提交 45e2beea 编写于 作者: M Megvii Engine Team

feat(mgb/gopt): add nchw4 optpass

GitOrigin-RevId: 551b6b828d33916b8e0a8bec73e6d3c6abd65536
上级 f2e1bb41
......@@ -541,6 +541,7 @@ def optimize_for_inference(
fuse_conv_bias_nonlinearity=False,
use_nchw32=False,
fuse_conv_bias_with_z=False,
use_nchw4=False,
use_nchw88=False,
use_nchw44=False,
use_chwn4=False
......@@ -561,6 +562,7 @@ def optimize_for_inference(
OpenCL devices
:param fuse_conv_bias_nonlinearity: whether to fuse conv+bias+nonlinearty
into one opr. This is supported only in NHWCD4 format.
:param use_nchw4: whether to use NCHW4 tensor format.
:param use_nchw88: whether to use NCHW88 tensor format. This maybe faster some
times.
:param use_nchw44: whether to use NCHW44 tensor format. This maybe faster some
......@@ -588,6 +590,7 @@ def optimize_for_inference(
layout_tranform = None
for k, v in {
"use_nchw4": "nchw4",
"use_nhwcd4": "nhwcd4",
"use_nchw32": "nchw32",
"use_nchw88": "nchw88",
......
......@@ -463,6 +463,7 @@ class trace:
"enable_io16xc32": "f16_io_f32_comp",
"enable_ioc16": "f16_io_comp",
"enable_hwcd4": "use_nhwcd4",
"enable_nchw4": "use_nchw4",
"enable_nchw88": "use_nchw88",
"enable_nchw32": "use_nchw32",
"enable_nchw44": "use_nchw44",
......
......@@ -80,6 +80,7 @@ struct _OptimizeForInferenceOptions {
#define SET(_trans, _trans_capital) \
void enable_##_trans(); \
SET(nchw4, NCHW4);
SET(nhwcd4, NHWCD4);
SET(nchw88, NCHW88);
SET(nchw44, NCHW44);
......
......@@ -252,6 +252,7 @@ def optimize_for_inference(args, outputs):
'enable_io16xc32': 'f16_io_f32_comp',
'enable_ioc16': 'f16_io_comp',
'enable_hwcd4': 'use_nhwcd4',
'enable_nchw4': 'use_nchw4',
'enable_nchw88': 'use_nchw88',
'enable_nchw44': 'use_nchw44',
'enable_nchw32': 'use_nchw32',
......@@ -381,6 +382,12 @@ def main():
'for inference; you may need to disable CUDA and set '
'MGB_USE_MEGDNN_DBG=2'
)
parser.add_argument(
'--enable-nchw4',
action='store_true',
help='transform the model format from NCHW to NCHW4 '
'for inference'
)
parser.add_argument(
'--enable-nchw88',
action='store_true',
......
......@@ -980,6 +980,7 @@ Args Args::from_argv(int argc, char **argv) {
continue; \
}
cb(nchw4);
cb(chwn4);
cb(nchw44);
cb(nchw88);
......
......@@ -97,6 +97,7 @@ struct GraphCommonOptimizeOptions {
bool fuse_conv_bias_with_z = false;
enum LayoutTransform : uint32_t {
DEFAULT,
NCHW4, ///< compute using NCHW4 tensor format
NHWCD4, ///< compute using NHWCD4 tensor format
NCHW88, ///< compute using NCHW88 tensor format
NCHW44, ///< compute using NCHW44 tensor format
......@@ -137,6 +138,7 @@ struct GraphCommonOptimizeOptions {
return layout_transform == LayoutTransform::_trans_capital; \
}
SET(nchw4, NCHW4);
SET(nhwcd4, NHWCD4);
SET(nchw88, NCHW88);
SET(nchw44, NCHW44);
......
......@@ -725,6 +725,13 @@ const GraphOptimizer& GraphOptimizer::add_passes_for_optimize_options(
cb(f16_io_comp, { add_pass(ConvertF32ToF16Pass::make(false)); });
cb(f16_io_f32_comp, { add_pass(ConvertF32ToF16Pass::make(true)); });
cb(nchw4, {
add_pass<FuseConvBiasNonlinPass>();
add_pass<FuseConvBiasZPass>();
add_pass(EnableNCHW4Pass::make_nchw4_converter());
add_pass<ShuffleShuffleRemovePass>();
add_pass<RemoveRedundantTypeCvtPass>();
});
cb(nhwcd4, {
add_pass<FuseConvBiasNonlinPass>();
add_pass(ConvertFormatPass::make_nhwcd4_converter());
......
此差异已折叠。
......@@ -229,6 +229,19 @@ namespace gopt {
static std::unique_ptr<EnableCHWN4Pass> make_chwn4_converter();
};
/*!
* \brief convert tensor format to nchw4 to speed up inference on CUDA
*/
class EnableNCHW4Pass final : public TensorReformatPass {
VarNode* on_graph_endpoint_var(VarNode* new_var,
VarNode* orig_var) const override;
public:
const char* name() const override { return mgb_cstr_log("tensor_format_nchw4"); }
//! make nchw -> nchw4 converter opt pass
static std::unique_ptr<EnableNCHW4Pass> make_nchw4_converter();
};
/*!
* \brief convert tensor format to nchwxx to speed up inference on certain
* devices
......
......@@ -2327,8 +2327,134 @@ TEST(TestGoptInference, EnableCHWN4ShuffleRemove) {
MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
}
TEST(TestGoptInference, ConvertFormatNCHW4GPU) {
REQUIRE_GPU(1);
auto cn = CompNode::load("gpu0");
cn.activate();
auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
auto sm_ver = prop.major * 10 + prop.minor;
if (sm_ver < 61) {
printf("This testcast ignored due to insufficient cuda cap(got: %d, "
"expected: %d)\n",
sm_ver, 61);
return;
}
HostTensorGenerator<dtype::Int8> gen;
auto graph = ComputingGraph::make();
graph->options().graph_opt_level = 0;
auto mkvar = [&](const char* name, const TensorShape& shp,
const DType& dtype) {
return opr::TypeCvt::make(
opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
dtype);
};
auto mkcvar = [&](const char* name, const TensorShape& shp,
const DType& dtype) {
return opr::TypeCvt::make(
opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
.rename(name),
dtype);
};
auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(2.5f));
opr::ConvBias::Param param_conv_bias;
param_conv_bias.format = opr::ConvBias::Param::Format::NCHW;
param_conv_bias.stride_h = param_conv_bias.stride_w = 1;
param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
// dense
param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
auto conv1 = opr::ConvBiasForward::make(
x, w1, b1, param_conv_bias, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
// group
// icpg != 1 && ocpg != 1
param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
auto conv2 = opr::ConvBiasForward::make(conv1, w2, b2,
param_conv_bias, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
auto y = opr::TypeCvt::make(conv2, dtype::Float32());
SymbolVar y_opt;
{
auto options = gopt::OptimizeForInferenceOptions{};
options.enable_nchw4();
unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
}
ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4,
find_opr<opr::ConvBias>(y_opt).param().format);
graph->compile({{y_opt, {}}})
->to_json()
->writeto_fpath(
output_file("TestGoptInference.ConvertFormatNCHW4GPU.json"));
HostTensorND host_y, host_y_opt;
auto func = graph->compile({make_callback_copy(y, host_y),
make_callback_copy(y_opt, host_y_opt)});
func->execute();
MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
}
#endif
TEST(TestGoptInference, ConvertFormatNCHW4) {
HostTensorGenerator<> gen;
auto cn = CompNode::load("cpu0");
auto graph = ComputingGraph::make();
graph->options().graph_opt_level = 0;
auto mkvar = [&](const char* name, const TensorShape& shp) {
return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
};
auto mkcvar = [&](const char* name, const TensorShape& shp) {
return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
.rename(name);
};
auto x = mkvar("x", {2, 4, 16, 16});
// ConvBias
opr::ConvBias::Param param_conv_bias;
param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
auto w1 = mkcvar("w1", {8, 4, 3, 3}), b1 = mkcvar("b1", {1, 8, 1, 1});
auto conv1 = opr::ConvBias::make(x, w1, b1, param_conv_bias);
param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1});
auto conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
// Convolution
opr::Convolution::Param param_conv;
param_conv.pad_h = param_conv.pad_w = 1;
param_conv.sparse = opr::Convolution::Param::Sparse::DENSE;
auto w3 = mkcvar("w3", {8, 8, 3, 3});
auto y = opr::Convolution::make(conv2, w3, param_conv);
SymbolVar y_opt;
{
auto options = gopt::OptimizeForInferenceOptions{};
options.enable_nchw4();
unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
}
ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4,
find_opr<opr::ConvBias>(y_opt).param().format);
graph->compile({{y_opt, {}}})
->to_json()
->writeto_fpath(
output_file("TestGoptInference.ConvertFormatNCHW4.json"));
HostTensorND host_y_opt, host_y;
auto func = graph->compile({make_callback_copy(y, host_y),
make_callback_copy(y_opt, host_y_opt)});
func->execute();
MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
}
TEST(TestGoptInference, ConvertFormatNCHW88) {
HostTensorGenerator<> gen;
auto cn = CompNode::load("cpu0");
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册