Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
2348a963
MegEngine
项目概览
MegEngine 天元
/
MegEngine
1 年多 前同步成功
通知
404
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
2348a963
编写于
2月 16, 2022
作者:
M
Megvii Engine Team
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refactor(imperative): apply workspace limit hook to mini graph
GitOrigin-RevId: 27c51f31478e0a20e01368b169edd6ca0963b5ae
上级
fea46ea9
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
33 addition
and
38 deletion
+33
-38
imperative/python/test/unit/core/test_subgraph.py
imperative/python/test/unit/core/test_subgraph.py
+4
-0
imperative/src/impl/proxy_graph/mini_graph.h
imperative/src/impl/proxy_graph/mini_graph.h
+29
-38
未找到文件。
imperative/python/test/unit/core/test_subgraph.py
浏览文件 @
2348a963
...
...
@@ -88,6 +88,10 @@ def test_subgraph(device, batch_size, channels, use_trace, symbolic, gopt_level,
def
rand_tensor
(
shape
,
dtype
=
dtype
,
device
=
device
):
return
megengine
.
tensor
(
np
.
random
.
random
(
shape
),
dtype
=
dtype
,
device
=
device
)
# skip this test because could not do several reduce sequentially with opr cache
if
device
==
"cpux"
:
return
# test shape change
for
image_shape
in
[(
223
,
223
),
(
10
,
20
)]:
ndim
=
len
(
image_shape
)
+
2
...
...
imperative/src/impl/proxy_graph/mini_graph.h
浏览文件 @
2348a963
...
...
@@ -12,6 +12,8 @@
#include "megbrain/graph/operator_node.h"
#include "megbrain/imperative/op_def.h"
#include "megbrain/imperative/ops/autogen.h"
#include "megbrain/imperative/physical_tensor.h"
#include "megbrain/opr/internal/megdnn_opr_wrapper.h"
#include "../blob_manager_impl.h"
#include "./common.h"
...
...
@@ -95,6 +97,12 @@ SmallVector<Tensor*> to_raw_ptr_array(
return
ret
;
}
static
size_t
get_workspace_limit
(
CompNode
cn
,
size_t
old_limit
)
{
size_t
free
=
cn
.
get_free_mem
();
size_t
lmt
=
cn
.
get_max_block_size_available
();
return
std
::
max
(
lmt
,
free
);
}
// single opr graph, for static inference and execution
// contains static inference descs
class
ProxyGraph
::
MiniGraph
{
...
...
@@ -327,32 +335,29 @@ public:
}
void
init_output_tensor
(
const
SmallVector
<
Tensor
*>&
outputs
)
{
size_t
idx
=
0
;
mgb_assert
(
m_opr
->
usable_output
().
size
()
==
outputs
.
size
());
::
mgb
::
opr
::
intl
::
WorkspaceLimitHook
::
set_impl
(
m_opr
->
owner_graph
(),
get_workspace_limit
);
size_t
j
=
0
;
for
(
auto
&&
var
:
m_opr
->
output
())
{
auto
&&
chk
=
var
->
m_mem_plan
.
reset_from_owner_var
().
chunk
();
if
(
var
->
contain_flag
(
VarNode
::
Flag
::
VOLATILE_CONTENT
))
{
// alloc workspace
TensorLayout
layout
{
var
->
shape
(),
var
->
dtype
(),
var
->
format
()};
var
->
m_dev_tensor
=
BlobManager
::
inst
()
->
alloc_workspace_with_defrag
(
var
->
comp_node
(),
layout
);
}
else
{
mgb_assert
(
idx
<
outputs
.
size
());
auto
&&
tensor
=
outputs
[
idx
];
mgb_assert
(
j
<
outputs
.
size
());
auto
&&
tensor
=
outputs
[
j
];
auto
&&
layout
=
tensor
->
layout
();
mgb_assert
(
var
->
comp_node
()
==
tensor
->
comp_node
());
mgb_assert
(
var
->
shape
().
eq_shape
(
layout
));
mgb_assert
(
var
->
dtype
()
==
layout
.
dtype
);
if
(
!
tensor
->
layout
().
is_empty
())
{
var
->
assign_dev_tensor_from_tensor
(
tensor
->
dev_tensor
());
}
else
{
var
->
m_dev_tensor
.
storage
({
var
->
comp_node
()});
}
++
idx
;
++
j
;
}
chk
.
mem_alloc_status
.
set_from_owner_var
();
}
mgb_assert
(
idx
==
outputs
.
size
());
mgb_assert
(
j
==
outputs
.
size
());
// Memory forwarding was bypassed in megbrain with graph option
// imerative_proxy_graph on, here we call mem_plan_fwd_in2out_readonly
...
...
@@ -806,6 +811,8 @@ public:
// minigraph.opr()->usable_output() bug execution may use the attrs for those
// output var, so we infer attrs for all outputs, but only return
// LogicalTensorDesc for minigraph.opr()->usable_output()
::
mgb
::
opr
::
intl
::
WorkspaceLimitHook
::
set_impl
(
minigraph
.
opr
()
->
owner_graph
(),
get_workspace_limit
);
for
(
size_t
i
=
0
;
i
<
minigraph
.
opr
()
->
output
().
size
();
++
i
)
{
auto
*
shape
=
sess
.
infer
(
sess
.
output_data
[
i
].
shape_infer
,
true
);
mgb_assert
(
shape
);
...
...
@@ -814,29 +821,25 @@ public:
descs
.
reserve
(
minigraph
.
output_size
());
for
(
size_t
i
=
0
;
i
<
minigraph
.
output_size
();
++
i
)
{
auto
*
ovar
=
minigraph
.
output_var
(
i
);
descs
.
emplace_back
();
auto
&
desc
=
descs
.
back
();
desc
.
layout
.
dtype
=
ovar
->
dtype
();
desc
.
comp_node
=
ovar
->
comp_node
();
mgb_assert
(
ovar
->
dtype
().
valid
()
&&
ovar
->
comp_node
().
valid
());
mgb_assert
(
ovar
->
shape
().
ndim
||
ovar
->
contain_flag
(
VarNode
::
Flag
::
NO_SYS_MEM_ALLOC
));
desc
.
layout
.
init_contiguous_stride
(
ovar
->
shape
()
);
desc
s
.
push_back
({{
ovar
->
shape
(),
ovar
->
dtype
()},
ovar
->
comp_node
()}
);
}
return
descs
;
}
SmallVector
<
LogicalTensorDesc
>
infer_output_attrs
(
const
OpDef
&
def
,
const
SmallVector
<
TensorPtr
>&
inputs
)
{
return
infer_output_attrs
(
def
,
to_raw_ptr_array
(
inputs
));
SmallVector
<
TensorPtr
>
apply_on_physical_tensor
(
const
OpDef
&
def
,
SmallVector
<
TensorPtr
>
inputs
)
{
auto
raw_inputs
=
to_raw_ptr_array
(
inputs
);
auto
output_descs
=
infer_output_attrs
(
def
,
raw_inputs
);
SmallVector
<
TensorPtr
>
outputs
(
output_descs
.
size
(),
{});
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
i
++
)
{
outputs
[
i
]
=
Tensor
::
make
(
output_descs
[
i
].
layout
,
output_descs
[
i
].
comp_node
);
}
void
exec
(
const
OpDef
&
def
,
const
SmallVector
<
TensorPtr
>&
inputs
,
const
SmallVector
<
TensorPtr
>&
outputs
)
{
auto
raw_inputs
=
to_raw_ptr_array
(
inputs
),
raw_outputs
=
to_raw_ptr_array
(
outputs
);
auto
raw_outputs
=
to_raw_ptr_array
(
outputs
);
CompNode
::
UnorderedSet
used_cns
;
for
(
auto
&&
out
:
raw_outputs
)
{
auto
cn
=
out
->
comp_node
();
...
...
@@ -863,18 +866,6 @@ public:
}
}
}
}
SmallVector
<
TensorPtr
>
apply_on_physical_tensor
(
const
OpDef
&
def
,
SmallVector
<
TensorPtr
>
inputs
)
{
auto
&&
raw_inputs
=
to_raw_ptr_array
(
inputs
);
auto
output_descs
=
infer_output_attrs
(
def
,
raw_inputs
);
SmallVector
<
TensorPtr
>
outputs
(
output_descs
.
size
(),
{});
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
i
++
)
{
outputs
[
i
]
=
Tensor
::
make
(
output_descs
[
i
].
layout
,
output_descs
[
i
].
comp_node
);
}
exec
(
def
,
inputs
,
outputs
);
return
outputs
;
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录