Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
63032170
MegEngine
项目概览
MegEngine 天元
/
MegEngine
1 年多 前同步成功
通知
404
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
63032170
编写于
2月 08, 2023
作者:
M
Megvii Engine Team
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
feat(dnn/fallback): add gi fp16 nchw88 winograd F63 algo
GitOrigin-RevId: d986e1cbebd0f9ad89c27a62bd4e951459165d3d
上级
10503cfa
变更
8
展开全部
显示空白变更内容
内联
并排
Showing
8 changed file
with
693 addition
and
1 deletion
+693
-1
dnn/src/fallback/conv_bias/gi/fp16/algos.cpp
dnn/src/fallback/conv_bias/gi/fp16/algos.cpp
+38
-0
dnn/src/fallback/conv_bias/gi/fp16/algos.h
dnn/src/fallback/conv_bias/gi/fp16/algos.h
+18
-0
dnn/src/fallback/conv_bias/gi/fp16/helper.h
dnn/src/fallback/conv_bias/gi/fp16/helper.h
+1
-0
dnn/src/fallback/conv_bias/gi/fp16/strategy.h
dnn/src/fallback/conv_bias/gi/fp16/strategy.h
+3
-0
dnn/src/fallback/conv_bias/gi/fp16/strategy_f63_mk8_nchw88.cpp
...rc/fallback/conv_bias/gi/fp16/strategy_f63_mk8_nchw88.cpp
+574
-0
dnn/src/fallback/conv_bias/opr_impl.cpp
dnn/src/fallback/conv_bias/opr_impl.cpp
+5
-0
dnn/src/fallback/conv_bias/opr_impl.h
dnn/src/fallback/conv_bias/opr_impl.h
+2
-0
dnn/test/fallback/conv_bias.cpp
dnn/test/fallback/conv_bias.cpp
+52
-1
未找到文件。
dnn/src/fallback/conv_bias/gi/fp16/algos.cpp
浏览文件 @
63032170
...
@@ -91,5 +91,43 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(
...
@@ -91,5 +91,43 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(
AlgoFP16WinogradF23_8x8_NCHW88
,
winograd
::
winograd_F23_mk8_f16_nchw88
,
AlgoFP16WinogradF23_8x8_NCHW88
,
winograd
::
winograd_F23_mk8_f16_nchw88
,
megdnn_fallback_winograd_fp16_nchw88
,
param
::
MatrixMul
::
Format
::
MK8
);
megdnn_fallback_winograd_fp16_nchw88
,
param
::
MatrixMul
::
Format
::
MK8
);
/* =================== AlgoFP16WinogradF63_8x8_NCHW88 ===================== */
bool
ConvBiasImpl
::
AlgoFP16WinogradF63_8x8_NCHW88
::
usable
(
const
NCBKernSizeParam
&
param
,
AlgoSelectionStrategy
/*algo_selection_strategy*/
)
const
{
MIDOUT_BEGIN
(
megdnn_fallback_winograd_fp16_nchw88
,
midout_iv
(
"AlgoFP16WinogradF63_8x8_NCHW88"
_hash
))
{
if
(
param
.
filter_meta
.
icpg
%
8
!=
0
||
param
.
filter_meta
.
ocpg
%
8
!=
0
)
return
false
;
using
Strategy
=
winograd
::
winograd_F63_mk8_f16_nchw88
;
Strategy
strategy
(
param
.
src_type
,
param
.
filter_type
,
param
.
dst_type
);
auto
&&
matmul_param
=
megdnn
::
winograd
::
ConvBias
<
Strategy
,
param
::
MatrixMul
::
Format
::
MK8
>
(
strategy
,
m_tile_size
,
param
)
.
get_matmul_kern_param
(
param
);
return
m_matmul_algo
->
usable
(
matmul_param
)
&&
m_matmul_algo
->
packmode
()
==
fallback
::
MatrixMulImpl
::
AlgoBase
::
PackMode
::
NO_PACK
&&
param
.
filter_meta
.
format
==
param
::
ConvBias
::
Format
::
NCHW88
&&
!
param
.
filter_meta
.
should_flip
&&
(
param
.
filter_meta
.
spatial
[
0
]
==
param
.
filter_meta
.
spatial
[
1
]
&&
param
.
filter_meta
.
spatial
[
0
]
==
3
)
&&
(
param
.
filter_meta
.
stride
[
0
]
==
param
.
filter_meta
.
stride
[
1
]
&&
param
.
filter_meta
.
stride
[
0
]
==
1
)
&&
(
param
.
filter_meta
.
dilation
[
0
]
==
param
.
filter_meta
.
dilation
[
1
]
&&
param
.
filter_meta
.
dilation
[
0
]
==
1
)
&&
param
.
compute_mode
==
param
::
ConvBias
::
ComputeMode
::
DEFAULT
&&
param
.
src_type
.
enumv
()
==
DTypeEnum
::
Float16
;
}
MIDOUT_END
();
return
false
;
}
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL
(
AlgoFP16WinogradF63_8x8_NCHW88
,
winograd
::
winograd_F63_mk8_f16_nchw88
,
megdnn_fallback_winograd_fp16_nchw88
,
param
::
MatrixMul
::
Format
::
MK8
);
#endif
#endif
// vim: syntax=cpp.doxygen
// vim: syntax=cpp.doxygen
dnn/src/fallback/conv_bias/gi/fp16/algos.h
浏览文件 @
63032170
...
@@ -46,6 +46,24 @@ public:
...
@@ -46,6 +46,24 @@ public:
MEGDNN_DECL_ALGO_TYPE
(
GI_COMMON_WINOGRAD_F23_8X8_NCHW88_F16
)
MEGDNN_DECL_ALGO_TYPE
(
GI_COMMON_WINOGRAD_F23_8X8_NCHW88_F16
)
};
};
class
ConvBiasImpl
::
AlgoFP16WinogradF63_8x8_NCHW88
final
:
public
AlgoBase
{
public:
AlgoFP16WinogradF63_8x8_NCHW88
(
fallback
::
MatrixMulImpl
::
AlgoBase
*
matmul_algo
,
uint32_t
tile_size
)
:
m_matmul_algo
{
matmul_algo
},
m_tile_size
{
tile_size
}
{}
const
char
*
name
()
const
override
{
if
(
m_name
.
empty
())
{
m_name
=
ConvBiasImpl
::
algo_name
<
ConvBias
::
WinogradParam
>
(
m_matmul_algo
->
name
(),
{
8
,
6
,
m_tile_size
,
3
},
param
::
ConvBias
::
Format
::
NCHW88
);
}
return
m_name
.
c_str
();
}
AlgoAttribute
attribute
()
const
override
{
return
AlgoAttribute
::
REPRODUCIBLE
;
}
MEGDNN_WINOGRAD_ALGO_FUN_DECLARE
(
AlgoDataType
::
FLOAT16
);
MEGDNN_DECL_ALGO_TYPE
(
GI_COMMON_WINOGRAD_F63_8X8_NCHW88_F16
)
};
}
// namespace fallback
}
// namespace fallback
}
// namespace megdnn
}
// namespace megdnn
...
...
dnn/src/fallback/conv_bias/gi/fp16/helper.h
浏览文件 @
63032170
...
@@ -7,4 +7,5 @@
...
@@ -7,4 +7,5 @@
#define MULSF16 GiMultiplyScalerFloat16
#define MULSF16 GiMultiplyScalerFloat16
#endif
#endif
#define CONCAT(a, idx) a##idx
// vim: syntax=cpp.doxygen
// vim: syntax=cpp.doxygen
dnn/src/fallback/conv_bias/gi/fp16/strategy.h
浏览文件 @
63032170
...
@@ -17,6 +17,9 @@ MEGDNN_REG_WINOGRAD_STRATEGY(
...
@@ -17,6 +17,9 @@ MEGDNN_REG_WINOGRAD_STRATEGY(
MEGDNN_REG_WINOGRAD_STRATEGY
(
MEGDNN_REG_WINOGRAD_STRATEGY
(
dt_float16
,
dt_float16
,
dt_float16
,
dt_float16
,
2
,
3
,
8
,
8
,
dt_float16
,
dt_float16
,
dt_float16
,
dt_float16
,
2
,
3
,
8
,
8
,
winograd_F23_mk8_f16_nchw88
)
winograd_F23_mk8_f16_nchw88
)
MEGDNN_REG_WINOGRAD_STRATEGY
(
dt_float16
,
dt_float16
,
dt_float16
,
dt_float16
,
6
,
3
,
8
,
8
,
winograd_F63_mk8_f16_nchw88
)
}
// namespace winograd
}
// namespace winograd
}
// namespace fallback
}
// namespace fallback
}
// namespace megdnn
}
// namespace megdnn
...
...
dnn/src/fallback/conv_bias/gi/fp16/strategy_f63_mk8_nchw88.cpp
0 → 100644
浏览文件 @
63032170
此差异已折叠。
点击以展开。
dnn/src/fallback/conv_bias/opr_impl.cpp
浏览文件 @
63032170
...
@@ -204,6 +204,11 @@ public:
...
@@ -204,6 +204,11 @@ public:
static_cast
<
fallback
::
MatrixMulImpl
::
AlgoBase
*>
(
algo
),
static_cast
<
fallback
::
MatrixMulImpl
::
AlgoBase
*>
(
algo
),
tile_size
));
tile_size
));
m_gi_winograd_algos
.
emplace_back
(
refhold
.
back
().
get
());
m_gi_winograd_algos
.
emplace_back
(
refhold
.
back
().
get
());
refhold
.
emplace_back
(
new
AlgoFP16WinogradF63_8x8_NCHW88
(
static_cast
<
fallback
::
MatrixMulImpl
::
AlgoBase
*>
(
algo
),
tile_size
));
m_gi_winograd_algos
.
emplace_back
(
refhold
.
back
().
get
());
}
}
}
}
#endif
#endif
...
...
dnn/src/fallback/conv_bias/opr_impl.h
浏览文件 @
63032170
...
@@ -228,6 +228,7 @@ public:
...
@@ -228,6 +228,7 @@ public:
GI_COMMON_WINOGRAD_F73_4X4_NCHW44_F32
,
GI_COMMON_WINOGRAD_F73_4X4_NCHW44_F32
,
GI_COMMON_WINOGRAD_F23_8X8_NCHW88_F16
,
GI_COMMON_WINOGRAD_F23_8X8_NCHW88_F16
,
GI_COMMON_WINOGRAD_F43_8X8_NCHW88_F16
,
GI_COMMON_WINOGRAD_F43_8X8_NCHW88_F16
,
GI_COMMON_WINOGRAD_F63_8X8_NCHW88_F16
,
GI_COMMON_DIRECT_FP32
,
GI_COMMON_DIRECT_FP32
,
GI_COMMON_DIRECT_STRD1_FP32
,
GI_COMMON_DIRECT_STRD1_FP32
,
GI_COMMON_DIRECT_STRD2_FP32
,
GI_COMMON_DIRECT_STRD2_FP32
,
...
@@ -397,6 +398,7 @@ private:
...
@@ -397,6 +398,7 @@ private:
class
AlgoFP16WinogradF23_8x8_NCHW88
;
class
AlgoFP16WinogradF23_8x8_NCHW88
;
class
AlgoFP16WinogradF43_8x8_NCHW88
;
class
AlgoFP16WinogradF43_8x8_NCHW88
;
class
AlgoFP16WinogradF63_8x8_NCHW88
;
class
AlgoF32Direct
;
class
AlgoF32Direct
;
class
AlgoF32DirectStride1
;
class
AlgoF32DirectStride1
;
...
...
dnn/test/fallback/conv_bias.cpp
浏览文件 @
63032170
...
@@ -634,6 +634,19 @@ TEST_F(FALLBACK_MULTI_THREADS, CONVBIAS_GI_WINOGRAD_F43_8_NCHW88_FP16) {
...
@@ -634,6 +634,19 @@ TEST_F(FALLBACK_MULTI_THREADS, CONVBIAS_GI_WINOGRAD_F43_8_NCHW88_FP16) {
"8:4:"
,
checker
,
args
,
&
rng
,
0.006
,
param
::
MatrixMul
::
Format
::
MK8
,
"8:4:"
,
checker
,
args
,
&
rng
,
0.006
,
param
::
MatrixMul
::
Format
::
MK8
,
"WINOGRAD_NCHW88"
);
"WINOGRAD_NCHW88"
);
}
}
TEST_F
(
FALLBACK_MULTI_THREADS
,
CONVBIAS_GI_WINOGRAD_F63_8_NCHW88_FP16
)
{
using
namespace
conv_bias
;
std
::
vector
<
TestArg
>
args
=
get_nchw88_conv_bias_args
({
3
},
FULL_NLMODE
,
BR_AND_NO_BIASMODE
,
1
);
Checker
<
ConvBiasForward
,
OprWeightPreprocessProxy
<
ConvBiasForward
>>
checker
(
handle
());
Float16PeriodicalRNG
rng
(
0x3c00
);
check_winograd_fp16
(
"8:6:"
,
checker
,
args
,
&
rng
,
0.019
,
param
::
MatrixMul
::
Format
::
MK8
,
"WINOGRAD_NCHW88"
);
}
#endif
#endif
TEST_F
(
FALLBACK_MULTI_THREADS
,
CONVBIAS_GI_WINOGRAD_F43_4_WEIGHT_PREPROCESS
)
{
TEST_F
(
FALLBACK_MULTI_THREADS
,
CONVBIAS_GI_WINOGRAD_F43_4_WEIGHT_PREPROCESS
)
{
...
@@ -1407,7 +1420,7 @@ TEST_F(FALLBACK, BENCHMARK_GI_WINOGRAD_F23_FP32_NCHW44_VS_FP16_NCHW88) {
...
@@ -1407,7 +1420,7 @@ TEST_F(FALLBACK, BENCHMARK_GI_WINOGRAD_F23_FP32_NCHW44_VS_FP16_NCHW88) {
std
::
string
algo_name_fp32
=
"WINOGRAD_NCHW44:FB_GI_F32_MK4_4x8:4:2"
;
std
::
string
algo_name_fp32
=
"WINOGRAD_NCHW44:FB_GI_F32_MK4_4x8:4:2"
;
benchmark_with_contrast
(
benchmark_with_contrast
(
args_with_computation_fp16
,
algo_name_fp16
,
data_type_fp16
,
args_with_computation_fp16
,
algo_name_fp16
,
data_type_fp16
,
args_with_computation_fp32
,
algo_name_fp32
,
data_type_fp32
,
10
,
{
1
,
{
0
}});
args_with_computation_fp32
,
algo_name_fp32
,
data_type_fp32
,
10
,
{
1
,
{
4
}});
}
}
TEST_F
(
FALLBACK
,
BENCHMARK_GI_WINOGRAD_F43_FP32_NCHW44_VS_FP16_NCHW88
)
{
TEST_F
(
FALLBACK
,
BENCHMARK_GI_WINOGRAD_F43_FP32_NCHW44_VS_FP16_NCHW88
)
{
...
@@ -1447,6 +1460,44 @@ TEST_F(FALLBACK, BENCHMARK_GI_WINOGRAD_F43_FP32_NCHW44_VS_FP16_NCHW88) {
...
@@ -1447,6 +1460,44 @@ TEST_F(FALLBACK, BENCHMARK_GI_WINOGRAD_F43_FP32_NCHW44_VS_FP16_NCHW88) {
args_with_computation_fp16
,
algo_name_fp16
,
data_type_fp16
,
args_with_computation_fp16
,
algo_name_fp16
,
data_type_fp16
,
args_with_computation_fp32
,
algo_name_fp32
,
data_type_fp32
,
10
,
{
1
,
{
0
}});
args_with_computation_fp32
,
algo_name_fp32
,
data_type_fp32
,
10
,
{
1
,
{
0
}});
}
}
TEST_F
(
FALLBACK
,
BENCHMARK_GI_WINOGRAD_F63_FP32_NCHW44_VS_FP16_NCHW88
)
{
auto
&&
args_fp16
=
conv_bias
::
get_winograd_benchmark_args
(
3
,
8
,
8
);
auto
&&
args_fp32
=
conv_bias
::
get_winograd_benchmark_args
(
3
,
4
,
4
);
auto
cal_computation
=
[](
const
conv_bias
::
TestArg
&
arg
)
{
TensorShape
dst_shape
{
arg
.
src
[
0
],
arg
.
filter
[
0
],
(
arg
.
src
[
2
]
+
arg
.
param
.
pad_h
*
2
-
arg
.
filter
[
2
])
/
arg
.
param
.
stride_h
+
1
,
(
arg
.
src
[
3
]
+
arg
.
param
.
pad_w
*
2
-
arg
.
filter
[
3
])
/
arg
.
param
.
stride_w
+
1
,
arg
.
filter
[
5
]};
return
dst_shape
.
total_nr_elems
()
*
arg
.
filter
[
1
]
*
arg
.
filter
[
2
]
*
arg
.
filter
[
3
]
*
arg
.
filter
[
4
]
*
2.0
/
(
1024
*
1024
*
1024
)
*
1e3
;
};
std
::
vector
<
std
::
pair
<
conv_bias
::
TestArg
,
float
>>
args_with_computation_fp16
,
args_with_computation_fp32
;
for
(
const
auto
&
arg
:
args_fp16
)
{
args_with_computation_fp16
.
emplace_back
(
arg
,
cal_computation
(
arg
));
}
for
(
const
auto
&
arg
:
args_fp32
)
{
args_with_computation_fp32
.
emplace_back
(
arg
,
cal_computation
(
arg
));
}
std
::
vector
<
DType
>
data_type_fp16
=
{
dtype
::
Float16
(),
dtype
::
Float16
(),
dtype
::
Float16
(),
dtype
::
Float16
()};
std
::
vector
<
DType
>
data_type_fp32
=
{
dtype
::
Float32
(),
dtype
::
Float32
(),
dtype
::
Float32
(),
dtype
::
Float32
()};
std
::
string
algo_name_fp16
=
"WINOGRAD_NCHW88:FB_GI_F16_MK8_8x8:8:6"
;
std
::
string
algo_name_fp32
=
"WINOGRAD_NCHW44:FB_GI_F32_MK4_4x8:4:6"
;
benchmark_with_contrast
(
args_with_computation_fp16
,
algo_name_fp16
,
data_type_fp16
,
args_with_computation_fp32
,
algo_name_fp32
,
data_type_fp32
,
10
,
{
1
,
{
4
}});
}
#endif
#endif
#endif
#endif
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录