提交 5ef1ac75 编写于 作者: M Megvii Engine Team

docs(api/lite): add lite network api doc

GitOrigin-RevId: 5d416cc5af9595240dbf71bdc819d989ec2d5dbc
上级 c47f48ef
......@@ -18,56 +18,56 @@ LITE_API inline LiteAlgoSelectStrategy operator|(
}
/*!
* \brief the inference options which will be translated to megenine
* @brief the inference options which can optimize the network forwarding
* performance
*
* \param weight_preprocess is the option wich optimize the inferece performance
* with preprocess the const weights
* @param weight_preprocess is the option which optimize the inference performance
* with processing the weights of the network ahead
*
* \param fuse_preprocess fuse preprocess patten, like astype + pad_channel +
* @param fuse_preprocess fuse preprocess patten, like astype + pad_channel +
* dimshuffle
*
* \param fake_next_exec whether only to perform non-computing tasks (like
* memory allocation and queue initialization) for next exec. This would be
* @param fake_next_exec whether only to perform non-computing tasks (like
* memory allocation and queue initialization) for next exec. This will be
* reset to false when the graph is executed.
*
* \param var_sanity_check_first_run Disable var sanity check on the first run.
* @param var_sanity_check_first_run Disable var sanity check on the first run.
* Var sanity check is enabled on the first-time execution by default, and can
* be used to find some potential memory access errors in the operator
* implementation.
*
* \param const_shape This can be used to reduce memory usage since some
* static inference data structures can be omitted.
* @param const_shape used to reduce memory usage and improve performance since some
* static inference data structures can be omitted and some operators can be
* compute before forwarding
*
* \param force_dynamic_alloc force dynamic memory alloc for all vars
* @param force_dynamic_alloc force dynamic allocate memory for all vars
*
* \param force_output_dynamic_alloc force dynamic memory alloc for output vars
* which are used as CallbackCaller input when call compile() function
* @param force_output_dynamic_alloc force dynamic allocate memory for output tensor
* which are used as the input of CallbackCaller Operator
*
* \param no_profiling_on_shape_change do not re-profile to select best impl
* @param no_profiling_on_shape_change do not re-profile to select best implement
* algo when input shape changes (use previous algo)
*
* \param jit_level Execute supported operators with JIT (support MLIR,
* NVRTC). Can only be used on Nvidia GPUs, this value indicates JIT level:
* 1 for basic elemwise opr;
* 2 for including reduce operator
* @param jit_level Execute supported operators with JIT (support MLIR,
* NVRTC). Can only be used on Nvidia GPUs and X86 CPU, this value indicates JIT level:
* level 1: for JIT execute with basic elemwise operator
* level 2: for JIT execute elemwise and reduce operators
*
* \param record_level flag optimize the inference performace with record the
* kernel tasks in first run, hereafter the inference all need to execute the
* @param record_level flags to optimize the inference performance with record the
* kernel tasks in first run, hereafter the inference all need is to execute the
* recorded tasks.
* level = 0 means the normal inference,
* level = 1 means use record inference,
* level = 2 means record inference with free the extra memory
*
* \param graph_opt_level optimization level:
* @param graph_opt_level network optimization level:
* 0: disable
* 1: level-1: inplace arith transformations during graph
* construction
* 2: level-2: level-1, plus global optimization before graph
* compiling
* 3: also enable JIT
* <0: corresponding level, with result check for debug
*
* \param async_exec_level exec: dispatch on separate threads for different
* @param async_exec_level level of dispatch on separate threads for different
* comp_node.
* 0: do not perform async dispatch
* 1: dispatch async if there are more than one comp node with limited queue
......@@ -99,14 +99,21 @@ struct LITE_API Options {
bool enable_nchw64 = false;
};
/*!
* \brief Configuration when load and compile the graph
/**
* @brief Configuration when load and compile a network
*
* @param has_compression flag whether the model is compressed, the compress
* method is stored in the model
*
* @param device_id configure the device id of a network
* @param device_type configure the device type of a network
* @param backend configure the inference backend of a network, now only support
* megengine
*
* \param bare_model_cryption_name is the bare model cryption method name, bare
*model is not pack json info inside
* @param bare_model_cryption_name is the bare model encryption method name, bare
* model is not pack json information data inside
*
*\param has_compression flag whether the model is compressed, the compress
*method will read form the model
* @param options configuration of Options
*/
struct LITE_API Config {
bool has_compression = false;
......@@ -118,9 +125,9 @@ struct LITE_API Config {
};
/*!
* \brief Extra Configuration for a network
* @brief Extra Configuration for a network
*
* \param disable_configure_by_model_info disable the configuration dumped with model,
* @param disable_configure_by_model_info disable the configuration dumped with model,
* if set true, all configuration in the model will not apply, users should configure
* the network.
*/
......@@ -128,90 +135,136 @@ struct LITE_API ExtraConfig {
bool disable_configure_by_model_info = false;
};
/*!
* \brief config the network input and output item
/**
* @brief config the network input and output item, the input and output tensor
* information will describe there
*
* @param name the input/output tensor name
*
* @param is_host Used to mark where the input tensor comes from and where the output
* tensor will copy to, if is_host is true, the input is from host and output copy
* to host, otherwise in device. Sometimes the input is from device and output no need
* copy to host, default is true.
*
* @param io_type The IO type, it can be SHAPE or VALUE, when SHAPE is set, the input or
* output tensor value is invaid, only shape will be set, default is VALUE
*
* @param config_layout The layout of input or output tensor
*
* \verbatim embed:rst:leading-asterisk
*
* .. note::
*
* * if other layout is set to input tensor before forwarding, this layout will not
* work
* * if no layout is set before forwarding, the model will forward with its origin
* layout
* * if layout is set in output tensor, it will used to check whether the
* layout computed from the network is correct
*
* \endverbatim
*/
struct LITE_API IO {
//! the tensor name in the graph corresponding to the IO
std::string name;
//! Used to mark where the input tensor comes from and the output where copy
//! to, if is_host is true, the input is from host and output copy to host,
//! otherwise device. Sometimes The input is from device and output no need
//! copy to host, default is true.
bool is_host = true;
//! The IO type, it can be SHAPE or VALUE, when SHAPE is set, the input or
//! output tensor value is invaid, only shape will be set, default is VALUE
LiteIOType io_type = LiteIOType::LITE_IO_VALUE;
//! The layout of the config from user, if other layout is set before
//! forward or get after forward by input tensor reset, this layout will by
//! pass. if no other layout is set before forward, this layout will work.
//! if this layout is no set, the model will forward with its origin layout.
//! if in output, it will used to check.
Layout config_layout = {};
};
/*!
* \brief the input and output information when load the network
* the NetworkIO will remain in the network until the network is destroyed
/**
* @brief the input and output information when load the network
* the NetworkIO will remain in the network until the network is destroyed.
*
* @param inputs The all input tensors information that will configure to the network
* @param outputs The all output tensors information that will configure to the network
*/
struct LITE_API NetworkIO {
std::vector<IO> inputs = {};
std::vector<IO> outputs = {};
};
/*!
* \brief A user-implemented allocator interface
/**
* @brief A user-implemented allocator interface, user can register an allocator
* to the megengine, then all the runtime memory will allocate by this allocator
*/
class LITE_API Allocator {
public:
virtual ~Allocator() = default;
//! allocate memory of size in the given device with the given align
/** @brief allocate memory of size in the given device with the given align
*
* @param device_type the device type the memory will allocate from
* @param device_id the device id the memory will allocate from
* @param size the byte size of memory will be allocated
* @param align the align size require when allocate the memory
*/
virtual void* allocate(
LiteDeviceType device_type, int device_id, size_t size, size_t align) = 0;
//! free the memory pointed by ptr in the given device
/** @brief free the memory pointed by ptr in the given device
*
* @param device_type the device type the memory will allocate from
* @param device_id the device id the memory will allocate from
* @param ptr the memory pointer to be free
*/
virtual void free(LiteDeviceType device_type, int device_id, void* ptr) = 0;
};
/*!
* \brief the thread affinith callback type
* \param thread_id thread_id is the a number begin from 0 to (nr_threads - 1),
* thread_id of (nr_threads - 1) is the main worker thread.
/**
* @brief the thread affinith callback function type
*
* @param thread_id the id of the current thread, the id is a number begin from 0 to
* (nr_threads - 1), thread id of (nr_threads - 1) is the main worker thread.
*/
using ThreadAffinityCallback = std::function<void(int thread_id)>;
/**
* @brief the network async callback function type
*/
using AsyncCallback = std::function<void(void)>;
/*!
* \brief the start/finish callback function
* \param unordered_map map from the io tensor name to the pair of which is the
* corresponding IO of user config and the realy input or output tensor.
/**
* @brief the start/finish callback function type
*
* @param unordered_map map from the io tensor name to the pair of the
* user configuration information and the really input or output tensor.
*/
//@{
using StartCallback =
std::function<void(const std::unordered_map<
std::string, std::pair<IO, std::shared_ptr<Tensor>>>&)>;
using FinishCallback =
std::function<void(const std::unordered_map<
std::string, std::pair<IO, std::shared_ptr<Tensor>>>&)>;
//@}
/*!
* \brief The network is construct form a model, implement model load, init,
* forward, and display some model information
/**
* @brief The network is the main class to perform forwarding, which is construct form a
* model, and implement model load, init, forward, and display some model information
*/
class LITE_API Network {
public:
class NetworkImplBase;
friend class NetworkHelper;
~Network();
/*! @brief Construct a network with given configuration and IO information
*
* @name Constructor
*
* @param config The configuration to create the network
* @param networkio The NetworkIO to describe the input and output
* tensor of the network
*/
//@{
Network(const Config& config = {}, const NetworkIO& networkio = {});
Network(const NetworkIO& networkio, const Config& config = {});
//@}
//! load the model form memory
void load_model(void* model_mem, size_t size);
......@@ -219,32 +272,37 @@ public:
//! load the model from a model path
void load_model(std::string model_path);
//! only compute the output tensor in user configured
//! only compute the output tensor configured by the IO information
void compute_only_configured_output();
//! get the network input and output tensor, the layout of which is
//! sync from mge tensor, when the name of input and output tensor are the
//! same, use LiteTensorPhase to separate
/** @brief get the network input and output tensor, the layout of which is
* sync from megengine tensor, when the name of input and output tensor are the
* same, use LiteTensorPhase to separate them
*
* @param io_name the name of the tensor
* @param phase indicate whether the tensor is input tensor or output tensor,
* maybe the input tensor name is the same with the output tensor name
*/
std::shared_ptr<Tensor> get_io_tensor(
std::string io_name, LiteTensorPhase phase = LiteTensorPhase::LITE_IO);
//! get the network input by index
//! get the network input tensor by index
std::shared_ptr<Tensor> get_input_tensor(size_t index);
//! get the network output tensor by index
std::shared_ptr<Tensor> get_output_tensor(size_t index);
//! set the network forward in async mode and set the async callback
//! set the network forwarding in async mode and set the AsyncCallback callback
//! function
Network& set_async_callback(const AsyncCallback& async_callback);
//! set the start forward callback function, which will be execute before
//! forward. this can be used to check network input or dump model inputs
//! for debug
//! set the start forwarding callback function of type StartCallback, which will be
//! execute before forward. this can be used to check network input or dump model
//! inputs for debug
Network& set_start_callback(const StartCallback& start_callback);
//! set the finish forward callback function, which will be execute after
//! forward. this can be used to dump model outputs for debug
//! set the finish forwarding callback function of type FinishCallback, which will
//! be execute after forward. this can be used to dump model outputs for debug
Network& set_finish_callback(const FinishCallback& finish_callback);
//! forward the network with filled input data and fill the output data
......@@ -254,33 +312,37 @@ public:
//! waite until forward finish in sync model
void wait();
//! get the input tensor name in the order in load return
//! get the input tensor name by index
std::string get_input_name(size_t index) const;
//! get the output tensor name in the order in load return
//! get the output tensor name by index
std::string get_output_name(size_t index) const;
//! get all the input tensor name in the order in load return
//! get all the input tensor names
std::vector<std::string> get_all_input_name() const;
//! get all the output tensor name in the order in load return
//! get all the output tensor names
std::vector<std::string> get_all_output_name() const;
//! set/get device id, default device id = 0
//! set the network forwarding device id, default device id = 0
Network& set_device_id(int device_id);
//! get the network forwarding device id
int get_device_id() const;
//! set/get stream id, default stream id = 0
//! set the network stream id, default stream id = 0
Network& set_stream_id(int stream_id);
//! get the network stream id
int get_stream_id() const;
//! enable profile the network, a file will be generated
//! enable profile the network, a file will be generated to the given path
void enable_profile_performance(std::string profile_file_path);
//! get model extra info
//! get model extra info, the extra information is packed into model by user
const std::string& get_model_extra_info();
//! get device type
//! get the network device type
LiteDeviceType get_device_type() const;
//! get static peak memory info showed by Graph visualization
......@@ -312,80 +374,163 @@ private:
};
/*********************** MGE special network function ***************/
/*!
* @brief All the runtime configuration function is define in Runtime class, as
* a static member function
*/
class LITE_API Runtime {
public:
//! When device is CPU, this interface will set the to be loaded model
//! run in multi thread mode with the given thread number.
/** @brief The multithread number setter and getter interface
* When device is CPU, this interface will set the network
* running in multi thread mode with the given thread number.
*
* @param dst_network the target network to set/get the thread number
* @param nr_threads the thread number set to the target network
*/
//@{
static void set_cpu_threads_number(
std::shared_ptr<Network> dst_network, size_t nr_threads);
static size_t get_cpu_threads_number(std::shared_ptr<Network> dst_network);
//@}
//! set threads affinity callback;
/** @brief set threads affinity callback
*
* @param dst_network the target network to set the thread affinity callback
* @param thread_affinity_callback the ThreadAffinityCallback callback to set the
* thread affinity
*/
static void set_runtime_thread_affinity(
std::shared_ptr<Network> network,
const ThreadAffinityCallback& thread_affinity_callback);
//! Set cpu default mode when device is CPU, in some low computation
//! device or single core device, this mode will get good performace
/** @brief Set cpu default mode when device is CPU, in some low computation
* device or single core device, this mode will get good performace
*
* @param dst_network the target network to set/get cpu inplace model
*/
//@{
static void set_cpu_inplace_mode(std::shared_ptr<Network> dst_network);
static bool is_cpu_inplace_mode(std::shared_ptr<Network> dst_network);
//@}
//! Set use tensorrt forward
//! Set the network forwarding use tensorrt
static void use_tensorrt(std::shared_ptr<Network> dst_network);
//! set opr algorithm selection strategy in the network
//! shared_batch_size: the batch size used by fastrun,
//! Non-zero value means that fastrun use this batch size
//! regardless of the batch size of the model. Zero means
//! fastrun use batch size of the model
//! binary_equal_between_batch: if the content of each input batch is binary
//! equal,whether the content of each output
//! batch is promised to be equal
/** @brief set opr algorithm selection strategy in the target network
*
* @param dst_network the target network to set the algorithm strategy
* @param strategy the algorithm strategy will set to the network, if multi
* strategy should set, use | operator can pack them together
* @param shared_batch_size the batch size used by fast-run, Non-zero value means
* that fast-run use this batch size regardless of the batch size of the model, if
* set to zero means fast-run use batch size of the model
*
* @param binary_equal_between_batch if set true means if the content of each input
* batch is binary equal, whether the content of each output batch is promised to be
* equal, otherwise not
*/
static void set_network_algo_policy(
std::shared_ptr<Network> dst_network, LiteAlgoSelectStrategy strategy,
uint32_t shared_batch_size = 0, bool binary_equal_between_batch = false);
//! set workspace_limit for oprs with multiple algorithms, set
//! workspace limitation can save memory but may influence the performance
/** @brief set the opr workspace limitation in the target network, some opr
* maybe use large of workspace to get good performance, set workspace limitation
* can save memory but may influence the performance
*
* @param dst_network the target network to set/get workspace limitation
* @param workspace_limit the byte size of workspace limitation
*/
static void set_network_algo_workspace_limit(
std::shared_ptr<Network> dst_network, size_t workspace_limit);
//! set the network memroy allocator, the allocator is defined by user
/** @brief set the network runtime memory Allocator, the Allocator is defined by
* user, through this method, user can implement a memory pool for network
* forwarding
*
* @param dst_network the target network
* @param user_allocator the user defined Allocator
*/
static void set_memory_allocator(
std::shared_ptr<Network> dst_network,
std::shared_ptr<Allocator> user_allocator);
//! share the runtime memory with other network, the weights is not shared
/** @brief share the runtime memory with other network, the weights is not shared
*
* \verbatim embed:rst:leading-asterisk
*
* .. warning::
*
* the src network and the dst network can not execute in simultaneous
*
* \endverbatim
*
* @param dst_network the target network to share the runtime memory from
* src_network
* @param src_network the source network to shared runtime memory to dst_network
*/
static void share_runtime_memory_with(
std::shared_ptr<Network> dst_network, std::shared_ptr<Network> src_network);
//! Dump input/output values of all internal variables to output
//! file, in txt format
/** @brief dump all input/output tensor of all operators to the output file, in txt
* format, user can use this function to debug compute error
*
* @param dst_network the target network to dump its tensors
* @param io_txt_out_file the txt file
*/
static void enable_io_txt_dump(
std::shared_ptr<Network> dst_network, std::string io_txt_out_file);
//! Dump input/output values of all internal variables to output
//! directory, in binary format
/** @brief dump all input/output tensor of all operators to the output file, in
* binary format, user can use this function to debug compute error
*
* @param dst_network the target network to dump its tensors
* @param io_bin_out_dir the binary file director
*/
static void enable_io_bin_dump(
std::shared_ptr<Network> dst_network, std::string io_bin_out_dir);
//! load a new network which will share weights with src network
/** @brief load a new network which will share weights with src network,
* this can reduce memory usage when user want to load the same model multi
* times
*
* @param dst_network the target network to share weights from src_network
* @param src_network the source network to shared weights to dst_network
*/
static void shared_weight_with_network(
std::shared_ptr<Network> dst_network,
const std::shared_ptr<Network> src_network);
//! set global layout transform optimization for network
/** @brief set global layout transform optimization for network, global
* layout optimization can auto determine the layout of every operator in
* the network by profile, thus it can improve the performance of the
* network forwarding
*/
static void enable_global_layout_transform(std::shared_ptr<Network> network);
//! dump network after global layout transform optimization
/** @brief dump network after global layout transform optimization to the
* specific path
*/
static void dump_layout_transform_model(
std::shared_ptr<Network> network, std::string optimized_model_path);
//! get the model io information before model loaded by model path.
/** @brief get the model io information before model loaded by model path.
*
* @param model_path the model path to get the model IO information
* @param config the model configuration
*
* @return the model NetworkIO information
*/
static NetworkIO get_model_io_info(
const std::string& model_path, const Config& config = {});
//! get the model io information before model loaded by model memory.
/** @brief get the model io information before model loaded by model memory.
*
* @param model_mem the model memory to get the model IO information
* @param size model memory size in byte
* @param config the model configuration
*
* @return the model NetworkIO information
*/
static NetworkIO get_model_io_info(
const void* model_mem, size_t size, const Config& config = {});
};
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册