From 5d637d0723b0fabf5847b02f3319f639fb13357d Mon Sep 17 00:00:00 2001 From: Megvii Engine Team Date: Tue, 20 Apr 2021 19:34:25 +0800 Subject: [PATCH] refactor(mgb): code refactor of fast run GitOrigin-RevId: 2c4b8e06bb3c4b4cb0228ee28988c2371455b1b0 --- src/opr/impl/search_policy/algo_chooser.cpp | 658 +++++++++--------- .../megbrain/opr/search_policy/algo_chooser.h | 75 +- 2 files changed, 369 insertions(+), 364 deletions(-) diff --git a/src/opr/impl/search_policy/algo_chooser.cpp b/src/opr/impl/search_policy/algo_chooser.cpp index db40d0191..9951aa326 100644 --- a/src/opr/impl/search_policy/algo_chooser.cpp +++ b/src/opr/impl/search_policy/algo_chooser.cpp @@ -243,31 +243,33 @@ typename opr::AlgoChooser::FixedTensorLayouts to_fixed_layouts( */ template std::vector flatten_search_space( - const typename opr::AlgoChooser::ExeContext& ctx, + const typename opr::AlgoChooser::AlgoChooserHelper& helper, CircularDepsChecker& checker) { auto&& search_item = megdnn::Algorithm::SearchItem{ - OprTypeFromOprTrait::opr_type, ctx.param(), - to_layout_array(ctx.layouts())}; + OprTypeFromOprTrait::opr_type, helper.param(), + to_layout_array(helper.layouts())}; checker.put(search_item); std::vector ret; - for (auto algo_info : ctx.get_all_candidates()) { - megdnn::Algorithm* algo = ctx.get_algorithm_from_desc(algo_info.desc); + for (auto algo_info : helper.get_all_candidates()) { + megdnn::Algorithm* algo = + helper.get_algorithm_from_desc(algo_info.desc); mgb_assert(algo, "Unknown algo description"); std::vector&& sub_items = - algo->get_subopr_list(to_layout_array(ctx.layouts()), - ctx.megdnn_opr()); + algo->get_subopr_list(to_layout_array(helper.layouts()), + helper.megdnn_opr()); FOREACH_OPR_TYPE_DISPATCH(sub_items, { auto&& megdnn_opr = - opr::intl::create_megdnn_opr<_Opr>(ctx.comp_node()); + opr::intl::create_megdnn_opr<_Opr>(helper.comp_node()); megdnn_opr->param() = Algorithm::deserialize_read_pod( _item.param); - typename opr::AlgoChooser<_Opr>::ExeContext sub_ctx( + typename opr::AlgoChooser<_Opr>::AlgoChooserHelper sub_helper( to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(), - _item.param, ctx.mgb_opr(), ctx.comp_node(), - ctx.execution_policy(), ctx.allow_weight_preprocess()); - auto space = flatten_search_space<_Opr>(sub_ctx, checker); + _item.param, helper.mgb_opr(), helper.comp_node(), + helper.execution_policy(), + helper.allow_weight_preprocess()); + auto space = flatten_search_space<_Opr>(sub_helper, checker); ret.insert(ret.end(), space.begin(), space.end()); }); } @@ -280,255 +282,113 @@ std::vector flatten_search_space( namespace mgb { namespace opr { - +///////////////////////////// AlgoChooserHelper ////////////////////////// template -void AlgoChooser::profile(ExeContext& ctx, - ExecutionStrategy selected_strategy) { - if (ctx.get_profile_result_from_cache(selected_strategy).valid()) - return; - AlgoChooserProfileCache::Result prof_rst; - - auto target_attr = ctx.extract_algo_attribute(selected_strategy); - std::string layouts_str = - format_fixlayouts(ctx.layouts(), arity_in, arity_out); - double cur_timeout = 0; +AlgoChooser::AlgoChooserHelper::AlgoChooserHelper( + const FixedTensorLayouts& layouts, Opr* megdnn_opr, + const std::string& param_str, const cg::OperatorNodeBase* mgb_opr, + const CompNode& cn, + const megdnn::param::ExecutionPolicy& execution_policy, + bool allow_weight_preprocess) + : m_layouts{layouts}, + m_megdnn_opr{megdnn_opr}, + m_param{param_str}, + m_base_mgb_opr{mgb_opr}, + m_cn{cn}, + m_execution_policy{execution_policy}, + m_allow_weight_preprocess{allow_weight_preprocess} { + mgb_assert(m_layouts.size() == layouts.size()); + static_assert(std::tuple_size::value == 3 || + std::tuple_size::value == 5 || + std::tuple_size::value == 8, + "Convolution AlgoChooser assumes arity = 3 , 5 or 8 (for " + "deformable conv)"); +} +template +typename AlgoChooser::ImplExecutionPolicy +AlgoChooser::AlgoChooserHelper::choose_by_heuristic( + const ExecutionStrategy& selected_strategy) const { + MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("choose_by_heuristic"))) + ImplExecutionPolicy policy; auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit( - ctx.owner_graph(), ctx.comp_node(), - ctx.execution_policy().workspace_limit); - RealTimer timer; - for (auto algo : ctx.get_all_candidates()) { - Maybe cur_rst; - - ImplExecutionPolicy policy; - policy.algo = algo.desc; - - //! check negative attribute : skip negative attribute - auto palgo = ctx.megdnn_opr()->get_algorithm_from_desc(policy.algo); - if (palgo->contain_attribute_any(target_attr.second)) { - mgb_log_debug( - "skip algo %s with attribute(%s), which is not match the " - "profile strategy required contain attribute(%s) and not " - "contain attribute(%s).", - algo.desc.name.c_str(), - Algorithm::attribute_str(palgo->attribute()).c_str(), - Algorithm::attribute_str(target_attr.first).c_str(), - Algorithm::attribute_str(target_attr.second).c_str()); - continue; - } - - //! check workspace limit - ctx.construct_execution_policy(selected_strategy, policy); - if (ctx.get_workspace_size_bytes(policy) >= workspace_limit) { - continue; - } + owner_graph(), m_cn, m_execution_policy.workspace_limit); + auto attr = extract_algo_attribute(selected_strategy); + policy.algo = + APPLY(m_megdnn_opr->get_algorithm_info_heuristic( + args..., workspace_limit, attr.first, attr.second), + m_layouts) + .desc; - std::string msg = ssprintf("profiling %s algorithm %s %s", - ctx.mgb_opr()->dyn_typeinfo()->name, - algo.desc.name.c_str(), layouts_str.c_str()); - timer.reset(); - MGB_TRY { cur_rst = ctx.profile_single_algo(policy, cur_timeout); } - MGB_CATCH(std::exception & exc, { - mgb_log_warn("caught exception during %s: %s", msg.c_str(), - exc.what()); - continue; - }) - MGB_CATCH(..., { - mgb_log_warn("caught exception during %s", msg.c_str()); - continue; - }) - if (!cur_rst.valid()) { - mgb_log_warn("timeout when %s; timeout setting: %.3fsec", - msg.c_str(), cur_timeout); - continue; - } - if (!cur_timeout) { - cur_timeout = timer.get_secs() + TIMEOUT_TOLERANCE; - } else { - cur_timeout = - std::min(cur_timeout, timer.get_secs() + TIMEOUT_TOLERANCE); - } - auto&& rst = cur_rst.val(); - mgb_log_debug("%s: workspace: %zu; time: %.3gsec", msg.c_str(), - rst.workspace, rst.time); - prof_rst.push_back(rst); - } - std::string msg = ssprintf( - "no usable %s algorithm %s without attribute(%s) or could not meet " - "workspace limite requirement(%zu)", - ctx.mgb_opr()->dyn_typeinfo()->name, layouts_str.c_str(), - Algorithm::attribute_str(target_attr.second).c_str(), - workspace_limit); - mgb_assert(!prof_rst.empty(), "%s", msg.c_str()); + Algorithm* algo = m_megdnn_opr->get_algorithm_from_desc(policy.algo); + mgb_assert(algo, "Unknown algo description"); + std::vector&& sub_items = algo->get_subopr_list( + to_layout_array(m_layouts), m_megdnn_opr); - FixedTensorLayouts origin_layouts = ctx.layouts(); - typename Opr::Param origin_param = ctx.megdnn_opr()->param(); - AlgoChooserProfileCache::Key cache_key{origin_layouts.data(), - origin_layouts.size(), &origin_param, - sizeof(origin_param)}; + FOREACH_OPR_TYPE_DISPATCH(sub_items, { + auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn); + megdnn_opr->param() = + Algorithm::deserialize_read_pod( + _item.param); + typename AlgoChooser<_Opr>::AlgoChooserHelper sub_helper( + to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(), + _item.param, m_base_mgb_opr, m_cn, m_execution_policy, + m_allow_weight_preprocess); + policy.sub_policy.push_back( + sub_helper.choose_by_heuristic(selected_strategy)); + }); - AlgoChooserProfileCache cache(ctx.comp_node(), - profile_name(ctx.megdnn_opr()).c_str()); - cache.put(cache_key, prof_rst); + return policy; + MIDOUT_E } template typename AlgoChooser::ImplExecutionPolicy -AlgoChooser::choose_by_profile(ExeContext& ctx, - ExecutionStrategy selected_strategy, - bool enable_update) { - MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("AlgoChooser::choose_by_profile"))) - if (ctx.owner_graph()->options().no_profiling_on_shape_change) { - auto policy = ctx.megdnn_opr()->execution_policy(); - if (policy.algo.valid()){ +AlgoChooser::AlgoChooserHelper::choose_by_profile( + const ExecutionStrategy& selected_strategy, bool enable_update) const { + MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("choose_by_profile"))) + if (owner_graph()->options().no_profiling_on_shape_change) { + auto policy = m_megdnn_opr->execution_policy(); + if (policy.algo.valid()) { return policy; } if (!algo_usable_on_shape_change()) { mgb_log_warn( "choose algo by heuristic, which may cause performance " "regression."); - return ctx.choose_by_heuristic(selected_strategy); + return choose_by_heuristic(selected_strategy); } } if (enable_update) { CircularDepsChecker circular_deps_checker; auto&& search_items = - flatten_search_space(ctx, circular_deps_checker); + flatten_search_space(*this, circular_deps_checker); FOREACH_OPR_TYPE_DISPATCH(search_items, { - auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(ctx.comp_node()); + auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn); megdnn_opr->param() = Algorithm::deserialize_read_pod( _item.param); - typename AlgoChooser<_Opr>::ExeContext sub_ctx( + typename AlgoChooser<_Opr>::AlgoChooserHelper sub_helper( to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(), - _item.param, ctx.mgb_opr(), ctx.comp_node(), - ctx.execution_policy(), ctx.allow_weight_preprocess()); - AlgoChooser<_Opr>::profile(sub_ctx, selected_strategy); + _item.param, m_base_mgb_opr, m_cn, m_execution_policy, + m_allow_weight_preprocess); + sub_helper.profile(selected_strategy); }); } typename AlgoChooser::ImplExecutionPolicy policy; - ctx.construct_execution_policy(selected_strategy, policy); + construct_execution_policy(selected_strategy, true, policy); return policy; MIDOUT_E } -template -size_t AlgoChooser::setup_algo(const FixedTensorLayouts& layouts, - Opr* megdnn_opr, const MGBOpr* mgb_opr, - bool allow_weight_preprocess) { - if (WorkspaceLimitGetter::is_prealloc_run(mgb_opr->owner_graph())) { - return 0; - } - - std::string param_str; - Algorithm::serialize_write_pod(megdnn_opr->param(), param_str); - ExeContext ctx(layouts, megdnn_opr, param_str, mgb_opr, - mgb_opr->comp_node(), mgb_opr->execution_policy(), - allow_weight_preprocess); - - ImplExecutionPolicy policy; - if (auto algo_choose_hook = mgb_opr->algo_chooser()) { - policy = algo_choose_hook(mgb_opr); - ctx.construct_execution_policy((ExecutionStrategy::HEURISTIC | - ExecutionStrategy::REPRODUCIBLE), - policy, false); - } - if (!policy.algo.valid()) { - policy = get_policy(ctx); - } - size_t workspace = ctx.get_workspace_size_bytes(policy); - - std::string ret; - ret.append(mgb_opr->dyn_typeinfo()->name); - ret += format_fixlayouts(layouts, arity_in, arity_out); - Algorithm* palgo = megdnn_opr->get_algorithm_from_desc(policy.algo); - mgb_assert(palgo, "Unknown algo description"); - ret.append("): algo=" + std::string(palgo->name())); - ret.append(ssprintf(" workspace=%.2fMiB attirbute(%s)", - workspace / (1024 * 1024.0), - Algorithm::attribute_str(palgo->attribute()).c_str())); - mgb_log_debug("%s", ret.c_str()); - - megdnn_opr->execution_policy() = policy; - return workspace; -} - -template -typename AlgoChooser::ImplExecutionPolicy AlgoChooser::get_policy( - ExeContext& ctx) { - MGB_MARK_USED_VAR(TIMEOUT_TOLERANCE); - auto opr_strategy = ctx.execution_policy().strategy; - if ((opr_strategy & ExecutionStrategy::HEURISTIC) && - (opr_strategy & ExecutionStrategy::PROFILE)) { - ImplExecutionPolicy policy = - choose_by_profile(ctx, opr_strategy, false); - if (!policy.algo.valid()) - policy = ctx.choose_by_heuristic(opr_strategy); - return policy; - } else if (!static_cast(opr_strategy) || - (opr_strategy & ExecutionStrategy::HEURISTIC)) { - return ctx.choose_by_heuristic(opr_strategy); - } -#if MGB_ENABLE_FASTRUN - else if (opr_strategy & ExecutionStrategy::PROFILE) { - return choose_by_profile(ctx, opr_strategy); - } -#endif - else { - mgb_throw(GraphError, "bad ExecutionPolicy strategy"); - } -} - -#define INST(Opr) \ - template AlgoChooser::ImplExecutionPolicy \ - AlgoChooser::get_policy(ExeContext& ctx); \ - template void AlgoChooser::profile(ExeContext& ctx, \ - ExecutionStrategy); \ - template AlgoChooser::ImplExecutionPolicy \ - AlgoChooser::choose_by_profile( \ - ExeContext& ctx, ExecutionStrategy, bool enable_update); \ - template size_t AlgoChooser::setup_algo( \ - const FixedTensorLayouts& layouts, megdnn::Opr* megdnn_opr, \ - const MGBOpr* mgb_opr, bool allow_weight_preprocess); - -MGB_FOREACH_FASTRUN_OPR(INST) - -#undef INST - -//////////////////////////////// ExeContext ///////////////////////////// -template -AlgoChooser::ExeContext::ExeContext( - const FixedTensorLayouts& layouts, Opr* megdnn_opr, - const std::string& param_str, const cg::OperatorNodeBase* mgb_opr, - const CompNode& cn, - const megdnn::param::ExecutionPolicy& execution_policy, - bool allow_weight_preprocess) - : m_layouts{layouts}, - m_megdnn_opr{megdnn_opr}, - m_param{param_str}, - m_base_mgb_opr{mgb_opr}, - m_cn{cn}, - m_execution_policy{execution_policy}, - m_allow_weight_preprocess{allow_weight_preprocess} { - mgb_assert(m_layouts.size() == layouts.size()); - static_assert(std::tuple_size::value == 3 || - std::tuple_size::value == 5 || - std::tuple_size::value == 8, - "Convolution AlgoChooser assumes arity = 3 , 5 or 8 (for " - "deformable conv)"); -} - template typename AlgoChooser::ImplAlgo -AlgoChooser::ExeContext::get_profile_result_from_cache( - ExecutionStrategy selected_strategy) const { - MIDOUT_B(Opr, - midout_iv(MGB_HASH_STR( - "AlgoChooser::ExeContext::get_profile_result_from_cache"))) - AlgoChooserProfileCache cache(m_cn, - profile_name(m_megdnn_opr).c_str()); +AlgoChooser::AlgoChooserHelper::get_profile_result_from_cache( + const ExecutionStrategy& selected_strategy) const { + MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("get_profile_result_from_cache"))) + AlgoChooserProfileCache cache(m_cn, profile_name(m_megdnn_opr).c_str()); typename Opr::Param origin_param = m_megdnn_opr->param(); AlgoChooserProfileCache::Key cache_key{m_layouts.data(), m_layouts.size(), @@ -538,23 +398,22 @@ AlgoChooser::ExeContext::get_profile_result_from_cache( return {}; auto&& prof = rst.val(); + if (prof.empty()) + return {}; + std::unordered_map algo_map; for (auto i : get_all_candidates()) { auto ins = algo_map.emplace(i.desc.name.c_str(), i); mgb_assert(ins.second, "duplicated algo name: %s", i.desc.name.c_str()); } - if (prof.empty()) - return {}; - auto target_attr = extract_algo_attribute(selected_strategy); bool skip_by_negative = false; for (auto&& i : prof) { auto attr_of_algo = static_cast(i.attribute); bool contain_attr_all_positive = - (target_attr.first == - (attr_of_algo & target_attr.first)); + (target_attr.first == (attr_of_algo & target_attr.first)); bool contain_attr_any_negative = static_cast(attr_of_algo & target_attr.second); if (contain_attr_all_positive) { @@ -578,13 +437,14 @@ AlgoChooser::ExeContext::get_profile_result_from_cache( if (skip_by_negative) { mgb_log_error( - "No usable algo. Only navie algos are available, but negative " - "stategy is %s.", + "No usable algo. There are available algos match positive " + "strategy(%s), but filtered by negative stategy(%s).", + Algorithm::attribute_str(target_attr.first).c_str(), Algorithm::attribute_str(target_attr.second).c_str()); } else { mgb_log_error( "No usable algo. algos read from cache could not satisfy " - "attribute with %s", + "positive strategy(%s)", Algorithm::attribute_str(target_attr.first).c_str()); } @@ -593,75 +453,10 @@ AlgoChooser::ExeContext::get_profile_result_from_cache( } template -typename AlgoChooser::ImplExecutionPolicy -AlgoChooser::ExeContext::choose_by_heuristic( - ExecutionStrategy selected_strategy) const { - if (m_execution_policy.workspace_limit != - std::numeric_limits::max()) { - mgb_log_warn( - "workspace_limit should not be setted if choose algo by " - "heuristic"); - } - auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit( - owner_graph(), m_cn, m_execution_policy.workspace_limit); - auto attr = extract_algo_attribute(selected_strategy); - ImplExecutionPolicy policy; - policy.algo = - APPLY(m_megdnn_opr->get_algorithm_info_heuristic( - args..., workspace_limit, attr.first, attr.second), - m_layouts) - .desc; - - Algorithm* algo = m_megdnn_opr->get_algorithm_from_desc(policy.algo); - mgb_assert(algo, "Unknown algo description"); - std::vector&& sub_items = algo->get_subopr_list( - to_layout_array(m_layouts), m_megdnn_opr); - - FOREACH_OPR_TYPE_DISPATCH(sub_items, { - auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn); - megdnn_opr->param() = - Algorithm::deserialize_read_pod( - _item.param); - typename AlgoChooser<_Opr>::ExeContext sub_ctx( - to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(), - _item.param, m_base_mgb_opr, m_cn, m_execution_policy, - m_allow_weight_preprocess); - policy.sub_policy.push_back( - sub_ctx.choose_by_heuristic(selected_strategy)); - }); - - return policy; -} - -template -std::vector::ImplAlgo> -AlgoChooser::ExeContext::get_all_candidates() const { - auto heu = choose_by_heuristic(ExecutionStrategy::HEURISTIC); - auto&& ret = APPLY(m_megdnn_opr->get_all_algorithms_info(args...), m_layouts); - bool found = false; - for (size_t i = 0; i < ret.size(); ++i) { - if (ret[i].desc == heu.algo) { - found = true; - std::swap(ret[i], ret[0]); - break; - } - } - - Algorithm* palgo = m_megdnn_opr->get_algorithm_from_desc(heu.algo); - mgb_assert(palgo, "Unknown algo description"); - mgb_assert(found, - "algo %s got by heuristic not found in " - "candidate list", - palgo->name()); - return std::move(ret); -} - -template -void AlgoChooser::ExeContext::construct_execution_policy( - ExecutionStrategy selected_strategy, - typename AlgoChooser::ImplExecutionPolicy& policy, - bool retrive_from_cache) const { +void AlgoChooser::AlgoChooserHelper::construct_execution_policy( + const ExecutionStrategy& selected_strategy, bool retrive_from_cache, + typename AlgoChooser::ImplExecutionPolicy& policy) const { + MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("construct_execution_policy"))) if (!policy.algo.valid()) { if (retrive_from_cache) { policy.algo = get_profile_result_from_cache(selected_strategy).desc; @@ -712,26 +507,28 @@ void AlgoChooser::ExeContext::construct_execution_policy( megdnn_opr->param() = Algorithm::deserialize_read_pod( _item.param); - typename AlgoChooser<_Opr>::ExeContext sub_ctx( + typename AlgoChooser<_Opr>::AlgoChooserHelper sub_helper( to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(), _item.param, m_base_mgb_opr, m_cn, m_execution_policy, m_allow_weight_preprocess); policy.sub_policy.push_back({}); - sub_ctx.construct_execution_policy(selected_strategy, - policy.sub_policy.back(), - retrive_from_cache); + sub_helper.construct_execution_policy(selected_strategy, + retrive_from_cache, + policy.sub_policy.back()); if (!policy.sub_policy.back().algo.valid()) { - // means sub_ctx.construct_execution_policy fails. clean up + // means sub_helper.construct_execution_policy fails. clean up // policy.algo and return policy = {}; return; } }); + MIDOUT_E } template -size_t AlgoChooser::ExeContext::get_workspace_size_bytes( +size_t AlgoChooser::AlgoChooserHelper::get_workspace_size_bytes( const ImplExecutionPolicy& policy) const { + MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("get_workspace_size_bytes"))) m_megdnn_opr->execution_policy() = policy; size_t result; if_constexpr()>( @@ -752,12 +549,40 @@ size_t AlgoChooser::ExeContext::get_workspace_size_bytes( m_layouts); }); return result; + MIDOUT_E +} + +template +std::vector::ImplAlgo> +AlgoChooser::AlgoChooserHelper::get_all_candidates() const { + MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("get_all_candidates"))) + auto heu = choose_by_heuristic(m_execution_policy.strategy); + auto&& ret = + APPLY(m_megdnn_opr->get_all_algorithms_info(args...), m_layouts); + bool found = false; + for (size_t i = 0; i < ret.size(); ++i) { + if (ret[i].desc == heu.algo) { + found = true; + std::swap(ret[i], ret[0]); + break; + } + } + + Algorithm* palgo = m_megdnn_opr->get_algorithm_from_desc(heu.algo); + mgb_assert(palgo, "Unknown algo description"); + mgb_assert(found, + "algo %s got by heuristic not found in " + "candidate list", + palgo->name()); + return std::move(ret); + MIDOUT_E } template Maybe -AlgoChooser::ExeContext::profile_single_algo( +AlgoChooser::AlgoChooserHelper::profile_single_algo( const ImplExecutionPolicy& policy, double& timeout) const { + MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("profile_single_algo"))) typename TimedProfiler::Param param; // force check copy size <= dest len-1 from gcc8 for safe param.execution_policy = @@ -791,14 +616,103 @@ AlgoChooser::ExeContext::profile_single_algo( if (!rst.valid()) return None; return AlgoChooserProfileCache::ResultEntry{ - palgo->name(), - static_cast(palgo->attribute()), + palgo->name(), static_cast(palgo->attribute()), rst.val().time, param.workspace}; + MIDOUT_E +} + +template +void AlgoChooser::AlgoChooserHelper::profile( + const ExecutionStrategy& selected_strategy) const { + MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("profile"))) + if (get_profile_result_from_cache(selected_strategy).valid()) + return; + AlgoChooserProfileCache::Result prof_rst; + + auto target_attr = extract_algo_attribute(selected_strategy); + std::string layouts_str = + format_fixlayouts(m_layouts, arity_in, arity_out); + double cur_timeout = 0; + + auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit( + owner_graph(), m_cn, m_execution_policy.workspace_limit); + RealTimer timer; + for (auto algo : get_all_candidates()) { + Maybe cur_rst; + + ImplExecutionPolicy policy; + policy.algo = algo.desc; + + //! check negative attribute : skip negative attribute + auto palgo = m_megdnn_opr->get_algorithm_from_desc(policy.algo); + if (palgo->contain_attribute_any(target_attr.second)) { + mgb_log_debug( + "skip algo %s, which matches the profile strategy required " + "'not contain attribute(%s).'", + algo.desc.name.c_str(), + Algorithm::attribute_str(target_attr.second).c_str()); + continue; + } + + //! check workspace limit + construct_execution_policy(selected_strategy, true, policy); + if (get_workspace_size_bytes(policy) >= workspace_limit) { + continue; + } + + std::string msg = ssprintf("profiling %s algorithm %s %s", + m_base_mgb_opr->dyn_typeinfo()->name, + algo.desc.name.c_str(), layouts_str.c_str()); + timer.reset(); + MGB_TRY { cur_rst = profile_single_algo(policy, cur_timeout); } + MGB_CATCH(std::exception & exc, { + mgb_log_warn("caught exception during %s: %s", msg.c_str(), + exc.what()); + continue; + }) + MGB_CATCH(..., { + mgb_log_warn("caught exception during %s", msg.c_str()); + continue; + }) + if (!cur_rst.valid()) { + mgb_log_warn("timeout when %s; timeout setting: %.3fsec", + msg.c_str(), cur_timeout); + continue; + } + if (!cur_timeout) { + cur_timeout = timer.get_secs() + TIMEOUT_TOLERANCE; + } else { + cur_timeout = + std::min(cur_timeout, timer.get_secs() + TIMEOUT_TOLERANCE); + } + auto&& rst = cur_rst.val(); + mgb_log_debug("%s: workspace: %zu; time: %.3gsec", msg.c_str(), + rst.workspace, rst.time); + prof_rst.push_back(rst); + } + std::string msg = ssprintf( + "no usable %s algorithm %s without attribute(%s) or could not meet " + "workspace limite requirement(%zu)", + m_base_mgb_opr->dyn_typeinfo()->name, layouts_str.c_str(), + Algorithm::attribute_str(target_attr.second).c_str(), + workspace_limit); + mgb_assert(!prof_rst.empty(), "%s", msg.c_str()); + + FixedTensorLayouts origin_layouts = m_layouts; + typename Opr::Param origin_param = m_megdnn_opr->param(); + AlgoChooserProfileCache::Key cache_key{origin_layouts.data(), + origin_layouts.size(), &origin_param, + sizeof(origin_param)}; + + AlgoChooserProfileCache cache(m_cn, profile_name(m_megdnn_opr).c_str()); + cache.put(cache_key, prof_rst); + MIDOUT_E } template Maybe> -AlgoChooser::ExeContext::construct_fake_preprocess_filter() const { +AlgoChooser::AlgoChooserHelper::construct_fake_preprocess_filter() const { + MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("construct_fake_preprocess_filter"))) Maybe> result = None; if_constexpr()>([&](auto _) { if (!m_allow_weight_preprocess) @@ -830,11 +744,12 @@ AlgoChooser::ExeContext::construct_fake_preprocess_filter() const { } }); return result; + MIDOUT_E } template std::pair -AlgoChooser::ExeContext::extract_algo_attribute( +AlgoChooser::AlgoChooserHelper::extract_algo_attribute( const ExecutionStrategy& strategy) const { std::pair ret = std::make_pair(AlgoAttribute::DEFAULT, AlgoAttribute::DEFAULT); @@ -851,41 +766,128 @@ AlgoChooser::ExeContext::extract_algo_attribute( } #define INST(Opr) \ - template AlgoChooser::ExeContext::ExeContext( \ + template AlgoChooser::AlgoChooserHelper::AlgoChooserHelper( \ const FixedTensorLayouts& layouts, megdnn::Opr* megdnn_opr, \ const std::string& param_str, const cg::OperatorNodeBase* mgb_opr, \ const CompNode& cn, \ const megdnn::param::ExecutionPolicy& execution_policy, \ bool allow_weight_preprocess); \ template typename AlgoChooser::ImplExecutionPolicy \ - AlgoChooser::ExeContext::choose_by_heuristic( \ - ExecutionStrategy select_strategy) const; \ + AlgoChooser::AlgoChooserHelper::choose_by_heuristic( \ + const ExecutionStrategy& select_strategy) const; \ + template typename AlgoChooser::ImplExecutionPolicy \ + AlgoChooser::AlgoChooserHelper::choose_by_profile( \ + const ExecutionStrategy& select_strategy, bool enable_update) \ + const; \ template typename AlgoChooser::ImplAlgo \ - AlgoChooser::ExeContext::get_profile_result_from_cache( \ - ExecutionStrategy select_strategy) const; \ - template std::vector::ImplAlgo> \ - AlgoChooser::ExeContext::get_all_candidates() const; \ + AlgoChooser::AlgoChooserHelper:: \ + get_profile_result_from_cache( \ + const ExecutionStrategy& select_strategy) const; \ + template void \ + AlgoChooser::AlgoChooserHelper::construct_execution_policy( \ + const ExecutionStrategy& select_strategy, bool retrive_from_cache, \ + typename AlgoChooser::ImplExecutionPolicy& policy) \ + const; \ template size_t \ - AlgoChooser::ExeContext::get_workspace_size_bytes( \ + AlgoChooser::AlgoChooserHelper::get_workspace_size_bytes( \ const typename AlgoChooser::ImplExecutionPolicy& \ policy) const; \ - template void \ - AlgoChooser::ExeContext::construct_execution_policy( \ - ExecutionStrategy select_strategy, \ - typename AlgoChooser::ImplExecutionPolicy& policy, \ - bool retrive_from_cache) const; \ + template std::vector::ImplAlgo> \ + AlgoChooser::AlgoChooserHelper::get_all_candidates() const; \ template Maybe \ - AlgoChooser::ExeContext::profile_single_algo( \ + AlgoChooser::AlgoChooserHelper::profile_single_algo( \ const typename AlgoChooser::ImplExecutionPolicy& \ policy, \ double& timeout) const; \ template std::pair \ - AlgoChooser::ExeContext::extract_algo_attribute( \ - const ExecutionStrategy& strategy) const; + AlgoChooser::AlgoChooserHelper::extract_algo_attribute( \ + const ExecutionStrategy& strategy) const; \ + template void AlgoChooser::AlgoChooserHelper::profile( \ + const ExecutionStrategy& selected_strategy) const; MGB_FOREACH_FASTRUN_OPR(INST) +#undef INST +//////////////////////////////// AlgoChoose ///////////////////////////// +template +typename AlgoChooser::ImplExecutionPolicy AlgoChooser::get_policy( + const AlgoChooserHelper& helper) { + auto opr_strategy = helper.execution_policy().strategy; + if (opr_strategy & ExecutionStrategy::HEURISTIC) { + if (opr_strategy & ExecutionStrategy::PROFILE) { + //! this strategy will choose from cache first, then choost by + //! heuristic if fail. + ImplExecutionPolicy policy = + helper.choose_by_profile(opr_strategy, false); + if (!policy.algo.valid()) { + policy = helper.choose_by_heuristic(opr_strategy); + } + return policy; + } else { + return helper.choose_by_heuristic(opr_strategy); + } + } +#if MGB_ENABLE_FASTRUN + else if (opr_strategy & ExecutionStrategy::PROFILE) { + return helper.choose_by_profile(opr_strategy, true); + } +#endif + else { + mgb_throw(GraphError, "bad ExecutionPolicy strategy"); + } +} + +template +size_t AlgoChooser::setup_algo(const FixedTensorLayouts& layouts, + Opr* megdnn_opr, const MGBOpr* mgb_opr, + bool allow_weight_preprocess) { + if (WorkspaceLimitGetter::is_prealloc_run(mgb_opr->owner_graph())) { + return 0; + } + + std::string param_str; + Algorithm::serialize_write_pod(megdnn_opr->param(), param_str); + AlgoChooserHelper helper(layouts, megdnn_opr, param_str, mgb_opr, + mgb_opr->comp_node(), mgb_opr->execution_policy(), + allow_weight_preprocess); + + ImplExecutionPolicy policy; + if (auto algo_choose_hook = mgb_opr->algo_chooser()) { + policy = algo_choose_hook(mgb_opr); + auto strategy = + ExecutionStrategy::HEURISTIC | ExecutionStrategy::REPRODUCIBLE; + helper.construct_execution_policy(strategy, false, policy); + } + if (!policy.algo.valid()) { + policy = get_policy(helper); + } + size_t workspace = helper.get_workspace_size_bytes(policy); + + std::string ret; + ret.append(mgb_opr->dyn_typeinfo()->name); + ret += format_fixlayouts(layouts, arity_in, arity_out); + Algorithm* palgo = megdnn_opr->get_algorithm_from_desc(policy.algo); + mgb_assert(palgo, "Unknown algo description"); + ret.append("): algo=" + std::string(palgo->name())); + ret.append(ssprintf(" workspace=%.2fMiB attirbute=%d", + workspace / (1024 * 1024.0), + static_cast(palgo->attribute()))); + mgb_log_debug("%s", ret.c_str()); + + megdnn_opr->execution_policy() = policy; + return workspace; +} + +#define INST(Opr) \ + template AlgoChooser::ImplExecutionPolicy \ + AlgoChooser::get_policy(const AlgoChooserHelper& proxy); \ + template size_t AlgoChooser::setup_algo( \ + const FixedTensorLayouts& layouts, megdnn::Opr* megdnn_opr, \ + const MGBOpr* mgb_opr, bool allow_weight_preprocess); + +MGB_FOREACH_FASTRUN_OPR(INST) #undef INST + } // namespace opr } // namespace mgb diff --git a/src/opr/include/megbrain/opr/search_policy/algo_chooser.h b/src/opr/include/megbrain/opr/search_policy/algo_chooser.h index adf4263f7..986cd668e 100644 --- a/src/opr/include/megbrain/opr/search_policy/algo_chooser.h +++ b/src/opr/include/megbrain/opr/search_policy/algo_chooser.h @@ -66,7 +66,7 @@ class AlgoChooser { public: using FixedTensorLayouts = std::array; - class ExeContext { + class AlgoChooserHelper { FixedTensorLayouts m_layouts; Opr* m_megdnn_opr; std::string m_param; @@ -76,22 +76,23 @@ public: bool m_allow_weight_preprocess; public: - ExeContext(const FixedTensorLayouts& layouts, Opr* megdnn_opr, - const std::string& param_str, - const cg::OperatorNodeBase* mgb_opr, const CompNode& cn, - const megdnn::param::ExecutionPolicy& execution_policy, - bool allow_weight_preprocess); + AlgoChooserHelper( + const FixedTensorLayouts& layouts, Opr* megdnn_opr, + const std::string& param_str, + const cg::OperatorNodeBase* mgb_opr, const CompNode& cn, + const megdnn::param::ExecutionPolicy& execution_policy, + bool allow_weight_preprocess); Opr* megdnn_opr() const { return m_megdnn_opr; } + const cg::OperatorNodeBase* mgb_opr() const { return m_base_mgb_opr; } + const TensorLayout& inp_layout(size_t idx) const { return m_layouts[idx]; } - cg::ComputingGraph* owner_graph() const { return m_base_mgb_opr->owner_graph(); } - const cg::OperatorNodeBase* mgb_opr() const { return m_base_mgb_opr; } const megdnn::param::ExecutionPolicy& execution_policy() const { return m_execution_policy; } @@ -109,17 +110,40 @@ public: const FixedTensorLayouts& layouts() const { return m_layouts; } + //! construct algo chain by heuristic ImplExecutionPolicy choose_by_heuristic( - ExecutionStrategy selected_strategy) const; + const ExecutionStrategy& selected_strategy) const; - //! get all candidate algos, and the one choose_by_heuristic() is - //! put first - std::vector get_all_candidates() const; + //! construct algo chain by profiling + ImplExecutionPolicy choose_by_profile( + const ExecutionStrategy& selected_strategy, + bool enable_update) const; + + //! get all profile algorithm from cache, return invalid if not exists + ImplAlgo get_profile_result_from_cache( + const ExecutionStrategy& selected_strategy) const; + + /** + * \brief construct execution policy from cache or heuristic. + * + * \param selected_strategy select algo which matched this strategy + * \param[in,out] policy execution policy + * \param retrive_from_cache retrive algo from cache if set True, get + * from heuristic otherwise. + * \return true if contruct success and false when fail + */ + void construct_execution_policy( + const ExecutionStrategy& selected_strategy, + bool retrive_from_cache, ImplExecutionPolicy& policy) const; //! get workspace size required for specific execution policy size_t get_workspace_size_bytes( const ImplExecutionPolicy& policy) const; + //! get all candidate algos, and the one choose_by_heuristic() is + //! put first + std::vector get_all_candidates() const; + /*! * \brief profile a single algorithm * @@ -132,22 +156,8 @@ public: Maybe profile_single_algo( const ImplExecutionPolicy& policy, double& timeout) const; - //! get all profile algorithm from cache, return invalid if not exists - ImplAlgo get_profile_result_from_cache( - ExecutionStrategy selected_strategy) const; - - /** - * \brief construct execution policy from cache or heuristic. - * - * \param selected_strategy select algo which matched this strategy - * \param [out] policy execution policy - * \param retrive_from_cache retrive algo from cache if set True, get - * from heuristic otherwise. - * \note When contruction fail, the policy will be cleaned. - */ - void construct_execution_policy(ExecutionStrategy selected_strategy, - ImplExecutionPolicy& policy, - bool retrive_from_cache = true) const; + //! profile and save to cache + void profile(const ExecutionStrategy& selected_strategy) const; /** * \brief extract algo attribute from execution strategy and graph @@ -168,14 +178,7 @@ public: private: //! entrance for getting algorithm according to execution strategy - static ImplExecutionPolicy get_policy(ExeContext& ctx); - - //! profile and save to cache - static void profile(ExeContext& ctx, ExecutionStrategy selected_strategy); - - static ImplExecutionPolicy choose_by_profile( - ExeContext& ctx, ExecutionStrategy selected_strategy, - bool enable_update = true); + static ImplExecutionPolicy get_policy(const AlgoChooserHelper& helper); public: /*! -- GitLab