Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
266263dc
MegEngine
项目概览
MegEngine 天元
/
MegEngine
1 年多 前同步成功
通知
404
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
266263dc
编写于
12月 14, 2022
作者:
M
Megvii Engine Team
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix(opr): fix the device problem of concat/stack
GitOrigin-RevId: 01c97a4339803db89417a203968a10024ee3bf61
上级
c850c7eb
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
58 addition
and
16 deletion
+58
-16
imperative/python/megengine/functional/tensor.py
imperative/python/megengine/functional/tensor.py
+14
-7
imperative/python/test/unit/functional/test_tensor.py
imperative/python/test/unit/functional/test_tensor.py
+44
-9
未找到文件。
imperative/python/megengine/functional/tensor.py
浏览文件 @
266263dc
...
@@ -486,12 +486,13 @@ def concat(inps: Iterable[Tensor], axis: int = 0, device=None) -> Tensor:
...
@@ -486,12 +486,13 @@ def concat(inps: Iterable[Tensor], axis: int = 0, device=None) -> Tensor:
[ 9., 10., 11.]], dtype=float32)
[ 9., 10., 11.]], dtype=float32)
"""
"""
if
len
(
inps
)
==
1
:
if
len
(
inps
)
==
1
:
return
inps
[
0
]
# if we return inps[0] directly, then the grad manager capture nothing
return
copy
(
inps
[
0
],
device
)
if
device
is
None
:
if
device
is
None
:
device
=
get_de
fault_device
(
)
device
=
get_de
vice
(
inps
)
device
=
as_device
(
device
)
(
result
,)
=
apply
(
builtin
.
Concat
(
axis
=
axis
,
comp_node
=
device
),
*
inps
)
(
result
,)
=
apply
(
builtin
.
Concat
(
axis
=
axis
,
comp_node
=
device
.
to_c
()
),
*
inps
)
return
result
return
result
...
@@ -517,10 +518,16 @@ def stack(inps, axis=0, device=None):
...
@@ -517,10 +518,16 @@ def stack(inps, axis=0, device=None):
[6., 7., 8.]], dtype=float32)
[6., 7., 8.]], dtype=float32)
"""
"""
if
len
(
inps
)
==
1
:
if
len
(
inps
)
==
1
:
ret
urn
expand_dims
(
inps
[
0
],
axis
=
axis
)
ret
=
expand_dims
(
inps
[
0
],
axis
=
axis
)
if
device
is
None
:
if
device
is
None
:
device
=
get_default_device
()
return
ret
(
result
,)
=
apply
(
builtin
.
Stack
(
axis
=
axis
,
comp_node
=
device
),
*
inps
)
else
:
return
copy
(
ret
,
device
)
if
device
is
None
:
device
=
get_device
(
inps
)
device
=
as_device
(
device
)
(
result
,)
=
apply
(
builtin
.
Stack
(
axis
=
axis
,
comp_node
=
device
.
to_c
()),
*
inps
)
return
result
return
result
...
...
imperative/python/test/unit/functional/test_tensor.py
浏览文件 @
266263dc
...
@@ -127,18 +127,28 @@ def test_condtake(is_varnode):
...
@@ -127,18 +127,28 @@ def test_condtake(is_varnode):
@
pytest
.
mark
.
parametrize
(
"is_varnode"
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"is_varnode"
,
[
True
,
False
])
def
test_concat_device
(
is_varnode
):
def
test_concat_
stack_
device
(
is_varnode
):
if
is_varnode
:
if
is_varnode
:
network
=
Network
()
network
=
Network
()
else
:
else
:
network
=
None
network
=
None
data1
=
make_tensor
(
np
.
random
.
random
((
3
,
2
,
2
)).
astype
(
"float32"
),
network
,
"cpu0"
)
data1
=
make_tensor
(
np
.
random
.
random
((
2
,
2
,
2
)).
astype
(
"float32"
),
network
,
"cpu0"
)
data2
=
make_tensor
(
np
.
random
.
random
((
2
,
2
,
2
)).
astype
(
"float32"
),
network
,
"cpu1"
)
data2
=
make_tensor
(
np
.
random
.
random
((
2
,
2
,
2
)).
astype
(
"float32"
),
network
,
"cpu1"
)
data3
=
make_tensor
(
np
.
random
.
random
((
2
,
2
,
2
)).
astype
(
"float32"
),
network
,
"cpu0"
)
out
=
F
.
concat
([
data1
,
data2
],
device
=
"cpu0"
)
for
func
in
[
F
.
concat
,
F
.
stack
]:
out
=
F
.
concat
([
data1
,
data2
],
device
=
"cpu1"
)
assert
str
(
out
.
device
).
split
(
":"
)[
0
]
==
"cpu1"
out
=
F
.
concat
([
data1
,
data3
])
assert
str
(
out
.
device
).
split
(
":"
)[
0
]
==
"cpu0"
assert
str
(
out
.
device
).
split
(
":"
)[
0
]
==
"cpu0"
with
pytest
.
raises
(
RuntimeError
):
try
:
out
=
F
.
concat
([
data1
,
data2
])
except
:
raise
RuntimeError
(
"inputs have different devices"
)
@
pytest
.
mark
.
parametrize
(
"is_varnode"
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"is_varnode"
,
[
True
,
False
])
def
test_stack
(
is_varnode
):
def
test_stack
(
is_varnode
):
...
@@ -219,9 +229,11 @@ def test_split_basic(is_varnode):
...
@@ -219,9 +229,11 @@ def test_split_basic(is_varnode):
def
test_concat_and_stack
():
def
test_concat_and_stack
():
import
copy
import
copy
from
megengine.autodiff
import
GradManager
import
torch
def
generate_test_data
(
max_nr_inp
,
max_dim
,
max_dim_len
,
test_concat
=
True
):
def
generate_test_data
(
max_nr_inp
,
max_dim
,
max_dim_len
,
test_concat
=
True
):
nr_inp
=
np
.
random
.
randint
(
1
,
max_nr_inp
)
nr_inp
=
np
.
random
.
randint
(
1
,
max_nr_inp
)
if
max_nr_inp
>
1
else
1
dims
=
np
.
random
.
randint
(
1
,
max_dim
)
dims
=
np
.
random
.
randint
(
1
,
max_dim
)
cat_axis
=
(
cat_axis
=
(
np
.
random
.
randint
(
-
dims
,
dims
)
np
.
random
.
randint
(
-
dims
,
dims
)
...
@@ -245,13 +257,28 @@ def test_concat_and_stack():
...
@@ -245,13 +257,28 @@ def test_concat_and_stack():
max_nr_inp
,
max_dim
,
max_dim_len
,
test_concat
max_nr_inp
,
max_dim
,
max_dim_len
,
test_concat
)
)
inp_mges
=
[
Tensor
(
inp_np
)
for
inp_np
in
inp_nps
]
inp_mges
=
[
Tensor
(
inp_np
)
for
inp_np
in
inp_nps
]
inp_torchs
=
[
torch
.
tensor
(
inp_np
,
requires_grad
=
True
)
for
inp_np
in
inp_nps
]
if
test_concat
:
if
test_concat
:
np_func
,
mge_func
=
np
.
concatenate
,
F
.
con
cat
np_func
,
mge_func
,
torch_func
=
np
.
concatenate
,
F
.
concat
,
torch
.
cat
else
:
else
:
np_func
,
mge_func
=
np
.
stack
,
F
.
stack
np_func
,
mge_func
,
torch_func
=
np
.
stack
,
F
.
stack
,
torch
.
stack
res_np
=
np_func
(
inp_nps
,
axis
=
cat_axis
)
res_np
=
np_func
(
inp_nps
,
axis
=
cat_axis
)
grad_np
=
np
.
random
.
randn
(
*
res_np
.
shape
).
astype
(
np
.
float32
)
gm
=
GradManager
().
attach
(
inp_mges
)
with
gm
:
res_mge
=
mge_func
(
inp_mges
,
axis
=
cat_axis
)
res_mge
=
mge_func
(
inp_mges
,
axis
=
cat_axis
)
np
.
testing
.
assert_allclose
(
res_mge
.
numpy
(),
res_np
)
gm
.
backward
(
res_mge
,
Tensor
(
grad_np
))
res_torch
=
torch_func
(
inp_torchs
,
dim
=
cat_axis
)
res_torch
.
backward
(
torch
.
tensor
(
grad_np
))
np
.
testing
.
assert_allclose
(
res_mge
.
numpy
(),
res_torch
.
detach
().
cpu
().
numpy
())
for
inp_mge
,
inp_torch
in
zip
(
inp_mges
,
inp_torchs
):
np
.
testing
.
assert_allclose
(
inp_mge
.
grad
.
numpy
(),
inp_torch
.
grad
.
detach
().
cpu
().
numpy
()
)
def
test_concat
(
max_nr_inp
,
max_dim
,
max_dim_len
):
def
test_concat
(
max_nr_inp
,
max_dim
,
max_dim_len
):
test_impl
(
max_nr_inp
,
max_dim
,
max_dim_len
,
test_concat
=
True
)
test_impl
(
max_nr_inp
,
max_dim
,
max_dim_len
,
test_concat
=
True
)
...
@@ -259,6 +286,14 @@ def test_concat_and_stack():
...
@@ -259,6 +286,14 @@ def test_concat_and_stack():
def
test_stack
(
max_nr_inp
,
max_dim
,
max_dim_len
):
def
test_stack
(
max_nr_inp
,
max_dim
,
max_dim_len
):
test_impl
(
max_nr_inp
,
max_dim
,
max_dim_len
,
test_concat
=
False
)
test_impl
(
max_nr_inp
,
max_dim
,
max_dim_len
,
test_concat
=
False
)
# test only one input
test_concat
(
1
,
7
,
16
)
test_stack
(
1
,
7
,
16
)
# test zero shape
test_concat
(
10
,
7
,
1
)
test_stack
(
10
,
7
,
1
)
for
_
in
range
(
3
):
for
_
in
range
(
3
):
test_concat
(
10
,
7
,
16
)
test_concat
(
10
,
7
,
16
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录