提交 28dbadf7 编写于 作者: M Megvii Engine Team

feat(imperative): add remap opr

GitOrigin-RevId: 1fa7e18d4b9c43dff91ef4c465a0d61416fe34cf
上级 280861ae
...@@ -57,6 +57,7 @@ __all__ = [ ...@@ -57,6 +57,7 @@ __all__ = [
"max_pool2d", "max_pool2d",
"one_hot", "one_hot",
"prelu", "prelu",
"remap",
"softmax", "softmax",
"softplus", "softplus",
"svd", "svd",
...@@ -892,7 +893,7 @@ def warp_perspective( ...@@ -892,7 +893,7 @@ def warp_perspective(
border_mode: str = "REPLICATE", border_mode: str = "REPLICATE",
border_val: float = 0.0, border_val: float = 0.0,
interp_mode: str = "LINEAR", interp_mode: str = "LINEAR",
): ) -> Tensor:
r""" r"""
Applies perspective transformation to batched 2D images. Applies perspective transformation to batched 2D images.
...@@ -907,9 +908,12 @@ def warp_perspective( ...@@ -907,9 +908,12 @@ def warp_perspective(
:param inp: input image. :param inp: input image.
:param M: `(batch, 3, 3)` transformation matrix. :param M: `(batch, 3, 3)` transformation matrix.
:param dsize: `(h, w)` size of the output image. :param dsize: `(h, w)` size of the output image.
:param border_mode: pixel extrapolation method. Default: "REPLICATE" :param border_mode: pixel extrapolation method.
Default: "REPLICATE". Currently also support "CONSTANT", "REFLECT",
"REFLECT_101", "WRAP".
:param border_val: value used in case of a constant border. Default: 0 :param border_val: value used in case of a constant border. Default: 0
:param interp_mode: interpolation methods. Default: "LINEAR" :param interp_mode: interpolation methods.
Default: "LINEAR". Currently only support "LINEAR" mode.
:return: output tensor. :return: output tensor.
Note: Note:
...@@ -951,6 +955,62 @@ def warp_perspective( ...@@ -951,6 +955,62 @@ def warp_perspective(
return result return result
def remap(
inp: Tensor,
map_xy: Tensor,
border_mode: str = "REPLICATE",
scalar: float = 0.0,
interp_mode: str = "LINEAR",
) -> Tensor:
r"""
Applies remap transformation to batched 2D images.
The input images are transformed to the output images by the tensor map_xy.
The output's H and W are same as map_xy's H and W.
:param inp: input image
:param map_xy: (batch, oh, ow, 2) transformation matrix
:param border_mode: pixel extrapolation method.
Default: "REPLICATE". Currently also support "CONSTANT", "REFLECT",
"REFLECT_101", "WRAP".
:param scalar: value used in case of a constant border. Default: 0
:param interp_mode: interpolation methods.
Default: "LINEAR". Currently only support "LINEAR" mode.
:return: output tensor.
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
inp_shape = (1, 1, 4, 4)
inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape))
map_xy_shape = (1, 2, 2, 2)
map_xy = tensor(np.array([[[1., 0.],[0., 1.]],
[[0., 1.],[0., 1.]]],
dtype=np.float32).reshape(map_xy_shape))
out = F.remap(inp, map_xy)
print(out.numpy())
Outputs:
.. testoutput::
[[[[1. 4.]
[4. 4.]]]]
"""
op = builtin.Remap(
imode=interp_mode, border_type=border_mode, format="NCHW", scalar=scalar
)
assert isinstance(inp, (Tensor, megbrain_graph.VarNode)), "inp must be Tensor type"
(result,) = apply(op, inp, map_xy)
return result
def matmul( def matmul(
inp1: Tensor, inp1: Tensor,
inp2: Tensor, inp2: Tensor,
......
...@@ -308,6 +308,37 @@ def test_one_hot(): ...@@ -308,6 +308,37 @@ def test_one_hot():
onehot_high_dimension() onehot_high_dimension()
def test_warp_perspective():
inp_shape = (1, 1, 4, 4)
x = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape))
M_shape = (1, 3, 3)
# M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1)
M = tensor(
np.array(
[[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32
).reshape(M_shape)
)
outp = F.warp_perspective(x, M, (2, 2))
np.testing.assert_equal(
outp.numpy(), np.array([[[[5.0, 6.0], [9.0, 10.0]]]], dtype=np.float32)
)
def test_remap():
inp_shape = (1, 1, 4, 4)
inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape))
map_xy_shape = (1, 2, 2, 2)
map_xy = tensor(
np.array(
[[[1.0, 0.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 1.0]]], dtype=np.float32
).reshape(map_xy_shape)
)
outp = F.remap(inp, map_xy)
np.testing.assert_equal(
outp.numpy(), np.array([[[[1.0, 4.0], [4.0, 4.0]]]], dtype=np.float32)
)
def test_binary_cross_entropy(): def test_binary_cross_entropy():
data1_shape = (2, 2) data1_shape = (2, 2)
label1_shape = (2, 2) label1_shape = (2, 2)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册