提交 6bb54099 编写于 作者: M Megvii Engine Team

feat(dnn/src): add images2neibs kernel of opencl and related test

GitOrigin-RevId: 82242b7437c0efa920277bd4909354137497c42c
上级 0f5c26d7
......@@ -6,7 +6,8 @@
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
*/
#include "megdnn/oprs.h"
......@@ -28,7 +29,9 @@ void Images2NeibsBase::deduce_layout_fwd(const TensorLayout& src, TensorLayout&
};
MEGDNN_MARK_USED_VAR(errmsg);
megdnn_assert_contiguous(src);
megdnn_assert(src.ndim == 4_z, "%s", errmsg().c_str());
megdnn_assert(src.ndim == 4_z || src.ndim == 5_z, "%s", errmsg().c_str());
if (src.ndim == 4_z) {
size_t n = src[0], ic = src[1], ih = src[2], iw = src[3];
size_t ph = this->param().pad_h;
size_t pw = this->param().pad_w;
......@@ -39,11 +42,27 @@ void Images2NeibsBase::deduce_layout_fwd(const TensorLayout& src, TensorLayout&
size_t wh = this->param().window_h;
size_t ww = this->param().window_w;
size_t oh, ow;
infer_conv_shape2d(
ih, iw, wh + (wh - 1) * (dh - 1), ww + (ww - 1) * (dw - 1), sh, sw, ph, pw,
oh, ow);
dst = TensorLayout(TensorShape({n, ic, oh, ow, wh, ww}), src.dtype);
ih, iw, wh + (wh - 1) * (dh - 1), ww + (ww - 1) * (dw - 1), sh, sw, ph,
pw, oh, ow);
dst = TensorLayout(TensorShape({n, ic, oh, ow, wh, ww}), src.dtype, src.format);
} else if (src.ndim == 5_z) {
size_t n = src[0], ih = src[1], iw = src[3], ic = src[2];
size_t ph = this->param().pad_h;
size_t pw = this->param().pad_w;
size_t sh = this->param().stride_h;
size_t sw = this->param().stride_w;
size_t dh = this->param().dilate_h;
size_t dw = this->param().dilate_w;
size_t wh = this->param().window_h;
size_t ww = this->param().window_w;
size_t oh, ow;
infer_conv_shape2d(
ih, iw, wh + (wh - 1) * (dh - 1), ww + (ww - 1) * (dw - 1), sh, sw, ph,
pw, oh, ow);
dst = TensorLayout(
TensorShape({n, oh, ic, ow, wh, ww, 4}), src.dtype, src.format);
}
}
void Images2NeibsBase::check_layout_fwd(
......
......@@ -21,6 +21,61 @@ namespace naive {
template <typename T>
void Images2NeibsForwardImpl::exec_internal(
_megdnn_tensor_in src, _megdnn_tensor_out dst) {
megdnn_assert(src.layout.ndim == 5 || src.layout.ndim == 4);
if (src.layout.ndim == 5) {
int N = src.layout.shape[0], C = src.layout.shape[2], IH = src.layout.shape[1],
IW = src.layout.shape[3];
auto sptr = src.ptr<T>();
auto dptr = dst.ptr<T>();
size_t idx = 0;
int window_h = static_cast<int>(param().window_h);
int window_w = static_cast<int>(param().window_w);
int pad_h = static_cast<int>(param().pad_h);
int pad_w = static_cast<int>(param().pad_w);
int stride_h = static_cast<int>(param().stride_h);
int stride_w = static_cast<int>(param().stride_w);
int dilate_h = static_cast<int>(param().dilate_h);
int dilate_w = static_cast<int>(param().dilate_w);
int equ_window_h = dilate_h * (window_h - 1) + 1;
int equ_window_w = dilate_w * (window_w - 1) + 1;
auto src_stride = src.layout.stride;
auto dst_stride = dst.layout.stride;
for (int n = 0; n < N; ++n)
for (int c = 0; c < C; ++c) {
int ih = -pad_h;
int hc = 0;
for (; ih <= IH + pad_h - equ_window_h; ih += stride_h, hc++) {
int iw = -pad_w;
int wc = 0;
for (; iw <= IW + pad_w - equ_window_w; iw += stride_w, wc++) {
for (int kh = 0; kh < window_h; ++kh)
for (int kw = 0; kw < window_w; ++kw) {
for (int cn = 0; cn < 4; cn++) {
int ih2 = ih + dilate_h * kh,
iw2 = iw + dilate_w * kw;
int dst_pos =
n * dst_stride[0] + hc * dst_stride[1] +
c * dst_stride[2] + wc * dst_stride[3] +
kh * dst_stride[4] + kw * dst_stride[5] +
cn * dst_stride[6];
int src_pos =
n * src_stride[0] + ih2 * src_stride[1] +
c * src_stride[2] + iw2 * src_stride[3] +
cn * src_stride[4];
if (ih2 >= 0 && ih2 < IH && iw2 >= 0 && iw2 < IW) {
dptr[dst_pos] = sptr[src_pos];
} else {
dptr[dst_pos] = 0.0f;
}
}
}
++idx;
}
}
}
} else {
int N = src.layout.shape[0], C = src.layout.shape[1], IH = src.layout.shape[2],
IW = src.layout.shape[3];
auto sptr = src.ptr<T>();
......@@ -45,16 +100,21 @@ void Images2NeibsForwardImpl::exec_internal(
for (int kh = 0; kh < window_h; ++kh)
for (int kw = 0; kw < window_w; ++kw) {
int ih2 = ih + dilate_h * kh, iw2 = iw + dilate_w * kw;
dptr[idx * window_h * window_w + kh * window_w + kw] =
ih2 >= 0 && ih2 < IH && iw2 >= 0 && iw2 < IW
? sptr[n * C * IH * IW + c * IH * IW +
ih2 * IW + iw2]
: 0.0f;
int src_pos =
n * C * IH * IW + c * IH * IW + ih2 * IW + iw2;
int dst_pos =
idx * window_h * window_w + kh * window_w + kw;
if (ih2 >= 0 && ih2 < IH && iw2 >= 0 && iw2 < IW) {
dptr[dst_pos] = sptr[src_pos];
} else {
dptr[dst_pos] = 0.0f;
}
}
++idx;
}
}
}
}
}
void Images2NeibsForwardImpl::exec(
......
......@@ -6,7 +6,8 @@
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
*/
#pragma once
#include <cstddef>
......@@ -26,6 +27,7 @@ struct TestArg {
inline std::vector<TestArg> get_args() {
std::vector<TestArg> args;
// clang-format off
for (uint32_t ph : {0, 1})
for (uint32_t pw : {0, 1})
......@@ -49,6 +51,34 @@ inline std::vector<TestArg> get_args() {
return args;
}
inline std::vector<TestArg> get_cd4_args() {
std::vector<TestArg> args;
// clang-format off
for (uint32_t ph : {0, 1})
for (uint32_t pw : {0, 1})
for (uint32_t sh : {1, 2})
for (uint32_t sw : {1, 2})
for (uint32_t dh : {1, 2, 3})
for (uint32_t dw : {1, 2, 3})
for (uint32_t wh : {2, 3})
for (uint32_t ww : {2, 3}) {
args.emplace_back(param::Images2Neibs{ph, pw, sh, sw, dh, dw, wh,
ww},
TensorShape{2, 13, 1, 14, 4});
}
// clang-format on
// large window case
args.emplace_back(
param::Images2Neibs{0, 0, 1, 1, 1, 1, 8, 14}, TensorShape{2, 16, 1, 16, 4});
// large size
args.emplace_back(
param::Images2Neibs{0, 0, 1, 1, 1, 1, 1, 1},
TensorShape{256, 16, 64, 16, 4});
return args;
}
inline std::vector<TestArg> get_benchmark_args() {
std::vector<TestArg> args;
// clang-format off
......@@ -75,6 +105,33 @@ inline std::vector<TestArg> get_benchmark_args() {
return args;
}
inline std::vector<TestArg> get_benchmark_args_cd4() {
std::vector<TestArg> args;
// clang-format off
for (uint32_t ph : {0, 1})
for (uint32_t pw : {0, 1})
for (uint32_t sh : {1, 2})
for (uint32_t sw : {1, 2})
for (uint32_t dh : {1, 2})
for (uint32_t dw : {1, 2})
for (uint32_t wh : {3, 4})
for (uint32_t ww : {3, 4})
for (uint32_t b : {1, 32})
for (uint32_t c : {16, 32})
for (uint32_t hw : {16, 32}) {
args.emplace_back(param::Images2Neibs{ph, pw, sh, sw, dh, dw, wh, ww},
TensorShape{b, hw, (c + 3) / 4, hw, 4});
}
// clang-format on
// large size
args.emplace_back(
param::Images2Neibs{0, 0, 1, 1, 1, 1, 1, 1},
TensorShape{256, 28, 32, 24, 4});
return args;
}
} // namespace images2neibs
} // namespace test
} // namespace megdnn
......
......@@ -56,3 +56,68 @@ TEST_F(NAIVE, IMAGES2NEIBS_FORWARD) {
8, 10, 0, 22, 24, 0, 36, 38, 8, 10, 12, 22, 24, 26,
36, 38, 40, 10, 12, 0, 24, 26, 0, 38, 40, 0})});
}
TEST_F(NAIVE, IMAGES2NEIBS_FORWARD_CD4) {
Checker<Images2Neibs> checker(handle(), /* check_dispatch */ false);
Images2Neibs::Param param(0, 0, 1, 1, 1, 1, 2, 2);
checker.set_param(param).exect(
Testcase{
TensorValue(
{1, 3, 1, 3, 4}, dtype::Uint8(),
{0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0,
0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7, 0, 0, 0, 8, 0, 0, 0}),
{}},
Testcase{
{},
TensorValue(
{1, 2, 1, 2, 2, 2, 4}, dtype::Uint8(),
{0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0,
1, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0,
3, 0, 0, 0, 4, 0, 0, 0, 6, 0, 0, 0, 7, 0, 0, 0,
4, 0, 0, 0, 5, 0, 0, 0, 7, 0, 0, 0, 8, 0, 0, 0})});
param.pad_h = 1;
param.pad_w = 1;
param.stride_h = 2;
param.stride_w = 2;
param.dilate_h = 2;
param.dilate_w = 2;
param.window_h = 3;
param.window_w = 3;
checker.set_param(param).exect(
Testcase{
TensorValue(
{1, 6, 1, 7, 4}, dtype::Uint8(),
{0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0,
4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7, 0, 0, 0,
8, 0, 0, 0, 9, 0, 0, 0, 10, 0, 0, 0, 11, 0, 0, 0,
12, 0, 0, 0, 13, 0, 0, 0, 14, 0, 0, 0, 15, 0, 0, 0,
16, 0, 0, 0, 17, 0, 0, 0, 18, 0, 0, 0, 19, 0, 0, 0,
20, 0, 0, 0, 21, 0, 0, 0, 22, 0, 0, 0, 23, 0, 0, 0,
24, 0, 0, 0, 25, 0, 0, 0, 26, 0, 0, 0, 27, 0, 0, 0,
28, 0, 0, 0, 29, 0, 0, 0, 30, 0, 0, 0, 31, 0, 0, 0,
32, 0, 0, 0, 33, 0, 0, 0, 34, 0, 0, 0, 35, 0, 0, 0,
36, 0, 0, 0, 37, 0, 0, 0, 38, 0, 0, 0, 39, 0, 0, 0,
40, 0, 0, 0, 41, 0, 0, 0}),
{}},
Testcase{
{},
TensorValue(
{1, 2, 1, 3, 3, 3, 4}, dtype::Uint8(),
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
8, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0,
24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
8, 0, 0, 0, 10, 0, 0, 0, 12, 0, 0, 0, 22, 0, 0, 0,
24, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 10, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0,
24, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
8, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0,
24, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 38, 0, 0, 0,
8, 0, 0, 0, 10, 0, 0, 0, 12, 0, 0, 0, 22, 0, 0, 0,
24, 0, 0, 0, 26, 0, 0, 0, 36, 0, 0, 0, 38, 0, 0, 0,
40, 0, 0, 0, 10, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0,
24, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 0, 38, 0, 0, 0,
40, 0, 0, 0, 0, 0, 0, 0})});
}
......@@ -17,6 +17,7 @@
#include "megbrain/opr/blas.h"
#include "megbrain/opr/dnn/batch_norm.h"
#include "megbrain/opr/dnn/convolution.h"
#include "megbrain/opr/dnn/images2neibs.h"
#include "megbrain/opr/dnn/local.h"
#include "megbrain/opr/dnn/pooling.h"
#include "megbrain/opr/imgproc.h"
......@@ -1651,6 +1652,7 @@ std::unique_ptr<ConvertFormatPass> ConvertFormatPass::make_nhwcd4_converter() {
replace_func[opr::Concat::typeinfo()] = replace_concat_opr;
replace_func[opr::Reshape::typeinfo()] = relayout_inp_to_chw;
replace_func[opr::GetVarShape::typeinfo()] = relayout_inp_to_chw;
replace_func[opr::Images2NeibsBackward::typeinfo()] = relayout_inp_to_chw;
replace_func[opr::Dimshuffle::typeinfo()] = relayout_inp_to_chw;
replace_func[opr::Reduce::typeinfo()] = relayout_inp_to_chw;
replace_func[opr::AssertEqual::typeinfo()] = relayout_inp_to_chw;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册