptr, {sizes}};
}
size_t
ConvolutionBackwardDataImpl::AlgoGroupConvGeneral::get_workspace_in_bytes(
const SizeArgs& args) const {
auto sub_args = args;
TensorLayout diff_pg, grad_pg;
modify_size_args(sub_args, diff_pg, grad_pg);
return m_impl->get_workspace_in_bytes(sub_args);
return get_workspace_bundle(nullptr, args).total_size_in_bytes();
}
void ConvolutionBackwardDataImpl::AlgoGroupConvGeneral::exec(
const ExecArgs& args) const {
auto sub_args = args;
TensorND tflt{*args.filter_tensor}, tdiff{*args.diff_tensor},
tgrad{*args.grad_tensor};
modify_size_args(sub_args, tdiff.layout, tgrad.layout);
sub_args.filter_tensor = &tflt;
sub_args.diff_tensor = &tdiff;
sub_args.grad_tensor = &tgrad;
auto grp = args.filter_meta.group;
auto bundle = get_workspace_bundle(args.workspace.raw_ptr, args);
{
auto config = prepare_sub_opr(args);
TensorND tfilter{args.filter_tensor->raw_ptr, config.first[0]};
TensorND tdiff{args.diff_tensor->raw_ptr, config.first[1]};
TensorND tgrad{args.grad_tensor->raw_ptr, config.first[2]};
size_t c_pos = 1;
auto&& fm = args.filter_meta;
auto strd_flt = (fm.icpg * fm.ocpg * fm.spatial[0] * fm.spatial[1] *
tflt.layout.dtype.size()),
strd_diff =
(tdiff.layout.stride[1] * fm.ocpg * tdiff.layout.dtype.size()),
strd_grad =
(tgrad.layout.stride[1] * fm.icpg * tgrad.layout.dtype.size());
auto strd_flt = fm.icpg * fm.ocpg * fm.spatial[0] * fm.spatial[1] *
tfilter.layout.dtype.size(),
strd_diff = tdiff.layout.stride[c_pos] * fm.ocpg *
tdiff.layout.dtype.size(),
strd_grad = (tgrad.layout.stride[c_pos] * fm.icpg *
tgrad.layout.dtype.size());
auto grp = args.filter_meta.group;
for (uint32_t g = 0; g < grp; ++g) {
m_impl->exec(sub_args);
incr_voidp(tflt.raw_ptr, strd_flt);
config.second->exec(tfilter, tdiff, tgrad, bundle.get_workspace(0));
incr_voidp(tfilter.raw_ptr, strd_flt);
incr_voidp(tdiff.raw_ptr, strd_diff);
incr_voidp(tgrad.raw_ptr, strd_grad);
}
}
}
// vim: syntax=cpp.doxygen
......@@ -26,23 +26,8 @@ ConvolutionBackwardFilterImpl::AlgoPack::AlgoPack() {
all_algos.push_back(&i);
}
all_algos.push_back(&matmul);
all_algos.push_back(&group);
all_algos.reserve(all_algos.size() * 2);
// add gconv algos by AlgoGroupConvGeneral
auto all_algos_data = all_algos.data();
for (size_t i = 1; i < all_algos.size(); ++ i) {
gconv.push_back({all_algos[i]});
}
for (size_t i = 1; i < all_algos.size(); ++ i) {
algo2gconv[all_algos[i]] = &gconv[i - 1];
}
for (auto &&i: gconv) {
all_algos.push_back(&i);
}
megdnn_assert(all_algos_data == all_algos.data());
non_cudnn_algos.push_back(all_algos.rbegin()[0]); // group matmul
all_algos.push_back(&bfloat16);
bfloat16_algos.push_back(&bfloat16);
......@@ -68,7 +53,7 @@ ConvolutionBackwardFilterImpl::AlgoPack
ConvolutionBackwardFilterImpl::sm_algo_pack;
ConvolutionBackwardFilterImpl::AlgoBase::SizeArgs::SizeArgs(
ConvolutionBackwardFilterImpl *o,
const ConvolutionBackwardFilterImpl *o,
const TensorLayout &src, const TensorLayout &diff,
const TensorLayout &grad):
SizeArgs(o, src, diff, grad, o->make_canonized_filter_meta(src.ndim, grad))
......@@ -76,7 +61,7 @@ ConvolutionBackwardFilterImpl::AlgoBase::SizeArgs::SizeArgs(
}
ConvolutionBackwardFilterImpl::AlgoBase::SizeArgs::SizeArgs(
ConvolutionBackwardFilterImpl* o, const TensorLayout& src,
const ConvolutionBackwardFilterImpl* o, const TensorLayout& src,
const TensorLayout& diff, const TensorLayout& grad,
const CanonizedFilterMeta& grad_meta)
: handle{concrete_handle(o->handle())},
......@@ -87,7 +72,7 @@ ConvolutionBackwardFilterImpl::AlgoBase::SizeArgs::SizeArgs(
opr{o} {}
ConvolutionBackwardFilterImpl::AlgoBase::ExecArgs::ExecArgs(
ConvolutionBackwardFilterImpl *opr,
const ConvolutionBackwardFilterImpl *opr,
_megdnn_tensor_in src,
_megdnn_tensor_in diff,
_megdnn_tensor_out grad,
......
......@@ -45,16 +45,18 @@ public:
HandleImpl* handle;
const TensorLayout *src_layout, *diff_layout, *grad_layout;
CanonizedFilterMeta grad_filter_meta;
ConvolutionBackwardFilterImpl* opr;
const ConvolutionBackwardFilterImpl* opr;
std::string to_string() const;
void init_desc(convolution::CUDNNBwdFilterDescs& desc) const {
desc.set(*src_layout, *diff_layout, grad_filter_meta, opr->param());
}
SizeArgs(ConvolutionBackwardFilterImpl* opr, const TensorLayout& src,
const TensorLayout& diff, const TensorLayout& grad);
SizeArgs(ConvolutionBackwardFilterImpl* opr, const TensorLayout& src,
const TensorLayout& diff, const TensorLayout& grad,
SizeArgs(const ConvolutionBackwardFilterImpl* opr,
const TensorLayout& src, const TensorLayout& diff,
const TensorLayout& grad);
SizeArgs(const ConvolutionBackwardFilterImpl* opr,
const TensorLayout& src, const TensorLayout& diff,
const TensorLayout& grad,
const CanonizedFilterMeta& grad_meta);
convolution::ForwardSizeArgs as_fwd_args() const {
......@@ -66,9 +68,9 @@ public:
const TensorND *src_tensor, *diff_tensor, *grad_tensor;
Workspace workspace;
ExecArgs(ConvolutionBackwardFilterImpl* opr, _megdnn_tensor_in src,
_megdnn_tensor_in diff, _megdnn_tensor_out grad,
_megdnn_workspace workspace);
ExecArgs(const ConvolutionBackwardFilterImpl* opr,
_megdnn_tensor_in src, _megdnn_tensor_in diff,
_megdnn_tensor_out grad, _megdnn_workspace workspace);
};
virtual bool is_available(const SizeArgs& args) const = 0;
virtual size_t get_workspace_in_bytes(const SizeArgs& args) const = 0;
......@@ -203,29 +205,25 @@ private:
//! implement group conv by another algo
class ConvolutionBackwardFilterImpl::AlgoGroupConvGeneral final
: public AlgoBase {
AlgoBase* m_impl;
std::string m_name;
public:
AlgoGroupConvGeneral(AlgoBase* impl);
bool is_available(const SizeArgs& args) const override;
size_t get_workspace_in_bytes(const SizeArgs& args) const override;
void exec(const ExecArgs& args) const override;
std::vector<SearchItem> get_subopr_list(
const TensorLayoutArray& layouts,
const OperatorBase* opr) const override;
const char* name() const override { return m_name.c_str(); }
static void modify_size_args(SizeArgs& args, TensorLayout& src_pg,
TensorLayout& diff_pg);
const char* name() const override {
return "CUDA:GROUP_CONV_BACKWARD_FILTER";
}
MEGDNN_DECL_ALGO_TYPE(CUDA_GROUP_CONV_GENERAL)
AlgoAttribute attribute() const override {
auto ret = static_cast<AlgoAttribute>(0);
if (m_impl->contain_attribute_all(AlgoAttribute::REPRODUCIBLE)) {
ret |= AlgoAttribute::REPRODUCIBLE;
}
return ret;
return AlgoAttribute::REPRODUCIBLE;
}
private:
WorkspaceBundle get_workspace_bundle(void* ptr, const SizeArgs& args) const;
};
class ConvolutionBackwardFilterImpl::AlgoPack : NonCopyableObj {
......@@ -240,8 +238,7 @@ public:
std::vector<AlgoCUDNN> cudnn;
AlgoMatmul matmul;
AlgoChanwise chanwise;
std::vector<AlgoGroupConvGeneral> gconv;
std::unordered_map<AlgoBase*, AlgoGroupConvGeneral*> algo2gconv;
AlgoGroupConvGeneral group;
AlgoBFloat16 bfloat16;
std::vector<AlgoBase*>
......
......@@ -15,25 +15,63 @@ using namespace megdnn;
using namespace cuda;
using namespace convolution;
void ConvolutionBackwardFilterImpl::AlgoGroupConvGeneral::modify_size_args(
ConvolutionBackwardFilterImpl::AlgoBase::SizeArgs &args,
TensorLayout &src_pg, TensorLayout &diff_pg) {
src_pg = *args.src_layout;
diff_pg = *args.diff_layout;
namespace {
std::pair<TensorLayoutArray, Convolution::Param> sub_opr_config(
const ConvolutionBackwardFilterImpl::AlgoBase::SizeArgs& args) {
SmallVector<size_t> flt_shape(0);
std::vector<ptrdiff_t> flt_stride(0);
size_t idx = 0;
// check if the first dim is group
if (args.grad_layout->ndim > args.diff_layout->ndim)
++idx;
for (; idx < args.grad_layout->ndim; ++idx) {
flt_shape.push_back(args.grad_layout->shape[idx]);
flt_stride.push_back(args.grad_layout->stride[idx]);
}
TensorLayout filter_pg(flt_shape, flt_stride, args.grad_layout->dtype,
args.grad_layout->format);
TensorLayout src_pg = *args.src_layout;
TensorLayout diff_pg = *args.diff_layout;
auto nr_grp = args.grad_filter_meta.group;
args.grad_filter_meta.group = 1;
src_pg.shape[1] /= nr_grp;
diff_pg.shape[1] /= nr_grp;
args.src_layout = &src_pg;
args.diff_layout = &diff_pg;
size_t c_pos = 1;
src_pg.shape[c_pos] /= nr_grp;
diff_pg.shape[c_pos] /= nr_grp;
megdnn::param::Convolution param = args.opr->param();
param.sparse = megdnn::param::ConvBias::Sparse::DENSE;
std::pair<TensorLayoutArray, ConvolutionBackwardFilterImpl::Param> ret;
ret.first = {src_pg, diff_pg, filter_pg};
ret.second = param;
return ret;
}
std::pair<TensorLayoutArray, std::unique_ptr<ConvolutionBackwardFilter>>
prepare_sub_opr(const ConvolutionBackwardFilterImpl::AlgoBase::SizeArgs& args) {
auto conv_bwd_filter_opr =
args.handle->create_operator<ConvolutionBackwardFilter>();
set_execution_policy<ConvolutionBackwardFilter, ConvolutionBackwardFilter*>(
args.opr, conv_bwd_filter_opr.get());
auto&& config = sub_opr_config(args);
conv_bwd_filter_opr->param() = config.second;
return {config.first, std::move(conv_bwd_filter_opr)};
}
} // namespace
std::vector<Algorithm::SearchItem>
ConvolutionBackwardFilterImpl::AlgoGroupConvGeneral::get_subopr_list(
const TensorLayoutArray& layouts, const OperatorBase* opr) const {
AlgoBase::SizeArgs args{
static_cast<const ConvolutionBackwardFilterImpl*>(opr), layouts[0],
layouts[1], layouts[2]};
auto&& config = sub_opr_config(args);
ConvolutionBackwardFilterImpl::AlgoGroupConvGeneral::AlgoGroupConvGeneral(
AlgoBase *impl):
m_impl{impl}
{
m_name = "group_conv:";
m_name += impl->name();
std::string param_str;
Algorithm::serialize_write_pod(config.second, param_str);
return {{Algorithm::OprType::CONVOLUTION_BACKWARD_FILTER, param_str,
config.first}};
}
bool ConvolutionBackwardFilterImpl::AlgoGroupConvGeneral::is_available(
......@@ -44,45 +82,61 @@ bool ConvolutionBackwardFilterImpl::AlgoGroupConvGeneral::is_available(
}
if (args.grad_filter_meta.group <= 1)
return false;
auto sub_args = args;
TensorLayout src_pg, diff_pg;
modify_size_args(sub_args, src_pg, diff_pg);
return m_impl->is_available(sub_args);
if (args.grad_filter_meta.format !=
megdnn::param::Convolution::Format::NCHW) {
return false;
}
auto config = prepare_sub_opr(args);
return get_algorithm(
static_cast<ConvolutionBackwardFilterImpl*>(config.second.get()),
config.first[0], config.first[1], config.first[2]);
}
WorkspaceBundle
ConvolutionBackwardFilterImpl::AlgoGroupConvGeneral::get_workspace_bundle(
void* ptr, const SizeArgs& args) const {
auto config = prepare_sub_opr(args);
size_t sizes = config.second->get_workspace_in_bytes(
config.first[0], config.first[1], config.first[2]);
return {ptr, {sizes}};
}
size_t ConvolutionBackwardFilterImpl::AlgoGroupConvGeneral::
get_workspace_in_bytes(const SizeArgs &args) const {
auto sub_args = args;
TensorLayout src_pg, diff_pg;
modify_size_args(sub_args, src_pg, diff_pg);
return m_impl->get_workspace_in_bytes(sub_args);
size_t
ConvolutionBackwardFilterImpl::AlgoGroupConvGeneral::get_workspace_in_bytes(
const SizeArgs& args) const {
return get_workspace_bundle(nullptr, args).total_size_in_bytes();
}
void ConvolutionBackwardFilterImpl::AlgoGroupConvGeneral::exec(
const ExecArgs &args) const {
auto sub_args = args;
TensorND tsrc{*args.src_tensor}, tdiff{*args.diff_tensor},
tgrad{*args.grad_tensor};
modify_size_args(sub_args, tsrc.layout, tdiff.layout);
sub_args.src_tensor = &tsrc;
sub_args.diff_tensor = &tdiff;
sub_args.grad_tensor = &tgrad;
auto &&fm = args.grad_filter_meta;
auto grp = fm.group;
const ExecArgs& args) const {
auto bundle = get_workspace_bundle(args.workspace.raw_ptr, args);
{
auto config = prepare_sub_opr(args);
TensorND tsrc{args.src_tensor->raw_ptr, config.first[0]};
TensorND tdiff{args.diff_tensor->raw_ptr, config.first[1]};
TensorND tgrad{args.grad_tensor->raw_ptr, config.first[2]};
auto strd_src = (
tsrc.layout.stride[1] * fm.icpg * tsrc.layout.dtype.size()),
strd_diff = (
tdiff.layout.stride[1] * fm.ocpg * tdiff.layout.dtype.size()),
strd_grad = (fm.icpg * fm.ocpg *
fm.spatial[0] * fm.spatial[1] * tgrad.layout.dtype.size());
for (uint32_t g = 0; g < grp; ++ g) {
m_impl->exec(sub_args);
size_t c_pos = 1;
auto&& fm = args.grad_filter_meta;
auto strd_src = tsrc.layout.stride[c_pos] * fm.icpg *
tsrc.layout.dtype.size(),
strd_diff = tdiff.layout.stride[c_pos] * fm.ocpg *
tdiff.layout.dtype.size(),
strd_grad = fm.icpg * fm.ocpg * fm.spatial[0] * fm.spatial[1] *
tgrad.layout.dtype.size();
auto grp = fm.group;
for (uint32_t g = 0; g < grp; ++g) {
config.second->exec(tsrc, tdiff, tgrad, bundle.get_workspace(0));
incr_voidp(tsrc.raw_ptr, strd_src);
incr_voidp(tdiff.raw_ptr, strd_diff);
incr_voidp(tgrad.raw_ptr, strd_grad);
}
}
}
// vim: syntax=cpp.doxygen
......
......@@ -104,19 +104,7 @@ ConvolutionBackwardDataImpl::get_algorithm_heuristic(
const TensorLayout& grad, size_t workspace_limit_in_bytes,
const AlgoAttribute& positive_attr,
const AlgoAttribute& negative_attr) {
auto fm = check_layout_fwd(grad, filter, diff);
return get_algorithm_heuristic(filter, fm, diff, grad,
workspace_limit_in_bytes, positive_attr,
negative_attr);
}
ConvolutionBackwardDataImpl::Algorithm*
ConvolutionBackwardDataImpl::get_algorithm_heuristic(const TensorLayout& filter,
const CanonizedFilterMeta& filter_meta, const TensorLayout& diff,
const TensorLayout& grad, size_t workspace_limit_in_bytes,
const AlgoAttribute& positive_attr,
const AlgoAttribute& negative_attr) {
AlgoBase::SizeArgs args(this, filter, filter_meta, diff, grad);
AlgoBase::SizeArgs args(this, filter, diff, grad);
if (args.filter_meta.group > 1 &&
sm_algo_pack.chanwise.is_available_attribute(
......@@ -186,14 +174,11 @@ ConvolutionBackwardDataImpl::get_algorithm_heuristic(const TensorLayout& filter,
}
if (args.filter_meta.group > 1) {
auto orig_args = args;
TensorLayout a, b;
AlgoGroupConvGeneral::modify_size_args(args, a, b);
if (is_cudnn_supported(args.as_fwd_args())) {
if (auto algo = get_cudnn_algo())
return sm_algo_pack.algo2gconv.at(algo);
if (auto algo = megdnn::get_algo_match_attribute<
ConvolutionBackwardDataImpl>(
&sm_algo_pack.group, positive_attr, negative_attr)) {
return algo;
}
args = orig_args;
}
if (args.filter_layout->dtype.enumv() !=
......@@ -212,7 +197,7 @@ size_t ConvolutionBackwardDataImpl::get_workspace_in_bytes(
const TensorLayout& filter, const TensorLayout& diff,
const TensorLayout& grad) {
AlgoBase::SizeArgs args(this, filter, diff, grad);
return get_algorithm(this, filter, args.filter_meta, diff, grad)
return get_algorithm(this, filter, diff, grad)
->get_workspace_in_bytes(args);
}
......@@ -227,8 +212,7 @@ void ConvolutionBackwardFilterImpl::exec(_megdnn_tensor_in src,
_megdnn_tensor_out grad,
_megdnn_workspace workspace) {
AlgoBase::ExecArgs args(this, src, diff, grad, workspace);
auto algo = get_algorithm(this, src.layout, diff.layout, grad.layout,
args.grad_filter_meta);
auto algo = get_algorithm(this, src.layout, diff.layout, grad.layout);
algo->check_workspace(args, workspace).exec(args);
}
......@@ -246,20 +230,7 @@ ConvolutionBackwardFilterImpl::get_algorithm_heuristic(
const TensorLayout& grad, size_t workspace_limit_in_bytes,
const AlgoAttribute& positive_attr,
const AlgoAttribute& negative_attr) {
auto fm = check_layout_fwd(src, grad, diff);
return get_algorithm_heuristic(src, diff, grad, fm,
workspace_limit_in_bytes, positive_attr,
negative_attr);
}
ConvolutionBackwardFilterImpl::Algorithm*
ConvolutionBackwardFilterImpl::get_algorithm_heuristic(
const TensorLayout& src, const TensorLayout& diff,
const TensorLayout& grad, const CanonizedFilterMeta& grad_meta,
size_t workspace_limit_in_bytes,
const AlgoAttribute& positive_attr,
const AlgoAttribute& negative_attr) {
AlgoBase::SizeArgs args(this, src, diff, grad, grad_meta);
AlgoBase::SizeArgs args(this, src, diff, grad);
if (args.grad_filter_meta.group > 1 &&
sm_algo_pack.chanwise.is_available_attribute(
......@@ -332,14 +303,11 @@ ConvolutionBackwardFilterImpl::get_algorithm_heuristic(
}
if (args.grad_filter_meta.group > 1) {
auto orig_args = args;
TensorLayout a, b;
AlgoGroupConvGeneral::modify_size_args(args, a, b);
if (is_cudnn_supported(args.as_fwd_args())) {
if (auto algo = get_cudnn_algo())
return sm_algo_pack.algo2gconv.at(algo);
if (auto algo = megdnn::get_algo_match_attribute<
ConvolutionBackwardFilterImpl>(
&sm_algo_pack.group, positive_attr, negative_attr)) {
return algo;
}
args = orig_args;
}
if (args.src_layout->dtype.enumv() != DTypeTrait<dtype::BFloat16>::enumv) {
......@@ -357,7 +325,7 @@ size_t ConvolutionBackwardFilterImpl::get_workspace_in_bytes(
const TensorLayout& src, const TensorLayout& diff,
const TensorLayout& grad) {
AlgoBase::SizeArgs args(this, src, diff, grad);
return get_algorithm(this, src, diff, grad, args.grad_filter_meta)
return get_algorithm(this, src, diff, grad)
->get_workspace_in_bytes(args);
}
......
......@@ -74,17 +74,6 @@ public:
using ConvolutionBackwardData::ConvolutionBackwardData;
void exec(_megdnn_tensor_in filter, _megdnn_tensor_in diff,
_megdnn_tensor_out grad, _megdnn_workspace workspace) override;
AlgorithmInfo get_algorithm_info_heuristic(
const TensorLayout& filter, const CanonizedFilterMeta& filter_meta,
const TensorLayout& diff, const TensorLayout& grad,
size_t workspace_limit_in_bytes, const AlgoAttribute& positive_attr,
const AlgoAttribute& negative_attr) {
return get_algorithm_heuristic(filter, filter_meta, diff, grad,
workspace_limit_in_bytes, positive_attr,
negative_attr)
->info();
}
AlgorithmInfo get_algorithm_info_heuristic(
const TensorLayout& filter, const TensorLayout& diff,
const TensorLayout& grad, size_t workspace_limit_in_bytes,
......@@ -128,14 +117,6 @@ protected:
const AlgoAttribute& negative_attr) override;
private:
Algorithm* get_algorithm_heuristic(const TensorLayout& filter,
const CanonizedFilterMeta& filter_meta,
const TensorLayout& diff,
const TensorLayout& grad,
size_t workspace_limit_in_bytes,
const AlgoAttribute& positive_attr,
const AlgoAttribute& negative_attr);
static AlgoPack sm_algo_pack;
};
......@@ -147,17 +128,6 @@ public:
size_t get_workspace_in_bytes(const TensorLayout& src,
const TensorLayout& diff,
const TensorLayout& grad) override;
AlgorithmInfo get_algorithm_info_heuristic(
const TensorLayout& src, const TensorLayout& diff,
const TensorLayout& grad, const CanonizedFilterMeta& grad_meta,
size_t workspace_limit_in_bytes, const AlgoAttribute& positive_attr,
const AlgoAttribute& negative_attr) {
return get_algorithm_heuristic(src, diff, grad, grad_meta,
workspace_limit_in_bytes, positive_attr,
negative_attr)
->info();
}
AlgorithmInfo get_algorithm_info_heuristic(
const TensorLayout& filter, const TensorLayout& diff,
const TensorLayout& grad, size_t workspace_limit_in_bytes,
......@@ -195,14 +165,6 @@ protected:
const AlgoAttribute& negative_attr) override;
private:
Algorithm* get_algorithm_heuristic(const TensorLayout& src,
const TensorLayout& diff,
const TensorLayout& grad,
const CanonizedFilterMeta& grad_meta,
size_t workspace_limit_in_bytes,
const AlgoAttribute& positive_attr,
const AlgoAttribute& negative_attr);
static AlgoPack sm_algo_pack;
};
......
......@@ -1034,10 +1034,11 @@ TEST_F(CUDA, CONV_BIAS_FORWARD_GROUP) {
// float case
Checker<ConvBiasForward> checker(handle_cuda());
checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<
ConvBias>(
ConvBias>(ExecutionPolicyAlgoName{
ConvBiasForward::algo_name<ConvBiasForward::DirectParam>(
"CUDA:GROUP_CONV", {})
.c_str()));
.c_str(),
{{"CUDNN", {}}}}));
ConvBias::Param param;
param.sparse = ConvBias::Param::Sparse::GROUP;
param.nonlineMode = mode;
......
......@@ -108,39 +108,33 @@ TEST_F(CUDA, GROUP_CONV_FORWARD)
}
TEST_F(CUDA, GROUP_CONV_FORWARD_1x1) {
auto run = [&](size_t N, size_t IC, size_t IH, size_t IW,
size_t FH, size_t FW,
size_t OC, size_t group) {
auto run = [&](size_t N, size_t IC, size_t IH, size_t IW, size_t FH,
size_t FW, size_t OC, size_t group) {
Checker<Convolution> checker(handle_cuda());
#if CUDNN_MAJOR <= 6
std::string conv1x1_name =
ConvBiasForward::algo_name<ConvBiasForward::MatmulParam>(
"BATCHEDMATMUL", {});
checker.set_before_exec_callback(
AlgoChecker<ConvolutionForward>(ExecutionPolicyAlgoName{
"DEFAULT",
ConvBiasForward::algo_name<ConvBias::MatmulParam>(
"INPLACE_MATMUL", {});
checker.set_before_exec_callback(AlgoChecker<ConvolutionForward>(
ExecutionPolicyAlgoName{"DEFAULT",
{{ConvBiasForward::algo_name<
ConvBiasForward::DirectParam>(
ssprintf("%s:%s", "CUDA:GROUP_CONV",
conv1x1_name.c_str())
"CUDA:GROUP_CONV", {})
.c_str(),
{})
.c_str(),
{}}}}));
#endif
{{conv1x1_name.c_str(), {}}}}}}));
Convolution::Param param;
param.sparse = Convolution::Param::Sparse::GROUP;
auto ICg = IC / group;
auto OCg = OC / group;
checker.set_param(param).exec({{N, IC, IH, IW},
{group, OCg, ICg, FH, FW}, {}});
checker.set_param(param).exec(
{{N, IC, IH, IW}, {group, OCg, ICg, FH, FW}, {}});
};
size_t ic = 192;
for (size_t g = 2; g <= 3; g += 1) {
for (size_t ih = 8; ih <= 128; ih *= 4) {
size_t iw = ih;
run(2, ic, ih, iw, 1, 1, ic / g, g);
run(2, ic, ih+1, iw+1, 1, 1, ic / g, g);
run(2, ic, ih + 1, iw + 1, 1, 1, ic / g, g);
}
}
}
......@@ -189,6 +183,54 @@ TEST_F(CUDA, GROUP_CONV_BACKWARD_DATA)
8);
}
TEST_F(CUDA, GROUP_CONV_BACKWARD_DATA_CUDNN)
{
auto run = [&](size_t N, size_t IC, size_t IH, size_t IW,
size_t FH, size_t FW,
size_t OC, size_t OH, size_t OW,
size_t PH, size_t PW,
size_t SH, size_t SW,
size_t group)
{
Checker<ConvolutionBackwardData> checker(handle_cuda());
checker.set_before_exec_callback(
AlgoChecker<ConvolutionBackwardData>(ExecutionPolicyAlgoName{
"CUDA:GROUP_CONV_BACKWARD_DATA", {{"CUDNN", {}}}}));
ConvolutionBackwardData::Param param;
param.sparse = Convolution::Param::Sparse::GROUP;
param.pad_h = PH;
param.pad_w = PW;
param.stride_h = SH;
param.stride_w = SW;
auto ICg = IC / group;
auto OCg = OC / group;
checker.set_param(param).exec({{group, OCg, ICg, FH, FW},
{N, OC, OH, OW}, {N, IC, IH, IW}});
};
// normal case
run(2, 64, 7, 7,
3, 3,
32, 5, 5,
0, 0,
1, 1,
2);
// padded case
run(2, 32, 7, 7,
3, 3,
64, 7, 7,
1, 1,
1, 1,
4);
// strided case
run(2, 32, 7, 7,
3, 3,
64, 3, 3,
0, 0,
2, 2,
8);
}
TEST_F(CUDA, GROUP_CONV_BACKWARD_FILTER)
{
auto run = [&](size_t N, size_t IC, size_t IH, size_t IW,
......@@ -233,6 +275,52 @@ TEST_F(CUDA, GROUP_CONV_BACKWARD_FILTER)
8);
}
TEST_F(CUDA, GROUP_CONV_BACKWARD_FILTER_CUDNN)
{
auto run = [&](size_t N, size_t IC, size_t IH, size_t IW,
size_t FH, size_t FW,
size_t OC, size_t OH, size_t OW,
size_t PH, size_t PW,
size_t SH, size_t SW,
size_t group)
{
Checker<ConvolutionBackwardFilter> checker(handle_cuda());
checker.set_before_exec_callback(
AlgoChecker<ConvolutionBackwardFilter>(ExecutionPolicyAlgoName{
"CUDA:GROUP_CONV_BACKWARD_FILTER", {{"CUDNN", {}}}}));
ConvolutionBackwardFilter::Param param;
param.sparse = Convolution::Param::Sparse::GROUP;
param.pad_h = PH;
param.pad_w = PW;
param.stride_h = SH;
param.stride_w = SW;
auto ICg = IC / group;
auto OCg = OC / group;
checker.set_param(param).exec({{N, IC, IH, IW},
{N, OC, OH, OW}, {group, OCg, ICg, FH, FW}});
};
// normal case
run(2, 64, 7, 7,
3, 3,
32, 5, 5,
0, 0,
1, 1,
2);
// padded case
run(2, 32, 7, 7,
3, 3,
64, 7, 7,
1, 1,
1, 1,
4);
// strided case
run(2, 32, 7, 7,
3, 3,
64, 3, 3,
0, 0,
2, 2,
8);
}
} // namespace test
} // namespace megdnn
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册