提交 2398df07 编写于 作者: M Megvii Engine Team

feat(dnn/cuda): add cuda int4 pooling

GitOrigin-RevId: 14ed4e6f0095231ca87cace41842b32df18d0818
上级 2a2a7f45
......@@ -47,7 +47,8 @@ void PoolingBase::deduce_layout_fwd(const TensorLayout& src,
} else if (param().format == Param::Format::NCHW4 ||
param().format == Param::Format::NCHW44 ||
param().format == Param::Format::NCHW88 ||
param().format == Param::Format::NCHW32) {
param().format == Param::Format::NCHW32 ||
param().format == Param::Format::NCHW64) {
megdnn_assert(src.ndim == 5_z, "%s", errmsg_c);
spatial_pos = 2;
......@@ -82,6 +83,9 @@ void PoolingBase::deduce_layout_fwd(const TensorLayout& src,
if (param().format == Param::Format::NCHW32) {
c *= 32;
}
if (param().format == Param::Format::NCHW64) {
c *= 64;
}
size_t oh, ow;
size_t fh = this->param().window_h;
size_t fw = this->param().window_w;
......@@ -109,6 +113,8 @@ void PoolingBase::deduce_layout_fwd(const TensorLayout& src,
dst = TensorLayout{{n, c / 8, oh, ow, 8}, src.dtype, src.format};
} else if (param().format == Param::Format::NCHW32) {
dst = TensorLayout{{n, c / 32, oh, ow, 32}, src.dtype, src.format};
} else if (param().format == Param::Format::NCHW64) {
dst = TensorLayout{{n, c / 64, oh, ow, 64}, src.dtype, src.format};
} else if (param().format == Param::Format::CHWN4) {
dst = TensorLayout{{c / 4, oh, ow, n, 4}, src.dtype, src.format};
} else {
......
......@@ -9,13 +9,50 @@
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*/
#include "src/cuda/pooling/opr_impl.h"
#include "src/cuda/relayout_format/opr_impl.h"
#include "./pooling2d_int8.cuh"
#include "./pooling2d_qint.cuh"
#include "src/cuda/utils.h"
namespace megdnn {
namespace cuda {
namespace {
inline void deduce_reformat_layout(std::unique_ptr<RelayoutFormat>& relayout,
const TensorLayout& src_layout,
TensorLayout& dst_layout,
RelayoutFormat::Param::Mode mode,
const int oc = 0, const int group = 1) {
if (src_layout.ndim > 0) {
RelayoutFormat::Param trans_param;
trans_param.mode = mode;
trans_param.oc = oc;
trans_param.group = group;
relayout->param() = trans_param;
relayout->deduce_layout(src_layout, dst_layout);
} else {
dst_layout = src_layout;
}
}
void get_inner_layout(const TensorLayout& src, const TensorLayout& dst,
TensorLayout& inner_src, TensorLayout& inner_dst,
Handle* handle,
PoolingForwardImpl::Param::Format format) {
bool is_nchw = format == PoolingForwardImpl::Param::Format::NCHW;
if (src.dtype.enumv() == DTypeEnum::QuantizedS4 &&
dst.dtype.enumv() == DTypeEnum::QuantizedS4 && is_nchw) {
auto relayout_opr = handle->create_operator<RelayoutFormat>();
deduce_reformat_layout(relayout_opr, src, inner_src,
RelayoutFormat::Param::Mode::NCHW_NCHW64, 0, 1);
deduce_reformat_layout(relayout_opr, dst, inner_dst,
RelayoutFormat::Param::Mode::NCHW_NCHW64, 0, 1);
} else {
megdnn_assert(0, "not support");
}
}
} // namespace
void PoolingForwardImpl::setup_descs(const TensorLayout& src,
const TensorLayout& dst) {
src_desc.set(src, param().format);
......@@ -28,6 +65,13 @@ WorkspaceBundle PoolingForwardImpl::get_workspace_bundle(
SmallVector<size_t> sizes;
TensorLayout fsrc = src;
TensorLayout fdst = dst;
bool is_nchw = param().format == Param::Format::NCHW;
if (src.dtype.enumv() == DTypeEnum::QuantizedS4 &&
dst.dtype.enumv() == DTypeEnum::QuantizedS4 && is_nchw) {
get_inner_layout(src, dst, fsrc, fdst, handle(), param().format);
sizes.push_back(fsrc.span().dist_byte());
sizes.push_back(fdst.span().dist_byte());
} else {
auto get_workspace = [&sizes](TensorLayout& layout) {
if (layout.dtype == dtype::BFloat16()) {
layout.dtype = dtype::Float32();
......@@ -36,6 +80,7 @@ WorkspaceBundle PoolingForwardImpl::get_workspace_bundle(
};
get_workspace(fsrc);
get_workspace(fdst);
}
return {ptr, std::move(sizes)};
}
......@@ -44,12 +89,27 @@ void PoolingForwardImpl::exec(_megdnn_tensor_in ssrc, _megdnn_tensor_out sdst,
check_exec(ssrc.layout, sdst.layout, sworkspace.size);
TensorND src = ssrc;
TensorND dst = sdst;
Param::Format inner_format = param().format;
auto wsb =
get_workspace_bundle(sworkspace.raw_ptr, ssrc.layout, sdst.layout);
auto ctypecvt = CompTypeCvter<dtype::BFloat16, dtype::Float32>(
concrete_handle(this->handle()), &wsb);
bool is_nchw = param().format == Param::Format::NCHW;
if (ssrc.layout.dtype.enumv() == DTypeTrait<dtype::BFloat16>::enumv) {
ctypecvt.src_to_comp_type(ssrc, src).src_to_comp_type(sdst, dst);
} else if (ssrc.layout.dtype.enumv() == DTypeEnum::QuantizedS4 &&
sdst.layout.dtype.enumv() == DTypeEnum::QuantizedS4 && is_nchw) {
auto handle_ptr = handle();
get_inner_layout(ssrc.layout, sdst.layout, src.layout, dst.layout,
handle_ptr, param().format);
src.raw_ptr = wsb.get(0);
dst.raw_ptr = wsb.get(1);
auto relayout_opr = handle_ptr->create_operator<RelayoutFormat>();
RelayoutFormat::Param trans_param;
trans_param.mode = RelayoutFormat::Param::Mode::NCHW_NCHW64;
relayout_opr->param() = trans_param;
relayout_opr->exec(ssrc, src, {});
inner_format = Param::Format::NCHW64;
}
{
using Format = param::Pooling::Format;
......@@ -104,6 +164,34 @@ void PoolingForwardImpl::exec(_megdnn_tensor_in ssrc, _megdnn_tensor_out sdst,
return pooling2d::do_pooling2d_int8_ncdiv32hw32(
src.compatible_ptr<int8_t>(), dst.compatible_ptr<int8_t>(),
kern_param, stream, static_cast<uint32_t>(param().mode));
} else if (param().format == Format::NCHW64 ||
inner_format == Format::NCHW64) {
megdnn_assert(src.layout.dtype.enumv() == DTypeEnum::QuantizedS4,
"but %s", src.layout.dtype.name());
pooling2d::Param kern_param;
size_t n = src.layout[0], hi = src.layout[2], wi = src.layout[3],
c = src.layout[1], ho = dst.layout[2], wo = dst.layout[3];
c = c * 64;
size_t ph = param().pad_h, pw = param().pad_w;
size_t window_h = param().window_h, window_w = param().window_w;
size_t sh = param().stride_h, sw = param().stride_w;
kern_param.n = n, kern_param.c = c, kern_param.hi = hi,
kern_param.wi = wi, kern_param.ho = ho, kern_param.wo = wo,
kern_param.ph = ph, kern_param.pw = pw,
kern_param.window_h = window_h, kern_param.window_w = window_w,
kern_param.sh = sh, kern_param.sw = sw;
auto&& stream = cuda_stream(handle());
pooling2d::do_pooling2d_int4_ncdiv64hw64(
(int8_t*)src.raw_ptr, (int8_t*)dst.raw_ptr, kern_param,
stream, static_cast<uint32_t>(param().mode));
if (sdst.layout.ndim == 4) {
auto relayout_opr = handle()->create_operator<RelayoutFormat>();
RelayoutFormat::Param trans_param;
trans_param.mode = RelayoutFormat::Param::Mode::NCHW64_NCHW;
relayout_opr->param() = trans_param;
relayout_opr->exec(dst, sdst,{});
}
return;
}
auto handle = cudnn_handle(this->handle());
setup_descs(src.layout, dst.layout);
......
/**
* \file dnn/src/cuda/pooling/pooling2d_int8_cdiv4hwn4.cu
* \file dnn/src/cuda/pooling/pooling2d_qint.cu
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
*
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
*/
#include "./pooling2d_int8.cuh"
#include "./pooling2d_qint.cuh"
#include "src/common/opr_param_defs_enumv.cuh"
#include "src/cuda/query_blocksize.cuh"
......@@ -17,27 +18,6 @@ using namespace cuda;
using namespace pooling2d;
namespace {
// common macros
#define FEED1 Base::feed(x, 0);
#define FEED2 \
Base::feed(x.x, 0); \
Base::feed(x.y, 4);
#define FEED4 \
FEED2; \
Base::feed(x.z, 8); \
Base::feed(x.w, 12);
#define ANS1(cb) cb(Base::res[0], Base::res[1], Base::res[2], Base::res[3], i1);
#define ANS2(cb) \
ANS1(cb); \
cb(Base::res[4], Base::res[5], Base::res[6], Base::res[7], i2);
#define ANS4(cb) \
ANS2(cb); \
cb(Base::res[8], Base::res[9], Base::res[10], Base::res[11], i3); \
cb(Base::res[12], Base::res[13], Base::res[14], Base::res[15], i4);
__device__ __forceinline__ int pack_int8_to_int8x4(int8_t x, int8_t y, int8_t z,
int8_t w) {
int ix = static_cast<int>(x), iy = static_cast<int>(y),
......@@ -49,184 +29,188 @@ __device__ __forceinline__ int pack_int8_to_int8x4(int8_t x, int8_t y, int8_t z,
return ix;
}
template <typename src_type, typename feed_type>
struct MaxPoolerBase;
template <typename feed_type>
struct MaxPoolerBase<int8_t, feed_type> {
static constexpr int nr_results = sizeof(feed_type) / sizeof(int8_t);
int8_t res[nr_results];
__device__ MaxPoolerBase(int) {}
__device__ __forceinline__ void init() {
#pragma unroll
for (int i = 0; i < nr_results; ++i) {
res[i] = -128;
}
}
__device__ __forceinline__ void feed(int32_t x, int idx) {
int8_t ix = (x & 0xff);
int8_t iy = ((x >> 8) & 0xff);
int8_t iz = ((x >> 16) & 0xff);
int8_t iw = ((x >> 24) & 0xff);
res[idx] = res[idx] > ix ? res[idx] : ix;
res[idx + 1] = res[idx + 1] > iy ? res[idx + 1] : iy;
res[idx + 2] = res[idx + 2] > iz ? res[idx + 2] : iz;
res[idx + 3] = res[idx + 3] > iw ? res[idx + 3] : iw;
}
};
template <int regs, typename Dtype, typename OutDtype>
__device__ __forceinline__ OutDtype pack_int8(int8_t (&x)[regs]);
template <typename src_type, typename feed_type>
struct MaxPooler;
template <>
__device__ __forceinline__ int pack_int8<4, int8_t, int>(int8_t (&x)[4]) {
return pack_int8_to_int8x4(x[0], x[1], x[2], x[3]);
}
#define SPEC_WITH_FEED_TYPE(_feed_type) \
template <> \
struct MaxPooler<int8_t, _feed_type> : MaxPoolerBase<int8_t, _feed_type>
template <>
__device__ __forceinline__ int2 pack_int8<8, int8_t, int2>(int8_t (&x)[8]) {
int8_t x0[4]{x[0], x[1], x[2], x[3]};
int8_t x1[4]{x[4], x[5], x[6], x[7]};
return ::make_int2(pack_int8<4, int8_t, int>(x0),
pack_int8<4, int8_t, int>(x1));
}
#define COMMON_DEFS(_feed_type) \
using feed_type = _feed_type; \
using Base = MaxPoolerBase<int8_t, _feed_type>; \
using MaxPoolerBase<int8_t, _feed_type>::MaxPoolerBase;
template <>
__device__ __forceinline__ int4 pack_int8<16, int8_t, int4>(int8_t (&x)[16]) {
int8_t x0[4]{x[0], x[1], x[2], x[3]};
int8_t x1[4]{x[4], x[5], x[6], x[7]};
int8_t x2[4]{x[8], x[9], x[10], x[11]};
int8_t x3[4]{x[12], x[13], x[14], x[15]};
return ::make_int4(
pack_int8<4, int8_t, int>(x0), pack_int8<4, int8_t, int>(x1),
pack_int8<4, int8_t, int>(x2), pack_int8<4, int8_t, int>(x3));
}
#define cb(_x, _y, _z, _w, _ret) \
{ _ret = pack_int8_to_int8x4(_x, _y, _z, _w); }
__device__ __forceinline__ int8_t pack_int8_to_int4x2(int8_t x0, int8_t x1) {
return (x0 & 0xf) | (x1 << 4);
}
template <>
__device__ __forceinline__ int pack_int8<8, dt_qint4, int>(int8_t (&x)[8]) {
int8_t x0 = pack_int8_to_int4x2(x[0], x[1]);
int8_t x1 = pack_int8_to_int4x2(x[2], x[3]);
int8_t x2 = pack_int8_to_int4x2(x[4], x[5]);
int8_t x3 = pack_int8_to_int4x2(x[6], x[7]);
return pack_int8_to_int8x4(x0, x1, x2, x3);
}
template <>
__device__ __forceinline__ int4 pack_int8<32, dt_qint4, int4>(int8_t (&x)[32]) {
int8_t x0[8]{x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7]};
int8_t x1[8]{x[8], x[9], x[10], x[11], x[12], x[13], x[14], x[15]};
int8_t x2[8]{x[16], x[17], x[18], x[19], x[20], x[21], x[22], x[23]};
int8_t x3[8]{x[24], x[25], x[26], x[27], x[28], x[29], x[30], x[31]};
return ::make_int4(
pack_int8<8, dt_qint4, int>(x0), pack_int8<8, dt_qint4, int>(x1),
pack_int8<8, dt_qint4, int>(x2), pack_int8<8, dt_qint4, int>(x3));
}
SPEC_WITH_FEED_TYPE(int32_t) {
COMMON_DEFS(int32_t);
__device__ __forceinline__ void feed(int32_t x) { FEED1; }
template <typename Dtype>
struct TypeTrait;
__device__ __forceinline__ int get_ans() {
int i1;
ANS1(cb);
return i1;
}
template <>
struct TypeTrait<int8_t> {
static constexpr int bit_width = 8;
static constexpr int mask = 0xff;
static constexpr int8_t min = -128;
static constexpr int elem_per_32bit = 32 / bit_width;
static constexpr int shift_fix_sign = 0;
};
SPEC_WITH_FEED_TYPE(int2) {
COMMON_DEFS(int2);
__device__ __forceinline__ void feed(int2 x) { FEED2; }
__device__ __forceinline__ int2 get_ans() {
int i1, i2;
ANS2(cb);
return ::make_int2(i1, i2);
}
template <>
struct TypeTrait<dt_qint4> {
static constexpr int bit_width = 4;
static constexpr int mask = 0xf;
static constexpr int8_t min = -8;
static constexpr int elem_per_32bit = 32 / bit_width;
static constexpr int shift_fix_sign = 4;
};
SPEC_WITH_FEED_TYPE(int4) {
COMMON_DEFS(int4);
__device__ __forceinline__ void feed(int4 x) { FEED4; }
template <typename src_type, typename _feed_type>
struct MaxPooler {
using feed_type = _feed_type;
static constexpr int bit_width = TypeTrait<src_type>::bit_width;
static constexpr int nr_results = sizeof(feed_type) * 8 / bit_width;
static constexpr int elem_per_32bit = TypeTrait<src_type>::elem_per_32bit;
static constexpr int shift_fix_sign = TypeTrait<src_type>::shift_fix_sign;
int8_t res[nr_results];
__device__ __forceinline__ int4 get_ans() {
int i1, i2, i3, i4;
ANS4(cb);
return ::make_int4(i1, i2, i3, i4);
__device__ MaxPooler(int) {}
__device__ __forceinline__ void init() {
#pragma unroll
for (int i = 0; i < nr_results; ++i) {
res[i] = TypeTrait<src_type>::min;
}
}
__device__ __forceinline__ void feed(int x, int idx = 0) {
constexpr int unroll_n = sizeof(int) * 8 / bit_width;
#pragma unroll
for (int i = 0; i < unroll_n; i++) {
int8_t temp = ((x >> (i * bit_width)) & TypeTrait<src_type>::mask)
<< shift_fix_sign;
temp = temp >> shift_fix_sign;
res[idx + i] = res[idx + i] > temp ? res[idx + i] : temp;
}
}
__device__ __forceinline__ void feed(int2 x) {
feed(x.x, 0 * elem_per_32bit);
feed(x.y, 1 * elem_per_32bit);
}
__device__ __forceinline__ void feed(int4 x) {
feed(x.x, 0 * elem_per_32bit);
feed(x.y, 1 * elem_per_32bit);
feed(x.z, 2 * elem_per_32bit);
feed(x.w, 3 * elem_per_32bit);
}
__device__ __forceinline__ feed_type get_ans() {
feed_type ans;
ans = pack_int8<nr_results, src_type, feed_type>(res);
return ans;
}
};
#undef cb
#undef COMMON_DEFS
#undef SPEC_WITH_FEED_TYPE
template <typename src_type, typename feed_type, typename inter_type>
struct MeanIncludeRoundedPoolerBase;
template <typename src_type, typename _feed_type, typename inter_type>
struct MeanIncludeRoundedPooler {
using feed_type = _feed_type;
static constexpr int bit_width = TypeTrait<src_type>::bit_width;
static constexpr int nr_results = sizeof(feed_type) * 8 / bit_width;
static constexpr int elem_per_32bit = TypeTrait<src_type>::elem_per_32bit;
static constexpr int shift_fix_sign = TypeTrait<src_type>::shift_fix_sign;
template <typename feed_type>
struct MeanIncludeRoundedPoolerBase<int8_t, feed_type, int32_t> {
static constexpr int nr_results = sizeof(feed_type) / sizeof(int8_t);
int32_t res[nr_results];
const int count;
const float fi_count;
__device__ MeanIncludeRoundedPoolerBase(int count)
__device__ MeanIncludeRoundedPooler(int count)
: count{count}, fi_count{1.f / count} {}
__device__ __forceinline__ void init() {
#pragma unroll
for (int i = 0; i < nr_results; ++i) {
res[i] = 0;
}
}
__device__ __forceinline__ void feed(int32_t x, int idx) {
int8_t ix = (x & 0xff);
int8_t iy = ((x >> 8) & 0xff);
int8_t iz = ((x >> 16) & 0xff);
int8_t iw = ((x >> 24) & 0xff);
res[idx] += static_cast<int32_t>(ix);
res[idx + 1] += static_cast<int32_t>(iy);
res[idx + 2] += static_cast<int32_t>(iz);
res[idx + 3] += static_cast<int32_t>(iw);
__device__ __forceinline__ void feed(int x, int idx = 0) {
constexpr int unroll_n = sizeof(int) * 8 / bit_width;
#pragma unroll
for (int i = 0; i < unroll_n; i++) {
int8_t temp = ((x >> (i * bit_width)) & TypeTrait<src_type>::mask)
<< shift_fix_sign;
temp = temp >> shift_fix_sign;
res[idx + i] += static_cast<int32_t>(temp);
}
};
template <typename src_type, typename feed_type, typename inter_type>
struct MeanIncludeRoundedPooler;
#define SPEC_WITH_FEED_TYPE(_feed_type) \
template <> \
struct MeanIncludeRoundedPooler<int8_t, _feed_type, int32_t> \
: MeanIncludeRoundedPoolerBase<int8_t, _feed_type, int32_t>
#define COMMON_DEFS(_feed_type) \
using feed_type = _feed_type; \
using Base = MeanIncludeRoundedPoolerBase<int8_t, _feed_type, int32_t>; \
using MeanIncludeRoundedPoolerBase<int8_t, _feed_type, \
int32_t>::MeanIncludeRoundedPoolerBase;
#define cb(_x, _y, _z, _w, _ret) \
{ \
float fx = roundf(static_cast<float>(_x) * Base::fi_count); \
float fy = roundf(static_cast<float>(_y) * Base::fi_count); \
float fz = roundf(static_cast<float>(_z) * Base::fi_count); \
float fw = roundf(static_cast<float>(_w) * Base::fi_count); \
_ret = transform_float4_to_int8x4(::make_float4(fx, fy, fz, fw)); \
}
SPEC_WITH_FEED_TYPE(int32_t) {
COMMON_DEFS(int32_t);
__device__ __forceinline__ void feed(int32_t x) { FEED1; }
__device__ __forceinline__ int get_ans() {
int i1;
ANS1(cb);
return i1;
__device__ __forceinline__ void feed(int2 x) {
feed(x.x, 0 * elem_per_32bit);
feed(x.y, 1 * elem_per_32bit);
}
};
SPEC_WITH_FEED_TYPE(int2) {
COMMON_DEFS(int2);
__device__ __forceinline__ void feed(int2 x) { FEED2; }
__device__ __forceinline__ int2 get_ans() {
int i1, i2;
ANS2(cb);
return ::make_int2(i1, i2);
__device__ __forceinline__ void feed(int4 x) {
feed(x.x, 0 * elem_per_32bit);
feed(x.y, 1 * elem_per_32bit);
feed(x.z, 2 * elem_per_32bit);
feed(x.w, 3 * elem_per_32bit);
}
__device__ __forceinline__ feed_type get_ans() {
feed_type ans;
int8_t out_res[nr_results];
#pragma unroll
for (int i = 0; i < nr_results; i++) {
float f32_res = roundf(static_cast<float>(res[i]) * fi_count);
int i8_res;
asm volatile("cvt.rni.s8.f32 %0, %1;"
: "=r"(i8_res)
: "f"(f32_res));
out_res[i] = i8_res;
}
};
SPEC_WITH_FEED_TYPE(int4) {
COMMON_DEFS(int4);
__device__ __forceinline__ void feed(int4 x) { FEED4; }
__device__ __forceinline__ int4 get_ans() {
int i1, i2, i3, i4;
ANS4(cb);
return ::make_int4(i1, i2, i3, i4);
ans = pack_int8<nr_results, src_type, feed_type>(out_res);
return ans;
}
};
#undef cb
#undef COMMON_DEFS
#undef SPEC_WITH_FEED_TYPE
template <typename src_type, typename feed_type, typename inter_type>
struct MeanExcludeRoundedPoolerBase;
template <typename feed_type>
struct MeanExcludeRoundedPoolerBase<int8_t, feed_type, int32_t> {
static const int nr_results = sizeof(feed_type) / sizeof(int8_t);
template <typename src_type, typename _feed_type, typename inter_type>
struct MeanExcludeRoundedPooler {
using feed_type = _feed_type;
static constexpr int bit_width = TypeTrait<src_type>::bit_width;
static constexpr int nr_results = sizeof(feed_type) * 8 / bit_width;
static constexpr int elem_per_32bit = TypeTrait<src_type>::elem_per_32bit;
static constexpr int shift_fix_sign = TypeTrait<src_type>::shift_fix_sign;
int32_t res[nr_results];
int count;
__device__ MeanExcludeRoundedPooler(int) {}
__device__ MeanExcludeRoundedPoolerBase(int /* count */) {}
__device__ __forceinline__ void init() {
#pragma unroll
for (int i = 0; i < nr_results; ++i) {
......@@ -234,87 +218,50 @@ struct MeanExcludeRoundedPoolerBase<int8_t, feed_type, int32_t> {
}
count = 0;
}
__device__ __forceinline__ void feed(int32_t x, int idx) {
int8_t ix = (x & 0xff);
int8_t iy = ((x >> 8) & 0xff);
int8_t iz = ((x >> 16) & 0xff);
int8_t iw = ((x >> 24) & 0xff);
res[idx] += static_cast<int32_t>(ix);
res[idx + 1] += static_cast<int32_t>(iy);
res[idx + 2] += static_cast<int32_t>(iz);
res[idx + 3] += static_cast<int32_t>(iw);
__device__ __forceinline__ void feed(int x, int idx) {
constexpr int unroll_n = sizeof(int) * 8 / bit_width;
#pragma unroll
for (int i = 0; i < unroll_n; i++) {
int8_t temp = ((x >> (i * bit_width)) & TypeTrait<src_type>::mask)
<< shift_fix_sign;
temp = temp >> shift_fix_sign;
res[idx + i] += static_cast<int32_t>(temp);
}
};
template <typename src_type, typename feed_type, typename inter_type>
struct MeanExcludeRoundedPooler;
#define SPEC_WITH_FEED_TYPE(_feed_type) \
template <> \
struct MeanExcludeRoundedPooler<int8_t, _feed_type, int32_t> \
: MeanExcludeRoundedPoolerBase<int8_t, _feed_type, int32_t>
#define COMMON_DEFS(_feed_type) \
using feed_type = _feed_type; \
using Base = MeanExcludeRoundedPoolerBase<int8_t, _feed_type, int32_t>; \
using MeanExcludeRoundedPoolerBase<int8_t, _feed_type, \
int32_t>::MeanExcludeRoundedPoolerBase;
#define cb(_x, _y, _z, _w, _ret) \
{ \
float fx = roundf(static_cast<float>(_x) / Base::count); \
float fy = roundf(static_cast<float>(_y) / Base::count); \
float fz = roundf(static_cast<float>(_z) / Base::count); \
float fw = roundf(static_cast<float>(_w) / Base::count); \
_ret = transform_float4_to_int8x4(::make_float4(fx, fy, fz, fw)); \
}
SPEC_WITH_FEED_TYPE(int32_t) {
COMMON_DEFS(int32_t);
__device__ __forceinline__ void feed(int32_t x) {
FEED1;
count++;
}
__device__ __forceinline__ int get_ans() {
int i1;
ANS1(cb);
return i1;
__device__ __forceinline__ void feed(int x) {
feed(x, 0);
count++;
}
};
SPEC_WITH_FEED_TYPE(int2) {
COMMON_DEFS(int2);
__device__ __forceinline__ void feed(int2 x) {
FEED2;
feed(x.x, 0 * elem_per_32bit);
feed(x.y, 1 * elem_per_32bit);
count++;
}
__device__ __forceinline__ int2 get_ans() {
int i1, i2;
ANS2(cb);
return ::make_int2(i1, i2);
}
};
SPEC_WITH_FEED_TYPE(int4) {
COMMON_DEFS(int4);
__device__ __forceinline__ void feed(int4 x) {
FEED4;
feed(x.x, 0 * elem_per_32bit);
feed(x.y, 1 * elem_per_32bit);
feed(x.z, 2 * elem_per_32bit);
feed(x.w, 3 * elem_per_32bit);
count++;
}
__device__ __forceinline__ int4 get_ans() {
int i1, i2, i3, i4;
ANS4(cb);
return ::make_int4(i1, i2, i3, i4);
__device__ __forceinline__ feed_type get_ans() {
feed_type ans;
int8_t out_res[nr_results];
#pragma unroll
for (int i = 0; i < nr_results; i++) {
float f32_res = roundf(static_cast<float>(res[i]) / count);
int i8_res;
asm volatile("cvt.rni.s8.f32 %0, %1;"
: "=r"(i8_res)
: "f"(f32_res));
out_res[i] = i8_res;
}
ans = pack_int8<nr_results, src_type, feed_type>(out_res);
return ans;
}
};
#undef cb
#undef COMMON_DEFS
#undef SPEC_WITH_FEED_TYPE
template <typename Pooler>
__global__ void pooling2d_device_template_int8_cdiv4hwn4(
const int8_t* __restrict__ src, int8_t* __restrict__ dst, Param param) {
......@@ -362,70 +309,19 @@ __global__ void pooling2d_device_template_int8_cdiv4hwn4(
*(reinterpret_cast<ldg_type*>(g_dst_ptr)) = res;
}
template <typename Pooler>
__global__ void pooling2d_device_template_int8_ncdiv4hw4(
const int8_t* __restrict__ src, int8_t* __restrict__ dst, Param param) {
template <typename Pooler, int pack_size, int pack_byte,
int ldg_width_assert = 4>
__global__ void pooling2d_device_template_nchwc(const int8_t* __restrict__ src,
int8_t* __restrict__ dst,
Param param) {
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
using ldg_type = typename Pooler::feed_type;
static int constexpr pack_size = 4;
static int constexpr ldg_width = sizeof(ldg_type) / sizeof(int32_t);
MEGDNN_STATIC_ASSERT(
ldg_width == 1,
"pooling2d (NCHW4) kernel must use 32bit width ldg instruction");
const int wo_ldg = param.wo / ldg_width;
const int c_packed = param.c / pack_size;
const int batch = tid / (param.ho * wo_ldg * c_packed);
const int chw = tid - batch * param.ho * wo_ldg * c_packed;
const int oc_packed = chw / (param.ho * wo_ldg);
const int hw = chw - oc_packed * param.ho * wo_ldg;
const int oh = hw / wo_ldg;
const int ow = (hw - wo_ldg * oh) * ldg_width;
if (batch >= param.n || oc_packed >= c_packed || oh >= param.ho ||
ow >= param.wo)
return;
const int in_batch_stride = param.hi * param.wi * param.c;
const int out_batch_stride = param.ho * param.wo * param.c;
const int in_channel_stride = param.hi * param.wi * pack_size;
const int out_channel_stride = param.ho * param.wo * pack_size;
const int8_t* __restrict__ g_src_ptr =
src + batch * in_batch_stride + oc_packed * in_channel_stride;
int8_t* __restrict__ g_dst_ptr = dst + batch * out_batch_stride +
oc_packed * out_channel_stride +
(oh * param.wo + ow) * pack_size;
Pooler pooler(param.window_h * param.window_w);
pooler.init();
for (int fh = 0; fh < param.window_h; fh++) {
uint32_t ih = oh * param.sh + fh - param.ph;
for (int fw = 0; fw < param.window_w; fw++) {
uint32_t iw = ow * param.sw + fw - param.pw;
if (ih < param.hi && iw < param.wi) {
const int8_t* __restrict__ cur_src_ptr =
g_src_ptr + (ih * param.wi + iw) * pack_size;
ldg_type sval = __ldg(reinterpret_cast<const ldg_type*>(cur_src_ptr));
pooler.feed(sval);
}
}
}
ldg_type res = pooler.get_ans();
*(reinterpret_cast<ldg_type*>(g_dst_ptr)) = res;
}
template <typename Pooler>
__global__ void pooling2d_device_template_int8_ncdiv32hw32(
const int8_t* __restrict__ src, int8_t* __restrict__ dst, Param param) {
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
using ldg_type = typename Pooler::feed_type;
static int constexpr pack_size = 32;
static int constexpr ldg_width = sizeof(ldg_type) / sizeof(int32_t);
static int constexpr ldg_width_bytes = sizeof(ldg_type);
static int constexpr section = pack_size / sizeof(ldg_type);
static int constexpr section = pack_byte / sizeof(ldg_type);
MEGDNN_STATIC_ASSERT(
ldg_width == 4,
"pooling2d (NCHW32) kernel must use 128bit width ldg instruction");
ldg_width == ldg_width_assert,
"pooling2d (NCHW64) kernel must use 128bit width ldg instruction");
const int c_packed = param.c / pack_size;
const int batch = tid / (param.ho * param.wo * c_packed * section);
const int batch_residual =
......@@ -439,16 +335,18 @@ __global__ void pooling2d_device_template_int8_ncdiv32hw32(
if (batch >= param.n || oc >= c_packed || oh >= param.ho || ow >= param.wo)
return;
const int in_batch_stride = param.hi * param.wi * param.c;
const int out_batch_stride = param.ho * param.wo * param.c;
const int in_channel_stride = param.hi * param.wi * pack_size;
const int out_channel_stride = param.ho * param.wo * pack_size;
const int8_t* __restrict__ g_src_ptr = src + batch * in_batch_stride +
oc * in_channel_stride +
sec * ldg_width_bytes;
const int in_batch_stride =
param.hi * param.wi * param.c * pack_byte / pack_size;
const int out_batch_stride =
param.ho * param.wo * param.c * pack_byte / pack_size;
const int in_channel_stride = param.hi * param.wi * pack_byte;
const int out_channel_stride = param.ho * param.wo * pack_byte;
const int8_t* __restrict__ g_src_ptr =
src + (batch * in_batch_stride + oc * in_channel_stride +
sec * ldg_width_bytes);
int8_t* __restrict__ g_dst_ptr =
dst + batch * out_batch_stride + oc * out_channel_stride +
(oh * param.wo + ow) * pack_size + sec * ldg_width_bytes;
dst + (batch * out_batch_stride + oc * out_channel_stride +
(oh * param.wo + ow) * pack_byte + sec * ldg_width_bytes);
Pooler pooler(param.window_h * param.window_w);
pooler.init();
......@@ -458,7 +356,7 @@ __global__ void pooling2d_device_template_int8_ncdiv32hw32(
uint32_t iw = ow * param.sw + fw - param.pw;
if (ih < param.hi && iw < param.wi) {
const int8_t* __restrict__ cur_src_ptr =
g_src_ptr + (ih * param.wi + iw) * pack_size;
g_src_ptr + (ih * param.wi + iw) * pack_byte;
ldg_type sval =
__ldg(reinterpret_cast<const ldg_type*>(cur_src_ptr));
pooler.feed(sval);
......@@ -527,19 +425,29 @@ void megdnn::cuda::pooling2d::do_pooling2d_int8_ncdiv4hw4(const int8_t* d_src,
uint32_t mode) {
using Mode = megdnn::param_enumv::Pooling::Mode;
void (*kern)(const int8_t* __restrict__, int8_t* __restrict__, Param param);
uint32_t vthreads = param.n * param.c * param.ho * param.wo / 4;
constexpr int ldg_byte = 4;
constexpr int elem_per_byte = 1;
constexpr int pack_size = 4;
constexpr int pack_byte = pack_size / elem_per_byte;
constexpr int elem_per_thread = ldg_byte * elem_per_byte;
constexpr int ldg_assert_width = ldg_byte / sizeof(int32_t);
uint32_t vthreads =
param.n * param.c * param.ho * param.wo / elem_per_thread;
switch (mode) {
case Mode::MAX:
kern = pooling2d_device_template_int8_ncdiv4hw4<
MaxPooler<int8_t, int32_t>>;
kern = pooling2d_device_template_nchwc<MaxPooler<int8_t, int32_t>,
pack_size, pack_byte,
ldg_assert_width>;
break;
case Mode::AVERAGE:
kern = pooling2d_device_template_int8_ncdiv4hw4<
MeanIncludeRoundedPooler<int8_t, int32_t, int32_t>>;
kern = pooling2d_device_template_nchwc<
MeanIncludeRoundedPooler<int8_t, int32_t, int32_t>,
pack_size, pack_byte, ldg_assert_width>;
break;
case Mode::AVERAGE_COUNT_EXCLUDE_PADDING:
kern = pooling2d_device_template_int8_ncdiv4hw4<
MeanExcludeRoundedPooler<int8_t, int32_t, int32_t>>;
kern = pooling2d_device_template_nchwc<
MeanExcludeRoundedPooler<int8_t, int32_t, int32_t>,
pack_size, pack_byte, ldg_assert_width>;
break;
default:
megdnn_assert(false, "invalid pooling mode");
......@@ -558,19 +466,27 @@ void megdnn::cuda::pooling2d::do_pooling2d_int8_ncdiv32hw32(const int8_t* d_src,
uint32_t mode) {
using Mode = megdnn::param_enumv::Pooling::Mode;
void (*kern)(const int8_t* __restrict__, int8_t* __restrict__, Param param);
uint32_t vthreads = param.n * param.c * param.ho * param.wo / 16;
constexpr int ldg_byte = 16;
constexpr int elem_per_byte = 1;
constexpr int pack_size = 32;
constexpr int pack_byte = pack_size / elem_per_byte;
constexpr int elem_per_thread = ldg_byte * elem_per_byte;
uint32_t vthreads =
param.n * param.c * param.ho * param.wo / elem_per_thread;
switch (mode) {
case Mode::MAX:
kern = pooling2d_device_template_int8_ncdiv32hw32<
MaxPooler<int8_t, int4>>;
kern = pooling2d_device_template_nchwc<MaxPooler<int8_t, int4>,
pack_size, pack_byte>;
break;
case Mode::AVERAGE:
kern = pooling2d_device_template_int8_ncdiv32hw32<
MeanIncludeRoundedPooler<int8_t, int4, int32_t>>;
kern = pooling2d_device_template_nchwc<
MeanIncludeRoundedPooler<int8_t, int4, int32_t>, pack_size,
pack_byte>;
break;
case Mode::AVERAGE_COUNT_EXCLUDE_PADDING:
kern = pooling2d_device_template_int8_ncdiv32hw32<
MeanExcludeRoundedPooler<int8_t, int4, int32_t>>;
kern = pooling2d_device_template_nchwc<
MeanExcludeRoundedPooler<int8_t, int4, int32_t>, pack_size,
pack_byte>;
break;
default:
megdnn_assert(false, "invalid pooling mode");
......@@ -582,11 +498,43 @@ void megdnn::cuda::pooling2d::do_pooling2d_int8_ncdiv32hw32(const int8_t* d_src,
after_kernel_launch();
}
#undef FEED1
#undef FEED2
#undef FEED3
#undef ANS1
#undef ANS2
#undef ANS4
void megdnn::cuda::pooling2d::do_pooling2d_int4_ncdiv64hw64(const int8_t* d_src,
int8_t* d_dst,
const Param& param,
cudaStream_t stream,
uint32_t mode) {
using Mode = megdnn::param_enumv::Pooling::Mode;
void (*kern)(const int8_t* __restrict__, int8_t* __restrict__, Param param);
constexpr int ldg_byte = 16;
constexpr int elem_per_byte = 2;
constexpr int pack_size = 64;
constexpr int pack_byte = pack_size / elem_per_byte;
constexpr int elem_per_thread = ldg_byte * elem_per_byte;
uint32_t vthreads =
param.n * param.c * param.ho * param.wo / elem_per_thread;
switch (mode) {
case Mode::MAX:
kern = pooling2d_device_template_nchwc<MaxPooler<dt_qint4, int4>,
pack_size, pack_byte>;
break;
case Mode::AVERAGE:
kern = pooling2d_device_template_nchwc<
MeanIncludeRoundedPooler<dt_qint4, int4, int32_t>,
pack_size, pack_byte>;
break;
case Mode::AVERAGE_COUNT_EXCLUDE_PADDING:
kern = pooling2d_device_template_nchwc<
MeanExcludeRoundedPooler<dt_qint4, int4, int32_t>,
pack_size, pack_byte>;
break;
default:
megdnn_assert(false, "invalid pooling mode");
}
uint32_t nr_threads = query_blocksize_for_kernel(kern);
nr_threads = std::min(nr_threads, vthreads);
uint32_t nr_blocks = DIVUP(vthreads, nr_threads);
kern<<<nr_blocks, nr_threads, 0, stream>>>(d_src, d_dst, param);
after_kernel_launch();
}
// vim: syntax=cuda.doxygen
/**
* \file dnn/src/cuda/pooling/pooling2d_int8.cuh
* \file dnn/src/cuda/pooling/pooling2d_qint.cuh
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
*
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
......@@ -32,6 +32,11 @@ void do_pooling2d_int8_ncdiv4hw4(const int8_t* d_src, int8_t* d_dst,
void do_pooling2d_int8_ncdiv32hw32(const int8_t* d_src, int8_t* d_dst,
const Param& param, cudaStream_t stream,
uint32_t mode);
void do_pooling2d_int4_ncdiv64hw64(const int8_t* d_src, int8_t* d_dst,
const Param& param, cudaStream_t stream,
uint32_t mode);
} // namespace pooling2d
} // namespace cuda
} // namespace megdnn
......
......@@ -15,6 +15,7 @@
#include "megdnn/dtype.h"
#include "src/common/utils.h"
#include "src/naive/handle.h"
#include "src/naive/lowbit_utils.h"
#include "midout.h"
MIDOUT_DECL(megdnn_naive_pooling)
......@@ -190,6 +191,12 @@ struct NCHW32IdxGetter {
return (((n * (C >> 5) + (c >> 5)) * H + h) * W + w) * 32 + (c & 0x1f);
}
};
struct NCHW64IdxGetter {
static size_t get_idx(size_t n, size_t c, size_t h, size_t w, size_t,
size_t C, size_t H, size_t W) {
return (((n * (C >> 6) + (c >> 6)) * H + h) * W + w) * 64 + (c & 0x3f);
}
};
/*!
* Pooler for AVERAGE_COUNT_EXCLUDE_PADDING mode
*/
......@@ -375,15 +382,81 @@ void pooling_backward_max_impl(const ctype* __restrict src,
namespace megdnn {
namespace naive {
WorkspaceBundle PoolingForwardImpl::get_workspace_bundle(
void* ptr, const TensorLayout& src, const TensorLayout& dst) const {
SmallVector<size_t> sizes;
TensorLayout fsrc = src;
TensorLayout fdst = dst;
auto get_workspace = [&sizes](TensorLayout& layout) {
if (layout.dtype.enumv() == DTypeEnum::Quantized4Asymm ||
layout.dtype.enumv() == DTypeEnum::QuantizedS4) {
layout.dtype = dtype::Int8();
layout.format = TensorLayout::Format(layout.dtype);
sizes.push_back(layout.span().dist_byte());
}
};
get_workspace(fsrc);
get_workspace(fdst);
return {ptr, std::move(sizes)};
};
size_t PoolingForwardImpl::get_workspace_in_bytes(const TensorLayout& src,
const TensorLayout& dst) {
return get_workspace_bundle(nullptr, src, dst).total_size_in_bytes();
}
namespace {
void post_process(const TensorND& dst, TensorND& comp_dst, Handle* handle,
WorkspaceBundle& workspace_bundle) {
if (dst.layout.dtype.enumv() == DTypeEnum::QuantizedS4) {
int8_to_int4(comp_dst, dst);
} else if (dst.layout.dtype.enumv() == DTypeEnum::Quantized4Asymm) {
uint8_to_uint4(comp_dst, dst);
}
}
} // namespace
void PoolingForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst,
_megdnn_workspace workspace) {
check_exec(src.layout, dst.layout, workspace.size);
TensorND comp_src = src;
TensorND comp_dst = dst;
auto wsb = get_workspace_bundle(workspace.raw_ptr, src.layout, dst.layout);
if (src.layout.dtype.enumv() == DTypeEnum::QuantizedS4) {
float scale = src.layout.dtype.param<dtype::QuantizedS4>().scale;
comp_src.layout.dtype = dtype::QuantizedS8(scale);
comp_src.layout.init_contiguous_stride();
comp_src.layout.format = TensorLayout::Format(comp_src.layout.dtype);
comp_src.raw_ptr = wsb.get(0);
comp_dst.layout.dtype = dtype::QuantizedS8(scale);
comp_dst.layout.format = TensorLayout::Format(comp_dst.layout.dtype);
comp_dst.layout.init_contiguous_stride();
comp_dst.raw_ptr = wsb.get(1);
int4_to_int8(src, comp_src);
} else if (src.layout.dtype.enumv() == DTypeEnum::Quantized4Asymm) {
float scale = src.layout.dtype.param<dtype::Quantized4Asymm>().scale;
uint8_t zero_point =
src.layout.dtype.param<dtype::Quantized4Asymm>().zero_point;
comp_src.layout.dtype = dtype::Quantized8Asymm(scale, zero_point);
comp_src.layout.format = TensorLayout::Format(comp_src.layout.dtype);
comp_src.layout.init_contiguous_stride();
comp_src.raw_ptr = wsb.get(0);
comp_dst.layout.dtype = dtype::Quantized8Asymm(scale, zero_point);
comp_dst.layout.format = TensorLayout::Format(comp_dst.layout.dtype);
comp_dst.layout.init_contiguous_stride();
comp_dst.raw_ptr = wsb.get(1);
uint4_to_uint8(src, comp_src);
}
size_t c_pos, spatial_pos, batch_pos = 0;
if (param().format == Param::Format::NCHW ||
param().format == Param::Format::NCHW4 ||
param().format == Param::Format::NCHW88 ||
param().format == Param::Format::NCHW44 ||
param().format == Param::Format::NCHW32) {
param().format == Param::Format::NCHW32 ||
param().format == Param::Format::NCHW64) {
c_pos = 1;
spatial_pos = 2;
} else if (param().format == Param::Format::NHWC) {
......@@ -398,27 +471,35 @@ void PoolingForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst,
c_pos = 2;
spatial_pos = 1;
}
size_t N = src.layout.shape[batch_pos], C = src.layout.shape[c_pos],
IH = src.layout.shape[spatial_pos + 0],
IW = src.layout.shape[spatial_pos + 1];
size_t OH = dst.layout.shape[spatial_pos + 0],
OW = dst.layout.shape[spatial_pos + 1];
if (param().format == Param::Format::NHWCD4) {
size_t N = comp_src.layout.shape[batch_pos],
C = comp_src.layout.shape[c_pos],
IH = comp_src.layout.shape[spatial_pos + 0],
IW = comp_src.layout.shape[spatial_pos + 1];
size_t OH = comp_dst.layout.shape[spatial_pos + 0],
OW = comp_dst.layout.shape[spatial_pos + 1];
switch (param().format) {
case Param::Format::NHWCD4:
C *= 4;
IW = src.layout.shape[spatial_pos + 2];
OW = dst.layout.shape[spatial_pos + 2];
}
if (param().format == Param::Format::NCHW4 ||
param().format == Param::Format::NCHW44 ||
param().format == Param::Format::CHWN4) {
IW = comp_src.layout.shape[spatial_pos + 2];
OW = comp_dst.layout.shape[spatial_pos + 2];
break;
case Param::Format::NCHW4:
case Param::Format::NCHW44:
case Param::Format::CHWN4:
C *= 4;
}
if (param().format == Param::Format::NCHW88) {
break;
case Param::Format::NCHW88:
C *= 8;
}
if (param().format == Param::Format::NCHW32) {
break;
case Param::Format::NCHW32:
C *= 32;
break;
case Param::Format::NCHW64:
C *= 64;
break;
default:;
}
size_t PH = param().pad_h, PW = param().pad_w;
size_t FH = param().window_h, FW = param().window_w;
size_t SH = param().stride_h, SW = param().stride_w;
......@@ -427,8 +508,8 @@ void PoolingForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst,
MEGDNN_DISPATCH_CPU_KERN( \
static_cast<naive::HandleImpl*>(handle()), \
pooling_forward_impl<Pooler MEGDNN_COMMA IdxGetter>( \
sptr, dptr, src.layout.dtype, N, C, IH, IW, OH, OW, \
PH, PW, SH, SW, FH, FW)); \
sptr, dptr, comp_src.layout.dtype, N, C, IH, IW, OH, \
OW, PH, PW, SH, SW, FH, FW)); \
} \
MIDOUT_END();
......@@ -455,6 +536,9 @@ void PoolingForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst,
case Param::Format::NCHW32: \
DISPATCH_WITH_POOLER_AND_IDX_GETTER(Pooler, NCHW32IdxGetter); \
break; \
case Param::Format::NCHW64: \
DISPATCH_WITH_POOLER_AND_IDX_GETTER(Pooler, NCHW64IdxGetter); \
break; \
case Param::Format::CHWN4: \
DISPATCH_WITH_POOLER_AND_IDX_GETTER(Pooler, CHWN4IdxGetter); \
break; \
......@@ -463,29 +547,34 @@ void PoolingForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst,
}
#define cb(DType) \
if (src.layout.dtype.enumv() == DTypeTrait<DType>::enumv) { \
if (comp_src.layout.dtype.enumv() == DTypeTrait<DType>::enumv) { \
using ctype = typename DTypeTrait<DType>::ctype; \
switch (param().mode) { \
case Mode::MAX: { \
auto sptr = src.ptr<ctype>(); \
auto dptr = dst.ptr<ctype>(); \
auto sptr = comp_src.ptr<ctype>(); \
auto dptr = comp_dst.ptr<ctype>(); \
DISPATCH_WITH_POOLER(MaxPooler<ctype>); \
return; \
break; \
} \
case Mode::AVERAGE: { \
auto sptr = src.ptr<ctype>(); \
auto dptr = dst.ptr<ctype>(); \
auto sptr = comp_src.ptr<ctype>(); \
auto dptr = comp_dst.ptr<ctype>(); \
DISPATCH_WITH_POOLER(MeanIncludePooler<ctype>); \
return; \
break; \
} \
case Mode::AVERAGE_COUNT_EXCLUDE_PADDING: { \
auto sptr = src.ptr<ctype>(); \
auto dptr = dst.ptr<ctype>(); \
auto sptr = comp_src.ptr<ctype>(); \
auto dptr = comp_dst.ptr<ctype>(); \
DISPATCH_WITH_POOLER(MeanExcludePooler<ctype>); \
return; \
break; \
} \
default: \
megdnn_assert(0, "not support mode"); \
} \
post_process(dst, comp_dst, handle(), wsb); \
return; \
}
MEGDNN_FOREACH_COMPUTING_DTYPE(cb)
MEGDNN_FOREACH_QUANTIZED_DTYPE(cb)
#undef cb
......
......@@ -20,10 +20,12 @@ class PoolingForwardImpl: public PoolingForward {
using PoolingForward::PoolingForward;
void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst,
_megdnn_workspace workspace) override;
size_t get_workspace_in_bytes(const TensorLayout &,
const TensorLayout &) override {
return 0;
}
size_t get_workspace_in_bytes(const TensorLayout&,
const TensorLayout&) override;
private:
WorkspaceBundle get_workspace_bundle(void* ptr, const TensorLayout&,
const TensorLayout&) const;
};
class PoolingBackwardImpl : public PoolingBackward {
......
......@@ -421,27 +421,27 @@ TensorND TensorValueLowbit4(const TensorShape& shape, T dtype,
static_cast<dt_byte*>(malloc(tensor.layout.span().dist_byte()));
megdnn_assert(values.size() == tensor.layout.total_nr_elems());
auto ptr = tensor.ptr<typename DTypeTrait<T>::ctype>();
size_t i;
for (i = 0; i + 1 < values.size(); i += 2) {
U val0 = values[i], val1 = values[i + 1];
megdnn_assert(val0 >= DTypeTrait<T>::min());
megdnn_assert(val1 <= DTypeTrait<T>::max());
ptr[i / 2] = typename DTypeTrait<T>::ctype((val0 & 0xF) | (val1 << 4));
}
if (i < values.size()) {
U val0 = values[i];
megdnn_assert(val0 >= DTypeTrait<T>::min() &&
val0 <= DTypeTrait<T>::max());
if (i + 1 < values.size()) {
U val1 = values[i + 1];
megdnn_assert(val1 >= DTypeTrait<T>::min() &&
val1 <= DTypeTrait<T>::max());
ptr[i / 2] = typename DTypeTrait<T>::ctype((val0 & 0xF) | (val1 << 4));
} else {
ptr[i / 2] = typename DTypeTrait<T>::ctype(val0 & 0xF);
}
auto layout = tensor.layout;
auto dim_in = shape[layout.ndim - 1];
auto elems = tensor.layout.total_nr_elems();
auto dim_out = elems / dim_in;
auto stride_out = div_ceil(dim_in, 2_z);
size_t in_offset = 0;
for (size_t i = 0; i < dim_out; ++i) {
for (size_t j = 0; j < dim_in; j += 2) {
U a = values[in_offset + j];
U b = 0;
if (j + 1 < dim_in)
b = values[in_offset + j + 1];
megdnn_assert(a >= DTypeTrait<T>::min());
megdnn_assert(a <= DTypeTrait<T>::max());
megdnn_assert(b >= DTypeTrait<T>::min());
megdnn_assert(b <= DTypeTrait<T>::max());
ptr[j / 2] = (a & 0xF) | (b << 4);
}
in_offset += dim_in;
ptr += stride_out;
}
return tensor;
}
......
......@@ -242,6 +242,20 @@ TEST_F(CUDA, POOLING_BACKWARD)
.exec(TensorShapeArray{ilayout, olayout, olayout, ilayout});
}
}
TEST_F(CUDA, POOLING_FORWARD_NCHW_Q4) {
require_compute_capability(7, 5);
using Param = param::Pooling;
Checker<Pooling> checker(handle_cuda());
Param param{Param::Mode::MAX, 0, 0, 2, 2, 2, 2};
checker.set_dtype(0, dtype::QuantizedS4(0.1f));
param.format = Param::Format::NCHW;
checker.set_epsilon(1 + 1e-3);
checker.set_param(param).exec({{20, 64, 22, 33}, {}});
param.mode = Param::Mode::AVERAGE;
checker.set_param(param).exec({{20, 64, 22, 33}, {}});
param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
checker.set_param(param).exec({{20, 64, 22, 33}, {}});
}
TEST_F(CUDA, POOLING_FORWARD_NCHW4) {
require_compute_capability(7, 5);
......@@ -252,6 +266,10 @@ TEST_F(CUDA, POOLING_FORWARD_NCHW4) {
param.format = Param::Format::NCHW4;
checker.set_epsilon(1 + 1e-3);
checker.set_param(param).exec({{20, 3, 50, 50, 4}, {}});
param.mode = Param::Mode::AVERAGE;
checker.set_param(param).exec({{20, 3, 50, 50, 4}, {}});
param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
checker.set_param(param).exec({{20, 3, 50, 50, 4}, {}});
}
#if CUDNN_VERSION >= 7500
......@@ -267,9 +285,29 @@ TEST_F(CUDA, POOLING_FORWARD_NCHW32) {
param.format = Param::Format::NCHW32;
checker.set_epsilon(1e-3).set_rng(0, &int_rng);
checker.set_param(param).exec({{64, 8, 28, 28, 32}, {}});
param.mode = Param::Mode::AVERAGE;
checker.set_param(param).exec({{64, 8, 28, 28, 64}, {}});
param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
checker.set_param(param).exec({{64, 8, 28, 28, 64}, {}});
}
#endif
TEST_F(CUDA, POOLING_FORWARD_NCHW64) {
require_compute_capability(7, 5);
using Param = param::Pooling;
Checker<Pooling> checker(handle_cuda());
Param param{Param::Mode::MAX, 0, 0, 2, 2, 2, 2};
UniformIntRNG int_rng{-8, 7};
checker.set_dtype(0, dtype::QuantizedS4(1.f));
param.format = Param::Format::NCHW64;
checker.set_epsilon(1e-3).set_rng(0, &int_rng);
checker.set_param(param).exec({{64, 8, 28, 28, 64}, {}});
param.mode = Param::Mode::AVERAGE;
checker.set_param(param).exec({{64, 8, 28, 28, 64}, {}});
param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
checker.set_param(param).exec({{64, 8, 28, 28, 64}, {}});
}
TEST_F(CUDA, POOLING_FORWARD_CHWN4) {
require_compute_capability(6, 1);
using Param = param::Pooling;
......
......@@ -50,4 +50,63 @@ TEST_F(NAIVE, POOLING_QUANTIZED) {
12306, 23333})});
}
TEST_F(NAIVE, POOLING_QUANTIZED_Q4) {
using Mode = Pooling::Param::Mode;
Checker<Pooling> checker(handle(), /* check_dispatch */ false);
{
auto q4_dt = dtype::QuantizedS4(1.f);
std::vector<int> i8_src_vec{1, 2, 3,
4, 5, 6,
7, -1, -2};
std::vector<int> i8_max_dst_vec{1, 3, 7, 6};
std::vector<int> i8_avg_dst_vec{0, 1, 3, 2};
std::vector<int> i8_avg_exclu_dst_vec{1, 3, 6, 2};
Pooling::Param param{Mode::MAX, 1, 1, 2, 2, 2, 2};
Testcase input{TensorValueLowbit4({1, 1, 3, 3}, q4_dt, i8_src_vec), {}};
checker.set_param(param).exect(
input, Testcase{{},
TensorValueLowbit4({1, 1, 2, 2}, q4_dt,
i8_max_dst_vec)});
param = {Mode::AVERAGE, 1, 1, 2, 2, 2, 2};
checker.set_param(param).exect(
input, Testcase{{},
TensorValueLowbit4({1, 1, 2, 2}, q4_dt,
i8_avg_dst_vec)});
param = {Mode::AVERAGE_COUNT_EXCLUDE_PADDING, 1, 1, 2, 2, 2, 2};
checker.set_param(param).exect(
input, Testcase{{},
TensorValueLowbit4({1, 1, 2, 2}, q4_dt,
i8_avg_exclu_dst_vec)});
}
{
auto u4_dt = dtype::Quantized4Asymm(1.f, 0);
std::vector<int> u8_src_vec{1, 2, 3,
4, 5, 6,
7, 8, 9};
std::vector<int> u8_max_dst_vec{1, 3, 7, 9};
std::vector<int> u8_avg_dst_vec{0, 1, 3, 7};
std::vector<int> u8_avg_exclu_dst_vec{1, 3, 6, 7};
Pooling::Param param{Mode::MAX, 1, 1, 2, 2, 2, 2};
Testcase input{TensorValueLowbit4({1, 1, 3, 3}, u4_dt, u8_src_vec), {}};
checker.set_param(param).exect(
input, Testcase{{},
TensorValueLowbit4({1, 1, 2, 2}, u4_dt,
u8_max_dst_vec)});
param = {Mode::AVERAGE, 1, 1, 2, 2, 2, 2};
checker.set_param(param).exect(
input, Testcase{{},
TensorValueLowbit4({1, 1, 2, 2}, u4_dt,
u8_avg_dst_vec)});
param = {Mode::AVERAGE_COUNT_EXCLUDE_PADDING, 1, 1, 2, 2, 2, 2};
checker.set_param(param).exect(
input, Testcase{{},
TensorValueLowbit4({1, 1, 2, 2}, u4_dt,
u8_avg_exclu_dst_vec)});
}
}
// vim: syntax=cpp.doxygen
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册