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1 Introduction

Software contains bugs, and to help find these bugs it is critical to have good
debugging tools. Unless a robust OS is running on a core, with convenient
access to it (eg. over a network interface), hardware support is required to
provide visibility into what is going on in that core. This document outlines
how that support should be provided on RISC-V platforms.

2 About This Document

2.1 Structure

This document contains two parts. The main part of the document is the
specification, which is given in the numbered sections. The second part of the
document is a set of appendices. The information in the appendix is intended
to clarify and provide examples, but is not part of the actual specification.

2.2 Terminology

A platform is a single integrated circuit consisting of one or more components.
Some components may be RISC-V cores, while others may have a different
function. Typically they will all be connected to a single system bus. A single
RISC-V core contains one or more hardware threads, called harts.

2.3 Register Definitions

All register definitions in this document follow the format shown in Section 2.3.1.
A simple graphic shows which fields are in the register. The upper and lower bit
indices are shown to the top left and top right of each field. The total number
of bits in the field are shown below it.

After the graphic follows a table which for each field lists its name, de-
scription, allowed accesses, and reset value. The allowed accesses are listed in
Table 1.
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Table 1: Register Access Abbreviations
R Read-only.
R/W Read/Write.
R/W0 Read/Write. Only writing 0 has an effect.
R/W1 Read/Write. Only writing 1 has an effect.
W Write-only. When read this field returns 0.
W1 Write-only. Only writing 1 has an effect.

2.3.1 Long Name (shortname, at 0x123)

31 8 7 0

0 field
24 8

Field Description Access Reset
field Description of what this field is used for. R/W 15

3 Background

There are two forms of external debugging. The first is halt mode debugging,
where an external debugger will halt some or all components of a platform and
inspect them while they are in stasis. Then the debugger can allow the hardware
to either perform a single step or to run freely.

The second is run mode debugging. In this mode there is a software debug
agent running on a component (eg. triggered by a timer interrupt on a RISC-
V core) which communicates with a debugger without halting the component.
This is essential if the component is controlling some real-time system (like
a hard drive) where halting the component might lead to physical damage. It
requires more software support (both on the chip as well as on the debug client).
For this use case the debug interface may include simple serial ports.

A third use for the external debug interface is to use it as a general transport
for a component to communicate with the outside world. For instance, it could
be used to implement a serial interface that firmware could use to provide a
simple CLI. This can use the same serial ports used for run-mode debugging.

4 Supported Features

The debug interface described out here supports the following features:

1. RV32, RV64, and future RV128 are all supported.

2. Any hart in the platform can be independently debugged.

3. Harts can be asked to run a short custom program and immediately return
to regular execution afterwards, enabling relatively unintrusive inspection
of state.
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4. Optionally, a bus master can be implemented to allow memory access
without involving any hart.

5. Debugging can be supported over multiple transports.

6. Code can be downloaded efficiently.

7. Each hart can be debugged from the very first instruction executed.

8. A RISC-V core can be halted when a software breakpoint instruction is
executed.

9. Hardware can step over any instruction.

10. A RISC-V core can be halted when a trigger matches the PC, read/write
address/data, or an instruction opcode.

11. The debug module may implement serial ports which can be used for
communication between debugger and monitor, or as a general protocol
between debugger and application.

12. Arbitrary instructions can be executed on a halted hart. That means no
new debug functionality is needed when a core has custom instructions or
registers, as long as there exist programs that can store those registers to
memory.

13. The debugger doesn’t need to know anything about the microarchitecture
of the cores it is debugging.

14. Minimizes the additional datapath needed in the core to implement debug
functionality.

15. Don’t need to route a special debug bus to each core.

16. Cores don’t have to become bus slaves.

5 System Overview

Figure 1 shows the main components of External Debug Support. Blocks shown
in dotted lines are optional.

The user interacts with the Debug Host, which is running a debugger. The
debugger communicates with a Debug Translator (which may include a hard-
ware driver) to communicate with Debug Transport Hardware that’s connected
to the host. The Debug Transport Hardware connects the Debug Host to the
Platform’s Debug Transport Module (DTM). The DTM provides access to the
Debug Module (DM) which contains much of the debug functionality. This
interface is called the Debug Bus.

The DM allows the debugger to interrupt any hart in the platform. When
a running RISC-V core is interrupted, it enters Debug Mode and jumps to the
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Figure 1: RISC-V Debug System Overview
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Debug ROM. Generally this will cause it to execute code which has been written
to the Debug RAM. The debugger can use this mechanism to access memory
and registers at the cost of briefly halting one of the cores, or it can halt the
hart and leave it halted.

Each RISC-V core may implement up to one Trigger Module for each hart.
These can detect breakpoints as a hart is executing, which causes a hart to halt
spontaneously. When that happens it notifies the DM by communicating over
the System Bus. The DM tracks the hart status, and makes it available in its
Debug Bus accessible registers so the debugger knows action is required. The
debugger can then write appropriate instructions to Debug RAM, and send the
hart another interrupt to indicate it should now jump to Debug RAM. This
process is repeated until the debugger writes the code that causes the hart to
leave Debug Mode.

Almost all this logic can be encoded in the Debug ROM. When a hart enters
Debug Mode all it does is change the privilege mode it’s running in, and jump
to the beginning of Debug ROM. Code in the Debug ROM determines the cause
and then either jumps straight to Debug RAM or notifies the debugger and then
waits for further input from the debugger.

6 Debug Transport Module (DTM)

Debug Transport Modules provide access to the DM over one or more transports
(eg. JTAG or USB).

There may be multiple DTMs in a single platform. Ideally every component
that communicates with the outside world includes a DTM, allowing a plat-
form to be debugged through every transport it supports. For instance a USB
component could include a DTM. This would trivially allow any platform to be
debugged over USB. All that is required is that the USB module already in use
also has access to the Debug Bus.

Using multiple DTMs at the same time is not supported. It is left to the
user to ensure this does not happen.

7 Debug Module( DM)

The Debug Module contains the shared functionality required to debug a RISC-
V hart. It is accessed over two distinct buses that provide access to distinct
register sets. DTMs communicate with the DM using the Debug Bus. Harts
communicate with the DM using the System Bus. In addition, the DM drives
independent reset and interrupt signals to every hart.

A single DM can debug up to 1024 harts. If more harts need to be accessible
the best solution is to extend the specification.
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7.1 Debug Bus

The Debug Bus uses between 5 and 32 address bits, and 34 data bits. It supports
both read and write operations. The bottom of the address space is used for
the DM. Extra space can be used for custom debug devices, other cores, etc.
The space is laid out so that small to medium platforms can get away with just
5 address bits, while DTMs used on large systems will want to use 6 bits. 7
bits are only required for systems that want to use a large Debug RAM or have
other debug modules. Details of this bus are implementation-specific.

The registers are 34 bits wide so that simple DTMs can access every-
thing that is essential for efficient operation in a single access. This keeps
the DTM simple, at the cost of a slightly awkward bus width. 34 bits are
essential for an efficient bus master interface. The serial interface could
work with 33 bits by jumping through some hoops involving special data
values. The Debug RAM interface could actually work fine with just 33
bits, but it’s worth to having extra bit just to make the (hopefully common)
bus master extension great.

How this bus is implemented is completely left up to the designer, but in
larger systems it makes sense to use a standard multi-master bus. TODO:
Recommend a specific bus.

Table 2 shows the layout of the Debug Bus address space.

Table 2: Debug Module Debug Bus Space
Address Description
0x00 – 0x0f 64 bytes of R/W Debug RAM access. Each unique address

accesses 32 bits of the debug RAM, so 0x0 contains the first
word, 0x1 the second word, and so on.
Bit 32 of every register provides R/W0 access to the halt
notification of the hart selected by hartid in dmcontrol. Bit
33 of every register provides R/W1 access to the debug
interrupt of the hart selected by hartid in dmcontrol.

0x10 – 0x1b Debug Module registers described in Section 7.11.
0x1c – 0x3b Halt Notification Status registers. Bit 0 of the first register

contains halt notification 0, while bit 31 of the last register
contains halt notification 1023 (if there are that many harts
attached).

0x3c – 0x3f Debug Module registers described in Section 7.11.
0x40 – 0x6f 192 more bytes of R/W Debug RAM access for words 0x10 –

0x3f of the Debug RAM. Only implemented if Debug RAM
is larger than 64 bytes. This spec doesn’t present any
compelling reason to implement that much Debug RAM.

Some registers might not be present, either because the feature they support
doesn’t exist or because there’s simply empty space in the register map. Those

10



registers always read as 0, and writes to them are ignored.

7.2 System Bus

Harts being debugged communicate with the DM over the System Bus. The
Debug Module addresses are fixed across all platforms to reduce the amount of
customization required. Table 3 shows which address ranges are handled by the
DM.

The debug registers and RAM are placed below 0x800 so that it is
possible to access the debug space relative to x0, which allows the Debug
ROM code to only save a single register upon entry.

Table 3: Debug Module System Bus Space
Address Description
0x0 – 0xff Reserved for custom use.
0x100 – 0x2ff Debug Module registers described in Section 7.12.
0x400 – 0x4ff Up to 256 bytes of Debug RAM. Each unique address

specifies 8 bits.
0x800 – 0x9ff Up to 512 bytes of Debug ROM.

This reliance on the System Bus means that debugging is not possible if the
System Bus is hung for some reason. If this is a concern, then it’s possible to
implement a separate bus that allows each hart to access the registers listed in
Table 3.

7.3 Debug Interrupt Block

This block controls interrupts from the Debug Module to a hart. It is used to
halt a currently running hart, or to signal that the hart should take an action
when it is already halted.

For each hart the block contains a single bit that gets set when 1 is written
to interrupt in dmcontrol or Debug RAM registers. The bit gets cleared when
its hart id is written to cleardebint. It is unspecified what happens if the bit
is set and cleared at the same time.

The Debug Module conceptually has a direct connection to the debug inter-
rupt signal of every hart that has one. Each hart must receive a signal change
in no longer than 1 second. (How this is implemented is not further specified.
A few clock cycles will be more typical.)

7.4 Halt Notification Block

This block tracks halt notifications from a hart to the Debug Module. It is used
by harts to inform the Debug Module that they halted for a reason other than
the Debug Interrupt being asserted.
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For each hart, the block contains a single bit that gets set when the cor-
responding number is written to sethaltnot. The bit can be cleared using
haltnot in dmcontrol and Debug RAM registers. It is read over the Debug Bus
using haltsum, the halt notification section in the Debug Bus address space,
and haltnot in dmcontrol and Debug RAM registers. It is unspecified what
happens if the bit is set and cleared at the same time.

It’s expected that a hart will write its hart ID to sethaltnot when it halts
spontaneously. (Debug ROM code takes care of this.) Any other writes will
likely confuse the debugger and should be avoided.

7.5 Debug ROM

The Debug ROM contains code for a RISC-V hart to execute when it enters
Debug Mode. This ROM is inside the Debug Module so that it can be shared
among all RISC-V harts in the system, and reduces the number of changes
required to a RISC-V core to support debugging.

It is described in detail in Section 8.3.

7.6 Debug RAM

The Debug RAM is used by the debugger and the Debug ROM code to execute
arbitrary instructions, and to hold data. Debug RAM must be at least 28 bytes
to accommodate 32-bit RISC-V cores, 40 bytes to accommodate 64-bit RISC-V
cores, and 64 bytes to accommodate 128-bit RISC-V cores.

Debug RAM is accessible over both the Debug Bus and the System Bus.
When it is accessed by both simultaneously, reads may return undefined data,
while writes may be ignored. If an access over the Debug Bus fails in this way,
the result must be 2 (fail).

The minimum Debug RAM size is determined by the smallest debug
program that can write an arbitrary value to an arbitrary location in RAM.
That program consists of 4 instructions, followed by 3 XLEN-bit values
(address, data, and scratch). Code for this program is shown in Sec-
tion A.5. (When the compressed ISA is supported it would be possible
to cut 8 bytes from this requirement, but a debugger may assume that it
doesn’t need to use the compressed ISA.)

Since Debug RAM resides on the System Bus, it’s possible for any component
to write to it at any time. Unexpected writes should only happen when a
component malfunctions, but if it does happen it will definitely interfere with
debugging. At the cost of more hardware, this can be resolved in two ways. If
the bus knows an ID for the originator, then the Debug Module can refuse write
accesses to originators that don’t match the hart ID set in hartid of dmcontrol.
If that’s not feasible, a more expensive option is to include a separate Debug
RAM per hart, which is only accessible from that hart. To achieve this you
would likely need a separate bus that gives the DM full access and the harts
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access to just their Debug RAM. hartid controls which Debug RAM the DM
accesses. This is an expensive solution, but still a valid implementation of this
spec.

7.7 Reset Control

This block is connected to global reset signals. The first signal resets every
component in the platform. The second signal is optional and resets the non-
debug portion of every component in the platform. Both resets exclude any
DTMs and the Debug Module itself.

7.8 Bus Access

In a minimal configuration a debugger can access the system bus by having a
RISC-V hart perform the accesses it requires. Optionally a Bus Access block
may be implemented. Because the Bus Access block performs accesses directly
from the DM, it only uses physical addresses.

Implementing a Bus Access block has several benefits. First, it is now pos-
sible to inspect a running system with minimal impact. The only impact now
is that the bus is busy while the debugger is performing an access. Second, it
may improve performance when downloading programs. There is only a benefit
if JTAG TCK is a significant fraction of the RISC-V hart’s clock speed. Third,
it may provide access to devices that a hart does not have access to. A hart
may be unable to access all devices in a system (eg. for security reasons) and
in this case the debugger needs another path to access them.

To keep implementing, configuring, and using a debugger as simple as pos-
sible, systems should use the same memory map for each hart. That means
that a given address maps to the same device no matter which hart performs
the access. (Different harts may not all have permission to access the same de-
vices.) If different harts do have unique memory maps then the system should
provide access to all devices using the Bus Access block. This will make imple-
menting, configuring, and using a debugger more complex so should be avoided
if possible.

7.9 Serial Ports

The Debug Module may implement up to 8 serial ports. They support basic flow
control and full duplex data transfer between a component and the debugger.
They can be used to communicate with a debug monitor running on a hart, for
the equivalent of printf debugging, to provide a simple CLI without requiring
any extra peripherals, or more generally to emulate devices that aren’t present.
All these uses require software support, and are not further specified here.
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7.10 Security

To protect intellectual property it may be desirable to lock access to the Debug
Module. To allow access during a manufacturing process and not afterwards, a
reasonable solution could be to add a fuse bit to the Debug Module that can
be used to be permanently disable it. Since this is technology specific, it is not
further addressed in this spec.

Another option is to allow the DM to be unlocked only by users who have
an access key. A simple mechanism is documented in Section 7.11. When
authenticated is clear, the DM must not interact with the rest of the platform
in any way.

7.11 Debug Module Debug Bus Registers

Table 4: Debug Module Debug Bus Registers
Address Name

0x10 Control
0x11 Info
0x12 Authentication Data
0x13 Authentication Data
0x14 Serial Data
0x15 Serial Status
0x16 System Bus Address 31:0
0x17 System Bus Address 63:32
0x18 System Bus Data 31:0
0x19 System Bus Data 63:32
0x1b Halt Notification Summary
0x3d System Bus Address 95:64
0x3e System Bus Data 95:64
0x3f System Bus Data 127:96

7.11.1 Control (dmcontrol, at 0x10)

33 32 31 22 21 19 18 16

interrupt haltnot 0 buserror serial
1 1 10 3 3

15 14 12 11 2 1 0

autoincrement access hartid ndreset fullreset
1 3 10 1 1
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Field Description Access Reset
interrupt This field contains the Debug Inter-

rupt bit for the hart selected by hartid.
Writes apply to the new value of hartid.
This field is also accessible when access-
ing Debug RAM.

R/W1 0

haltnot This field contains the Halt Notifica-
tion bit for the hart selected by hartid.
Writes apply to the new value of hartid.
This field is also accessible when access-
ing Debug RAM.

R/W0 0

buserror When the debug bus master causes a
bus error, this field gets set. It remains
set until 0 is written to any bit in this
field. Until that happens, the bus mas-
ter is busy and no more accesses can be
initiated.
0: There was no bus error.
1: There was a timeout.
2: A bad address was accessed.
3: There was some other error (eg.
alignment).

R/W0 0

serial Select which serial port is accessed by
serdata.

R/W 0

autoincrement When 1, the internal address value
(used by the bus master) is incremented
by the access size (in bytes) selected in
access after every bus access.

R/W 0

access Select the access size to use for system
bus accesses triggered by writes to the
sbaddress registers or sbdata0.
0: 8-bit
1: 16-bit
2: 32-bit
3: 64-bit
4: 128-bit
If an unsupported access size is written
here, the DM may not perform the ac-
cess, or may perform the access with any
access size

R/W 2

hartid The ID of the hart to select. The halt
notification and debug interrupt of the
selected hart are accessible in haltnot
and interrupt in this register as well as
every Debug RAM register.

R/W 0

Continued on next page
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ndreset Every time this bit is written as 1, it
triggers a full reset of the non-debug
logic on the platform. This bit exists
so that, for debugging purposes, reset
behavior can be different from the stan-
dard behavior. For instance, a core
could be forced into Debug Mode right
out of reset.

W1 0

fullreset Every time this bit is written as 1, it
triggers a full reset of the platform, in-
cluding every component in it and the
debug logic for each component. It also
resets the DM itself.

W1 0

7.11.2 Info (dminfo, at 0x11)

33 32 31 25 24 21 20 19 18

0 abussize serialcount access128 access64 access32
2 7 4 1 1 1

17 16 15 10 9 8 7 6

access16 access8 dramsize haltsum 0 loversion
1 1 6 1 1 2

5 4 3 2 1 0

authenticated authbusy authtype loversion
1 1 2 2
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Field Description Access Reset
abussize Width of the address bus in bits. (0 in-

dicates there is no bus access support.)
R Preset

serialcount Number of supported serial ports. R Preset
access128 1 when 128-bit bus accesses are sup-

ported.
R Preset

access64 1 when 64-bit bus accesses are sup-
ported.

R Preset

access32 1 when 32-bit bus accesses are sup-
ported.

R Preset

access16 1 when 16-bit bus accesses are sup-
ported.

R Preset

access8 1 when 8-bit bus accesses are supported. R Preset
dramsize Size of the Debug RAM, in 32-bit words

minus 1. Eg. if Debug RAM is 32 bytes,
it’s encoded here as 7 (32/4 − 1).
A debugger must not access any De-
bug RAM locations that fall outside the
range specified here.

R Preset

haltsum 1 when haltsum is implemented. R Preset
loversion Bits 3:2 of the 4-bit version field. R 0
authenticated 0 when authentication is required be-

fore using the DM. 1 when the authen-
tication check has passed. On compo-
nents that don’t implement authentica-
tion, this bit must be preset as 1.

R Preset

authbusy While 1, writes to authdata0 and
authdata1 may be ignored or may re-
sult in authentication failing. Authen-
tication mechanisms that are slow (or
intentionally delayed) must set this bit
when they’re not ready to process an-
other write.

R 0

Continued on next page
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authtype Defines the kind of authentication re-
quired to use this DM.
0: No authentication is required.
1: A password is required.
2: A challenge-response mechanism is in
place.
3: Reserved for future use.

R Preset

loversion Bits 1:0 of the 4-bit version field. The
combined version field is interpreted as
follows:
0: There is no Debug Module present.
1: There is a Debug Module and it con-
forms to version 0.11 of this specifica-
tion.
Other values are reserved for future use.

R 1

7.11.3 Authentication Data (authdata0, at 0x12)

If authtype is 0, this register is not present.
If authtype is 1, writing a correct password to this register and authdata1

enables the DM. The DM is disabled either by writing an invalid password, or
by resetting it. 0 must not be used as a password. If an implementation wants
to use a well-known password, the recommended value is 0x5551212. Reading
from the register returns 0.

If authtype is 2, things are a bit more complicated. Reading from the reg-
ister pair reads the last challenge generated. Writing the correct response to
authdata1 and authdata0 enables the DM. The DM is disabled either by writ-
ing an incorrect response, or by resetting it. Writing to authdata0 triggers
validation, so if a 64-bit value is required then authdata1 must be written first.
If the combined value in authdata0 and authdata1 is not a valid response after
writing authdata0, then a new challenge must be generated. Depending on the
implementation, there may not be a valid challenge until the first write to this
register.

33 32 31 0

0 data
2 32

7.11.4 Authentication Data (authdata1, at 0x13)

This register contains the upper 32 bits of a 64-bit password or challenge/re-
sponse as described in authdata0.

33 32 31 0

0 data
2 32
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7.11.5 Serial Data (serdata, at 0x14)

If serialcount is 0, this register is not present.
All the fields in this register apply to the serial port selected by serial in

dmcontrol.

33 32 31 0

write/valid full/overflow data
1 1 32

Field Description Access Reset
write/valid Set this bit to write data to the

debugger-to-core queue.
Read this bit to determine whether the
register contains valid data from the
core-to-debugger queue.

R/W 0

full/overflow 0: The debugger-to-core queue is not
full. The next write will be accepted.
1: The debugger-to-core queue is cur-
rently full, or the debugger has previ-
ously attempted to write to the queue
when it was full. To clear this state, the
debugger must write 0 to this bit. (The
queue may still be full, in which case the
bit will remain high.)

R/W0 0

data This field contains the oldest value in
the core-to-debugger queue if write/valid
reads as 1.

R/W 0

7.11.6 Serial Status (serstatus, at 0x15)

If serialcount is 0, this register is not present.

33 16 15 14 13 12 11

0 valid7 full/overflow7 valid6 full/overflow6 valid5
18 1 1 1 1 1

10 9 8 7 6 5

full/overflow5 valid4 full/overflow4 valid3 full/overflow3 valid2
1 1 1 1 1 1

4 3 2 1 0

full/overflow2 valid1 full/overflow1 valid0 full/overflow0
1 1 1 1 1
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Field Description Access Reset
valid0 1 when the core-to-debugger queue for

serial port 0 is not empty.
R 0

full/overflow0 full/overflow for serial port 0. R/W0 0

7.11.7 System Bus Address 31:0 (sbaddress0, at 0x16)

If abussize is 0, then this register is not present.

33 32 31 0

busy read address
1 1 32

Field Description Access Reset
busy When 1, the bus master is busy and will

ignore any writes to the System Bus reg-
isters. Don’t write to this register with-
out reading busy as 0 first.

R 0

read If written as 1, the bus master will start
to read after updating the address from
address. The access size is controlled by
access in dmcontrol.

W 0

address Accesses the lower 32 bits of the internal
address.

R/W 0

7.11.8 System Bus Address 63:32 (sbaddress1, at 0x17)

If abussize is less than 33, then this register is not present.

33 32 31 0

busy read address
1 1 32

Field Description Access Reset
busy The same as busy in sbaddress0. R 0
read The same as read in sbaddress0. W 0
address Accesses bits 63:32 of the internal ad-

dress (if the system address bus is that
wide).

R/W 0

7.11.9 System Bus Data 31:0 (sbdata0, at 0x18)

If all of the access bits in dminfo are 0, then this register is not present.

33 32 31 0

write/busy read/valid data
1 1 32
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Field Description Access Reset
write/busy When 1, the bus master is busy and will

ignore any writes to the System Bus reg-
isters.
If written as 1, the bus master will start
to write after updating the data from
data. The access size is controlled by
access in dmcontrol.

R/W 0

read/valid When 1, the register contains the result
of a successful memory read. The valid
state is automatically cleared every time
a new bus access is started.
If written as 1, the bus master will start
to read after updating the address from
address. The access size is controlled by
access in dmcontrol.

R/W 0

data Accesses bits 31:0 of the internal data. R/W 0

7.11.10 System Bus Data 63:32 (sbdata1, at 0x19)

If access64 and access128 are 0, then this register is not present.

33 32 31 0

write/busy read/valid data
1 1 32

Field Description Access Reset
write/busy The same as write/busy in sbdata0, ex-

cept if an access is triggered the access
size is 64 bits instead of what access se-
lects.

R/W 0

read/valid The same as read/valid in sbdata0, ex-
cept if an access is triggered the access
size is 64 bits instead of what access se-
lects.

R/W 0

data Accesses bits 63:32 of the internal data
(if the system bus is that wide).

R/W 0

7.11.11 Halt Notification Summary (haltsum, at 0x1b)

If implemented, this register contains a summary of which halt bits are set. This
register should be implemented if there are more than 64 harts, or if there are
more than 32 harts and more than 0 serial ports.

Each of the lower 32 bits contains the logical OR of 32 consecutive halt bits.
When there are a large number of harts in the system, the debugger can first
read this register, and then the specific registers to find the exact halt bit that’s
asserted.
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33 32 31 30 29 28

serialfull serialvalid ack1023:992 ack991:960 ack959:928 ack927:896
1 1 1 1 1 1

27 26 25 24 23 22

ack895:864 ack863:832 ack831:800 ack799:768 ack767:736 ack735:704
1 1 1 1 1 1

21 20 19 18 17 16

ack703:672 ack671:640 ack639:608 ack607:576 ack575:544 ack543:512
1 1 1 1 1 1

15 14 13 12 11 10

ack511:480 ack479:448 ack447:416 ack415:384 ack383:352 ack351:320
1 1 1 1 1 1

9 8 7 6 5 4

ack319:288 ack287:256 ack255:224 ack223:192 ack191:160 ack159:128
1 1 1 1 1 1

3 2 1 0

ack127:96 ack95:64 ack63:32 ack31:0
1 1 1 1

Field Description Access Reset
serialfull Logical OR of all the full bits in

serstatus.
R 0

serialvalid Logical OR of all the valid bits in
serstatus.

R 0

7.11.12 System Bus Address 95:64 (sbaddress2, at 0x3d)

If abussize is less than 65, then this register is not present.

33 32 31 0

busy read address
1 1 32

Field Description Access Reset
busy The same as busy in sbaddress0. R 0
read The same as read in sbaddress0. W 0
address Accesses bits 95:64 of the internal ad-

dress (if the system address bus is that
wide).

R/W 0

7.11.13 System Bus Data 95:64 (sbdata2, at 0x3e)

This register only exists if access128 is 1.

33 32 31 0

write/busy read/valid data
1 1 32
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Field Description Access Reset
write/busy The same as write/busy in sbdata0, ex-

cept if an access is triggered the access
size is 128 bits instead of what access
selects.

R/W 0

read/valid The same as read/valid in sbdata0, ex-
cept if an access is triggered the access
size is 128 bits instead of what access
selects.

R/W 0

data Accesses bits 95:64 of the internal data
(if the system bus is that wide).

R/W 0

7.11.14 System Bus Data 127:96 (sbdata3, at 0x3f)

This register only exists if access128 is 1.

33 32 31 0

write/busy read/valid data
1 1 32

Field Description Access Reset
write/busy The same as write/busy in sbdata0, ex-

cept if an access is triggered the access
size is 128 bits instead of what access
selects.

R/W 0

read/valid The same as read/valid in sbdata0, ex-
cept if an access is triggered the access
size is 128 bits instead of what access
selects.

R/W 0

data Accesses bits 127:96 of the internal data
(if the system bus is that wide).

R/W 0

7.12 Debug Module System Bus Registers

7.12.1 Clear Debug Interrupt (cleardebint, at 0x100)

Writes to this register clear the debug interrupt corresponding to the number
written. To avoid a race, the DM must not complete the write access on the
System Bus until the change in the debug interrupt value has been propagated
to the relevant hart.

A hart must write its hart ID to this register to indicate that it has completed
executing a debug program. (The code to do this is already in the Debug ROM.)

31 10 9 0

0 id
22 10
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Table 5: Debug Module System Bus Registers
Address Name

0x100 Clear Debug Interrupt
0x10c Set Halt Notification
0x110 Serial Info
0x200 Serial Send 0
0x204 Serial Receive 0
0x208 Serial Status 0
0x20c Serial Send 1
0x210 Serial Receive 1
0x214 Serial Status 1
0x218 Serial Send 2
0x21c Serial Receive 2
0x220 Serial Status 2
0x224 Serial Send 3
0x228 Serial Receive 3
0x22c Serial Status 3
0x230 Serial Send 4
0x234 Serial Receive 4
0x238 Serial Status 4
0x23c Serial Send 5
0x240 Serial Receive 5
0x244 Serial Status 5
0x248 Serial Send 6
0x24c Serial Receive 6
0x250 Serial Status 6
0x254 Serial Send 7
0x258 Serial Receive 7
0x25c Serial Status 7
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7.12.2 Set Halt Notification (sethaltnot, at 0x10c)

Writes to this register set the halt notification bit corresponding to the number
written.

A hart must write its hart ID to this register to indicate to the debugger
that it has halted spontaneously. (The code to do this is already in the Debug
ROM.)

31 10 9 0

0 id
22 10

7.12.3 Serial Info (serinfo, at 0x110)

31 8 7 6 5 4

0 serial7 serial6 serial5 serial4
24 1 1 1 1

3 2 1 0

serial3 serial2 serial1 serial0
1 1 1 1

Field Description Access Reset
serial7 Like serial0. R Preset
serial6 Like serial0. R Preset
serial5 Like serial0. R Preset
serial4 Like serial0. R Preset
serial3 Like serial0. R Preset
serial2 Like serial0. R Preset
serial1 Like serial0. R Preset
serial0 1 means serial interface 0 is supported. R Preset

7.12.4 Serial Send 0 (sersend0, at 0x200)

Values written to this address are added to the core-to-debugger queue, unless
the queue is already full.

31 0

data
32

7.12.5 Serial Receive 0 (serrecv0, at 0x204)

This register contains the oldest value in the debugger-to-core queue. Reading
the register removes that value from the queue. If the queue is empty, reading
this register returns an undefined value.

31 0

data
32
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7.12.6 Serial Status 0 (serstat0, at 0x208)

31 2 1 0

0 sendr recvr
30 1 1

Field Description Access Reset
sendr Send ready. 1 when the core-to-

debugger queue is not full. 0 otherwise.
R 1

recvr Receive ready. 1 when the debugger-to-
core queue is not empty. 0 otherwise.

R 1

8 RISC-V Debug

Modifications to the RISC-V core to support debug are kept to a minimum.
There is a special execution mode (Debug Mode) and a few extra CSRs. The
code in Debug ROM and resources in the Debug Module take care of the rest.

8.1 Hart IDs

External debug imposes a few limits on hart IDs. Every hart in the system
must have a unique ID. (There could be additional harts that reuse IDs, but
only one of the harts that share an ID can be debugged.) One of the harts must
use ID 0. The debugger needs this to access the Device Tree to enumerate the
remaining harts in the system. Hart IDs should be less than 128 if the Debug
Bus address is 5 bits wide, or less than 1024 if that address is 6 or more bits
wide.

8.2 Debug Mode

Debug Mode is a special processor mode used only when the core is halted for
external debugging.

To enter Debug Mode the hart:
1. Saves pc to dpc.
2. Sets cause in dcsr.
3. Sets pc to 0x800.

While in Debug Mode:
1. All operations happen in machine mode.
2. mprv in mstatus is ignored.
3. All interrupts are masked. Whether slow watchdog timers (10s or longer)

are masked is left to the implementation.
4. All exceptions don’t update any registers, and cause the hart to jump

to exception in Debug ROM. That means no cause, epc, and badaddr

registers are changed. mstatus isn’t updated either.
5. No trigger actions are taken.
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6. Trace is disabled.
7. Cycle counters may be stopped, depending on stopcycle in dcsr.
8. Timers may be stopped, depending on stoptime in dcsr.
9. The wfi instruction either acts as nop, or stalls the hart until the Debug

Interrupt is set. It ignores any other interrupts.
10. Instructions that change the privilege level have undefined behavior. This

includes ecall, ebreak, mret, hret, sret, and uret. The only excep-
tion is dret, described in Section 8.4. (To change the privilege level, the
debugger can write prv in dcsr.)

8.3 Debug ROM Contents

Table 6: Debug ROM Contents
Address Name Pseudocode
0x800 entry If cause indicates a debug interrupt, jump to

Debug RAM. Otherwise, write mhartid to
sethaltnot (to notify the debugger), set halt (to
track the reason for entry), wait for debugint to be
set, and jump to Debug RAM.

0x804 resume Write 0 to the last word in Debug RAM. Write
mhartid to cleardebint (to notify the debugger
the hart is back in Debug ROM). If halt is set, wait
for debugint to be set, and jump to Debug RAM.
Otherwise restore saved registers and resume
normal execution at dpc.

0x808 exception Just like resume, but writes 0xffffffff to the last
word in Debug RAM instead of 0.

0x80c Reserved Reserved for future standard use.

The Debug ROM (part of the Debug Module) contains the code required
for a debugger to communicate with a hart while in Debug Mode. Table 6
summarizes the contents of the Debug ROM, while sample Debug ROM source
can be found in Appendix B.

When entering Debug RAM, s0 is saved in dscratch and s1 is saved at
the very end of Debug RAM. In between calls to Debug RAM s0 and s1 will
change, but all other registers keep their value. Debug ROM code restores both
s0 and s1 registers from those locations before leaving Debug Mode.

It is expected that the code in Debug RAM finishes with a jump to resume

in Debug ROM.

8.4 dret Instruction

To return from Debug Mode, a new instruction is required: dret. It has an
encoding of 0x7b200073. Executing the instructions changes pc to the value
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stored in dpc. The current privilege level is changed to what’s specified by prv
in dcsr. cause in dcsr is cleared since the hart is no longer in Debug Mode.

Executing dret outside of Debug Mode causes an illegal instruction excep-
tion.

8.5 Load-Reserved/Store-Conditional Instructions

The reservation registered by an lr instruction on a memory address may be
lost when entering Debug Mode or while in Debug Mode. This means that there
may be no forward progress if Debug Mode is entered between lr and sc pairs.

8.6 Core Debug Registers

The Core Debug Registers must be implemented for each hart being debugged.
These registers are only accessible from Debug Mode.

step, halt, and prv all lie in the lower 5 bits so a debugger can manip-
ulate them using csrsi and csrci.

debugint and cause all lie within a 12-bit immediate so Debug ROM
can check them using integer instructions that use immediates.

Table 7: Core Debug Registers
Address Name

0x7b0 Debug Control and Status
0x7b1 Debug PC
0x7b2 Debug Scratch Register

virtual Privilege Level

8.6.1 Debug Control and Status (dcsr, at 0x7b0)

31 30 29 28 27 16 15 14

xdebugver ndreset fullreset 0 ebreakm ebreakh
2 1 1 12 1 1

13 12 11 10 9 8 6

ebreaks ebreaku 0 stopcycle stoptime cause
1 1 1 1 1 3

5 4 3 2 1 0

debugint 0 halt step prv
1 1 1 1 2
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Field Description Access Reset
xdebugver 0: There is no Debug Mode support.

1: Debug Mode exists as it is described
in this document.
Other values are reserved for future
standards.

R Preset

ndreset Every time this bit is written as 1, it
triggers a full reset of the hart except
for the halt bit in this register. This
enables a debugger to reset a hart and
debug it from the very first instruction
executed.

W1 0

fullreset Every time this bit is written as 1, it
triggers a full reset of the hart, including
the debug logic.

W1 0

ebreakm When 1, ebreak instructions in Ma-
chine Mode enter Debug Mode.

R/W 0

ebreakh When 1, ebreak instructions in Hyper-
visor Mode enter Debug Mode.

R/W 0

ebreaks When 1, ebreak instructions in Super-
visor Mode enter Debug Mode.

R/W 0

ebreaku When 1, ebreak instructions in
User/Application Mode enter Debug
Mode.

R/W 0

stopcycle Controls the behavior of any counters
while the component is in Debug Mode.
This includes the cycle and instret

CSRs. When 1, counters are stopped
when the component is in Debug Mode.
Otherwise, the counters continue to run.
An implementation may choose not to
support writing to this bit. The debug-
ger must read back the value it writes to
check whether the feature is supported.

R/W 1

Continued on next page
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stoptime Controls the behavior of any timers
while the component is in Debug Mode.
This includes the time and tt timeh
CSRs. When 1, timers are stopped
when the component is in Debug Mode.
Otherwise, the timers continue to run.
An implementation may choose not to
support writing to this bit. The debug-
ger must read back the value it writes to
check whether the feature is supported.

R/W 0

cause Explains why Debug Mode was entered.
When there are multiple reasons to en-
ter Debug Mode in a single cycle, the
cause with the highest priority is the one
written.
1: A software breakpoint was hit. (pri-
ority 3)
2: The Trigger Module caused a halt.
(priority 4)
3: The debug interrupt was asserted by
the Debug Module. (priority 2)
4: The hart single stepped because step
was set. (priority 1)
5: halt was set. (priority 0)
Other values are reserved for future use.

R 0

debugint This bit contains the current value of
the debug interrupt signal.

R 0

halt When this bit is set, the hart enters De-
bug Mode immediately if it is not al-
ready in Debug Mode.
The bit is used to enter Debug Mode
straight out of reset, and to ensure that
spontaneous entries into Debug Mode
don’t get lost in a race with the debug-
ger.

R/W 0

step When set and not in Debug Mode, the
hart will only execute a single instruc-
tion, and then enter Debug Mode. In-
terrupts are disabled when this bit is
set.

R/W 0

prv Contains the privilege level the hart was
operating in when Debug Mode was en-
tered. The encoding is describe in Table
8. A debugger can change this value to
change the hart’s privilege level when
exiting Debug Mode.
Not all privilege levels are supported on
all harts. If the encoding written is
not supported, the hart may ignore the
value, or may change to any supported
privilege level.

R/W 0
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Table 8: Privilege Level Encoding
Encoding Privilege Level

0 User/Application
1 Supervisor
2 Hypervisor
3 Machine

8.6.2 Debug PC (dpc, at 0x7b1)

When entering Debug Mode, the current PC is copied here. When leaving
Debug Mode, execution resumes at this PC.

XLEN-1 0

dpc
XLEN

8.6.3 Debug Scratch Register (dscratch, at 0x7b2)

Register reserved for Debug ROM where it can save s0.

XLEN-1 0

data
XLEN

8.6.4 Privilege Level (priv, at virtual)

Users of the debugger shouldn’t need to know about the debug registers, but
might want to inspect and change the privilege level that the hart was running
in when the hart halted. To facilitate this, debuggers should expose the privilege
level in this virtual register. (A virtual register is one that doesn’t exist directly
in the hardware, but that the debugger exposes as if it does.)

1 0

prv
2

Field Description Access Reset
prv Contains the privilege level the hart was

operating in when Debug Mode was en-
tered. The encoding is describe in Table
8. A user can write this value to change
the hart’s privilege level when exiting
Debug Mode.

R/W 0
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9 Trigger Module

Triggers can cause a debug exception, entry into Debug Mode, or a trace action
without having to execute a special instruction. This makes them invaluable
when debugging code from ROM. They can trigger on execution of instructions
at a given memory address, or on the address/data in loads/stores. These are
all features that can be useful without having the Debug Module present, so
the Trigger Module is broken out as a separate piece that can be implemented
separately.

Each trigger may support a variety of features. A debugger can build a list of
all triggers and their features as follows:

1. Write 0 to tselect.
2. Read back tselect to confirm this trigger exists. If not, exit.
3. Read tdata1, and possible tdata2 and tdata3 depending on the trigger

type.
4. If type in tdata1 was 0, then there are no more triggers.
5. Repeat, incrementing the value in tselect.

9.1 Trigger Registers

The trigger registers are only accessible in machine and debug mode to prevent
untrusted user code from causing entry into Debug Mode without the OS’s
permission.

Table 9: Trigger Registers
Address Name

0x7a0 Trigger Select
0x7a1 Trigger Data 1
0x7a1 Match Control
0x7a1 Instruction Count
0x7a2 Trigger Data 2
0x7a3 Trigger Data 3

9.1.1 Trigger Select (tselect, at 0x7a0)

This register determines which trigger is accessible through the other trigger
registers. The set of accessible triggers must start at 0, and be contiguous.

Writes of values greater than or equal to the number of supported triggers
result in an undefined value in tselect. Debuggers should read back the value
to confirm that what they wrote was a valid index.

Since triggers can be used both by Debug Mode and M Mode, the debugger
must restore this register if it modifies it.
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XLEN-1 0

index
XLEN

9.1.2 Trigger Data 1 (tdata1, at 0x7a1)

XLEN-1 XLEN-4 XLEN-5 XLEN-6 0

type dmode data
4 1 XLEN - 5

Field Description Access Reset
type 0: There is no trigger at this tselect.

1: The trigger is a legacy SiFive ad-
dress match trigger. These should not
be implemented and aren’t further doc-
umented here.
2: The trigger is an address/data match
trigger.
3: The trigger is an instruction count
trigger.
15: This trigger exists (so enumeration
shouldn’t terminate), but is not cur-
rently available.
Other values are reserved for future use.

R Preset

dmode 0: Both Debug and M Mode can
write the tdata registers at the selected
tselect.
1: Only Debug Mode can write the
tdata registers at the selected tselect.
Writes from other modes are ignored.
This bit is only writable from Debug
Mode.

R/W 0

Continued on next page
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data Trigger-specific data. R/W Preset

9.1.3 Trigger Data 2 (tdata2, at 0x7a2)

Trigger-specific data.

XLEN-1 0

data
XLEN

9.1.4 Trigger Data 3 (tdata3, at 0x7a3)

Trigger-specific data.

XLEN-1 0

data
XLEN

9.1.5 Match Control (mcontrol, at 0x7a1)

This register is accessible as tdata1 when type is 2.
Writing unsupported values to any field in this register results in the reset

value being written instead. When a debugger wants to use a feature, it must
write the appropriate value and then read back the register to determine whether
it is supported.

Address and data trigger implementation are heavily dependent on how the
processor core is implemented. To accommodate various implementations, load
and store address and data triggers may fire at whatever point in time is most
convenient for the implementation. Following the suggestions in the definitions
of store and load will lead to the best user experience, however.

XLEN-1 XLEN-4 XLEN-5 XLEN-6 XLEN-11 XLEN-12 20 19 18

type dmode maskmax 0 select timing
4 1 6 XLEN - 31 1 1

17 12 11 10 7 6 5 4

action chain match m h s
6 1 4 1 1 1

3 2 1 0

u execute store load
1 1 1 1
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Field Description Access Reset
maskmax Specifies the largest naturally aligned

powers-of-two (NAPOT) range sup-
ported by the hardware. The value is
the logarithm base 2 of the number of
bytes in that range. A value of 0 in-
dicates that only exact value matches
are supported (one byte range). A
value of 63 corresponds to the maxi-
mum NAPOT range, which is 263 bytes
in size.

R 0

select 0: Perform a match on the address.
1: Perform a match on the data value
loaded/stored, or the instruction exe-
cuted.

R/W 0

timing 0: The action for this trigger will be
taken just before the instruction that
triggered it is executed, but after all pre-
ceding instructions are are committed.
1: The action for this trigger will be
taken after the instruction that trig-
gered it is executed. It should be taken
before the next instruction is executed,
but it is better to implement triggers
and not implement that suggestion than
to not implement them at all.
Most hardware will only implement one
timing or the other, possibly dependent
on select, execute, load, and store. This
bit primarily exists for the hardware to
communicate to the debugger what will
happen. Hardware may implement the
bit fully writable, in which case the de-
bugger has a little more control.
Data load triggers with timing of 0 will
result in the same load happening again
when the debugger lets the core run.
For data load triggers debuggers must
first attempt to set the breakpoint with
timing of 1.
A chain of triggers that don’t all have
the same timing value will never fire (un-
less consecutive instructions match the
appropriate triggers).

R/W 0

Continued on next page
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action Determines what happens when this
trigger matches.
0: Raise a debug exception. (Used when
software wants to use the trigger module
without an external debugger attached.)
1: Enter Debug Mode. (Only supported
when dmode is 1.)
2: Start tracing.
3: Stop tracing.
4: Emit trace data for this match. If it
is a data access match, emit appropriate
Load/Store Address/Data. If it is an
instruction execution, emit its PC.
Other values are reserved for future use.

R/W 0

chain 0: When this trigger matches, the con-
figured action is taken.
1: While this trigger does not match, it
prevents the trigger with the next index
from matching.

R/W 0

match 0: Matches when the value equals
tdata2.
1: Matches when the top M bits of
the value match the top M bits of
tdata2. M is XLEN-1 minus the index
of the least-significant bit containing 0
in tdata2.
2: Matches when the value is greater
than or equal to tdata2.
3: Matches when the value is less than
tdata2.
4: Matches when the lower half of the
value equals the lower half of tdata2 af-
ter the lower half of the value is ANDed
with the upper half of tdata2.
5: Matches when the upper half of the
value equals the lower half of tdata2 af-
ter the upper half of the value is ANDed
with the upper half of tdata2.
Other values are reserved for future use.

R/W 0

Continued on next page
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m When set, enable this trigger in M
mode.

R/W 0

h When set, enable this trigger in H mode. R/W 0
s When set, enable this trigger in S mode. R/W 0
u When set, enable this trigger in U mode. R/W 0
execute When set, the trigger fires on the ad-

dress or opcode of an instruction that is
executed.

R/W 0

store When set, the trigger fires on the ad-
dress or data of a store.

R/W 0

load When set, the trigger fires on the ad-
dress or data of a load.

R/W 0

9.1.6 Instruction Count (icount, at 0x7a1)

This register is accessible as tdata1 when type is 3.
Warning! icount is just a proposal. So far nobody has commented

on it, so it could very easily be removed or changed in the future.
Writing unsupported values to any field in this register results in the reset

value being written instead. When a debugger wants to use a feature, it must
write the appropriate value and then read back the register to determine whether
it is supported.

This trigger type is intended to be used as a single step that’s useful
both for external debuggers and for software monitor programs. As such
it is not necessary to support count greater than 1. The only two combi-
nations of the mode bits that are useful in those scenarios are u by itself,
or m, h, s, and u all set.

If the hardware limits count to 1, and changes mode bits instead of
decrementing count, this register can be implemented with just 2 bits. One
for u, and one for m, h, and s tied together. If only the external debugger
or only a software monitor needs to be supported, a single bit is enough.

XLEN-1 XLEN-4 XLEN-5 XLEN-6 24 23 10 9

type dmode 0 count m
4 1 XLEN - 29 14 1

8 7 6 5 0

h s u action
1 1 1 6
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Field Description Access Reset
count When count is decremented to 0, the

trigger fires. Instead of changing count
from 1 to 0, it is also acceptable for
hardware to clear m, h, s, and u. This
allows count to be hard-wired to 1 if this
register just exists for single step.

R/W 1

m When set, every instruction completed
in M mode decrements count by 1.

R/W 0

h When set, every instruction completed
in H mode decrements count by 1.

R/W 0

s When set, every instruction completed
in S mode decrements count by 1.

R/W 0

u When set, every instruction completed
in U mode decrements count by 1.

R/W 0

action Determines what happens when this
trigger matches.
0: Raise a debug exception. (Used when
software wants to use the trigger module
without an external debugger attached.)
1: Enter Debug Mode. (Only supported
when dmode is 1.)
2: Start tracing.
3: Stop tracing.
4: Emit trace data for this match. If it
is a data access match, emit appropriate
Load/Store Address/Data. If it is an
instruction execution, emit its PC.
Other values are reserved for future use.

R/W 0

10 JTAG Debug Transport Module

This Debug Transport Module is based around a normal JTAG Test Access
Port (TAP). The JTAG TAP allows access to arbitrary JTAG registers by first
selecting one using the JTAG instruction register (IR), and then accessing it
through the JTAG data register (DR).

10.1 Background

JTAG refers to IEEE Std 1149.1-2013. It is a standard that defines test logic
that can be included in an integrated circuit to test the interconnections between
integrated circuits, test the integrated circuit itself, and observe or modify circuit
activity during the components normal operation. We’re using it for the third
case here. The standard defines a Test Access Port (TAP) that can be used to
read and write a few custom registers, which can be used to communicate with
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debug hardware in a component.

10.2 JTAG Connector

Every target’s JTAG connector seems to have its own pinout. To make it easy to
acquire debug hardware, this spec recommends a connector that is compatible
with the Cortex Debug Connector, as described below.

The connector is a .05”-spaced, gold-plated male header with .016” thick
hardened copper or beryllium bronze square posts (SAMTEC FTSH-105 or
equivalent). Female connectors are compatible 20 µm gold connectors in order
to prevent oxide build-up on tin connectors.

Viewing the male header from above (the pins pointing at your eye), a
target’s connector looks as it does in Table 10. The function of each pin is
described in Table 11.

Table 10: JTAG Connector Diagram
VCC 1 2 TMS
GND 3 4 TCK
GND 5 6 TDO
KEY 7 8 TDI
N/C 9 10 RESET

Target connectors may be shrouded. In that case the key slot should be next
to pin 5. Female headers should have a matching key.

Debug adapters should be tagged or marked with their isolation voltage
threshold (i.e. unisolated, 250V, etc.).

All debug adapter pins other than GND should be current-limited to 20mA.

10.3 JTAG Registers

JTAG DTMs should use a 5-bit JTAG IR. When the TAP is reset, IR must
default to 00001, selecting the IDCODE instruction. A full list of JTAG regis-
ters along with their encoding is in Table 12. The only regular JTAG registers
a debugger might use are BYPASS and IDCODE, but the JTAG standard rec-
ommends a lot of other instructions so we leave IR space for them. If they are
not implemented, then they must select the BYPASS register.

10.3.1 IDCODE (00001)

This register is selected (in IR) when the TAP state machine is reset. Its
definition is exactly as defined in IEEE Std 1149.1-2013.

31 28 27 12 11 1 0

Version PartNumber ManufId 1
4 16 11 1
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Table 11: JTAG Connector Pinout
1 VCC Power provided by the target, which may be used to

power the debug adapter. Must be able to source at least
25mA. This signal also serves as the reference voltage for
logic high.
This pin must be clearly marked in both male and female
headers.

2 TMS JTAG TMS signal, driven by debug adapter.
3 GND Target ground.
4 TCK JTAG TCK signal, driven by the debug adapter.
5 GND Target ground.
6 TDO JTAG TDO signal, driven by the target.
7 KEY This pin should be clipped in male connectors, and

plugged in female connectors. Electrically it must not be
connected.

8 TDI JTAG TDI signal, driven by the debug adapter.
This pin may be used by a target to sense a debugger at
reset by weakly pulling this signal high during a brief
detection period at reset. Debuggers should drive TDI low
when the interface is idle.

9 N/C Not connected in either target or debug adapter. May be
used in future specs.

10 RESET Reset signal, driven by the debug adapter. This may be
active low or active high, depending on the target’s
requirements. A debug adapter must accommodate either
option. Asserting reset should reset any RISC-V cores as
well as any other peripherals on the PCB. If not
implemented in a target, this pin must not be connected.
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Table 12: JTAG TAP Registers
Address Name Description

00000 BYPASS JTAG recommends this encoding
00001 IDCODE JTAG recommends this encoding
00010 SAMPLE JTAG requires this instruction
00011 PRELOAD JTAG requires this instruction
00100 EXTEST JTAG requires this instruction
00101 CLAMP JTAG recommends this instruction
00110 CLAMP HOLD JTAG recommends this instruction
00111 CLAMP RELEASE JTAG recommends this instruction
01000 HIGHZ JTAG recommends this instruction
01001 IC RESET JTAG recommends this instruction
01010 TMP STATUS JTAG recommends this instruction
01011 INIT SETUP JTAG recommends this instruction
01100 INIT SETUP CLAMP JTAG recommends this instruction
01101 INIT RUN JTAG recommends this instruction
01110 Unused (BYPASS) Reserved for future JTAG
01111 Unused (BYPASS) Reserved for future JTAG
10000 DTM Control For Debugging
10001 Debug Bus Access For Debugging
10010 Reserved (BYPASS) Reserved for future RISC-V debugging
10011 Reserved (BYPASS) Reserved for future RISC-V debugging
10100 Reserved (BYPASS) Reserved for future RISC-V debugging
10101 Reserved (BYPASS) Reserved for future RISC-V standards
10110 Reserved (BYPASS) Reserved for future RISC-V standards
10111 Reserved (BYPASS) Reserved for future RISC-V standards
11000 Unused (BYPASS) Reserved for customization
11001 Unused (BYPASS) Reserved for customization
11010 Unused (BYPASS) Reserved for customization
11011 Unused (BYPASS) Reserved for customization
11100 Unused (BYPASS) Reserved for customization
11101 Unused (BYPASS) Reserved for customization
11110 Unused (BYPASS) Reserved for customization
11111 BYPASS JTAG requires this encoding

41



Field Description Access Reset
Version Identifies the release version of this part. R Preset
PartNumber Identifies the designer’s part number of

this part.
R Preset

ManufId Identifies the designer/manufacturer of
this part. Bits 6:0 must be bits 6:0 of
the designer/manufacturer’s Identifica-
tion Code as assigned by JEDEC Stan-
dard JEP106. Bits 10:7 contain the
modulo-16 count of the number of con-
tinuation characters (0x7f) in that same
Identification Code.

R Preset

10.3.2 DTM Control (dtmcontrol, at 10000)

The size of this register will remain constant in future versions so that a debugger
can always determine the version of the DTM.

31 17 16 15 14 13

0 dbusreset 0 hiabits
15 1 1 2

12 10 9 8 7 4 3 0

idle dbusstat loabits version
3 2 4 4

Field Description Access Reset
dbusreset Writing 1 to this bit resets the dbus con-

troller, clearing any sticky error state.
W1 0

hiabits Bits 5:4 of abits, which describes the size
of address in dbus.

R Preset

idle The number of cycles a debugger
needs to send the target through Run-
Test/Idle after every dbus scan.
0: It’s not necessary to enter Run-
Test/Idle at all.
1: Enter Run-Test/Idle and leave it im-
mediately.
2: Enter Run-Test/Idle and stay there
for 1 cycle before leaving.
And so on.

R Preset

Continued on next page
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dbusstat 0: No error.
2: An operation failed.
3: An operation was attempted while a
bus access was still in progress.

R 0

loabits Bits 3:0 of abits, which describes the size
of address in dbus.

R Preset

version 0 indicates the version described in this
document. Other values are reserved for
future use.

R 0

10.3.3 Debug Bus Access (dbus, at 10001)

This register allows access to the Debug Bus.
In Update-DR, the DTM starts the operation specified in op unless the

current status reported in op is sticky.
In Capture-DR, the DTM updates data with the result from that operation,

updating op if the current op isn’t sticky.
See Section A.1 and Table 13 for examples of how this plays out.

The still in progress status is sticky to accommodate debuggers that
batch together a number of scans, which must all be executed or stop as
soon as there’s a problem.

For instance a series of scans may write a Debug Program and execute
it. If one of the writes fails but the execution continues, then the Debug
Program may hang, or have other unexpected side effects.

abits+35 36 35 2 1 0

address data op
abits 34 2
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Field Description Access Reset
address Address used for Debug Bus access. In

Update-DR this value is sent to the DM.
R/W 0

data The data to send to the DM during
Update-DR, and the data returned from
the previous operation to the DM.

R/W 0

op When the debugger writes this field, it
has the following meaning:
0: Ignore data. (nop)
1: Read from address. (read)
2: Read from address. Then write data
to address. (write)
3: Reserved.
When the debugger reads this field, it
means the following:
0: The previous operation completed
successfully.
1: Reserved.
2: The previous operation failed. The
data scanned into dbus in this access
will be ignored. This status is sticky
and can be cleared by writing dbusreset
in dtmcontrol.
3: The previous operation is still in
progress. The data scanned into dbus

in this access will be ignored. This sta-
tus is sticky and can be cleared by writ-
ing dbusreset in dtmcontrol. If a de-
bugger sees this status, it needs to give
the target more time between Update-
DR and Capture-DR. The simplest way
to do that is to add extra transitions in
Run-Test/Idle.

R/W 0

10.3.4 BYPASS (11111)

1-bit register that has no effect. It’s used when a debugger wants to talk to a
different TAP in the same scan chain as this one.

0

0
1
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A Debugger Implementation

This section details how an external debugger might use the described debug
interface to perform some common operations on RISC-V cores using the JTAG
DTM. All these examples assume a 32-bit core but it should be easy to adapt
the examples to 64- or 128-bit cores.

A.1 Debug Bus Access

To read an arbitrary Debug Bus register, select dbus, and scan in a value with
op set to 1, and address set to the desired register address. In Update-DR
the operation will start, and in Capture-DR its results will be captured into
data. If the operation didn’t complete in time, op will be 3 and the value in
data must be ignored. The error condition must be cleared by writing dbusreset
in dtmcontrol, and then the operation must be tried again. This time the
debugger should allow for more time between Capture-DR and Update-DR.

To write an arbitrary Debug Bus register, select dbus, and scan in a value
with op set to 2, and address and data set to the desired register address and
data respectively. From then on everything happens exactly as with a read,
except that a write is also performed right after the read. The operation isn’t
considered complete until the write has happened.

It should almost never be necessary to scan IR, avoiding a big part of the
inefficiency in typical JTAG use.

A.2 Debug RAM

All operations are executed by writing a debug program to Debug RAM, and
having the core execute it. This comes down to a series of Debug Bus accesses
as described above.

First, select the hart of interest by writing its ID to hartid in dmcontrol.
Then write the program to Debug RAM with a series of writes to 0x0 – 0xf. On
the last write, set the interrupt bit. This triggers program execution. Perform
a read to poll the interrupt bit to wait for it to clear. Typically JTAG will be
so slow that the interrupt bit will be clear on the very next scan. An efficient
debugger can optimistically assume all operations will complete immediately. If
it discovers that is not the case (by seeing interrupt is still set on a scan) it can
adapt by increasing the delay between scans.

That means if eg. you are doing a block write and have the program mostly
set up, you can write a new data value and set the interrupt bit every time
through the loop using a write operation.

A.3 Main Loop

A debugger continuously monitors haltsum to see if any harts have sponta-
neously halted. While this is going on, a debugger might perform a quick
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operation (most likely a memory access) by writing a debug program that ends
with a jump to resume, and asserting a hart’s Debug Interrupt.

To halt a hart, the debugger writes a debug program that sets halt and ends
with a jump to resume. Then it asserts the hart’s Debug Interrupt.

Once halted, the debugger can write debug programs in exactly the same
way that it can when the hart is running. The only difference is that in this case
the jump to resume ends in up in Debug ROM code that waits until the debug
interrupt is set again, instead of by continuing normal execution. To resume
normal execution, the debugger writes a debug program that clears halt before
jumping to resume.

Performing operations then all comes down to writing the appropriate pro-
gram to Debug RAM, so the sections below mostly consist of short program
listings. The Debug ROM already takes care of saving s0 and s1 so those
registers can be used without any extra precautions.

A.4 Reading Memory

Execute the following program, and then read the value that was read from
data.

lw s1, address

lw s0, 0(s1)

sw s0, data

j resume

address:.word ADDRESS

data: .word DATA

A shorter program is possible by hardcoding the address in a set of lui/lw
instructions, but this technique would be limited to 32-bit cores. This version
also has the nice property that to immediately read from a different address,
only 1 word in Debug RAM needs to be changed.

A slightly different program can be used to read memory very efficiently:

lw s1, data

lw s0, 0(s1)

sw s0, data

j resume

data: .word ADDRESS

In this case data is used both for the address and data. After this program
is executed, the data value is in data. Since a JTAG bus write first performs a
read, a single scan can read this data value, write the next address value, and
assert the Debug Interrupt. As many of those scans can be used as necessary,
and every scan results in 32 bits of data being read. The debugger does need to
make sure interrupt is clear in each read. If it is not the data cannot be trusted,
and the same address should be read again.
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Table 13 shows the scans involved in reading a single word using this method.
In this table dram[n] refers to the location in Debug RAM with address n. If
more words need to be read, then this can by pipelined, by changing the scan
in step 6 to a write of the next address.

A.5 Writing Memory

To write a single word:

lw s1, data

lw s0, address

sw s1, 0(s0)

j resume

address:.word ADDRESS

data: .word DATA

To efficiently write a block of memory, the debug program can take care of
incrementing the address. First save t0 and load the start address into it:

sw t0, data

lw t0, address

j resume

address:.word ADDRESS

data: .word 0

Then write the following program with the first data value, and assert the
Debug Interrupt. Additional words can be written by writing the next data
value and asserting the Debug Interrupt.

lw s0, data

sw s0, 0(t0)

addi t0, t0, 4

j resume

data: .word DATA

After the second program is written, each word can be written to the
target in 43 TCK cycles. That’s 75% efficient, and translates to a down-
load speed of 908KB/s at a 10MHz TCK. That should be good enough that
it’s not worth making the JTAG interface more complex to improve the
efficiency. (This assumes the Debug Bus uses 5 address bits and that the
debugger never has to wait for the core.)

A.6 Halt

To halt a hart, first write the code to be executed to Debug RAM. Then assert
the relevant Debug Interrupt.

The code to be executed must set halt. Reading pc and dcsr is optional,
but it’s extremely common for a debugger to do this immediately after halting.
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Table 13: Memory Read Timeline
JTAG State Activity

1 Shift-DR Debugger shifts in write of 0x41002403 to dram[0], and
gets back the result of whatever happened previously.

Update-DR DTM starts read from dram[0], followed by write to
dram[0].

2 Capture-DR JTAG DTM captures results of read from dram[0].
Shift-DR Debugger shifts in write of 0x42483 to dram[1], and gets

back the old contents of the first word in Debug RAM.
Update-DR DTM starts read from dram[1], followed by write to

dram[1].
3 Capture-DR JTAG DTM captures results of read from dram[1].

Shift-DR Debugger shifts in write of 0x40902823 to dram[2], and
gets back the old contents of the second word in Debug
RAM.

Update-DR DTM starts read from dram[2], followed by write to
dram[2].

4 Capture-DR JTAG DTM captures results of read from dram[2].
Shift-DR Debugger shifts in write of 0x3f80006f to dram[3], and

gets back the old contents of the third word in Debug
RAM.

Update-DR DTM starts read from dram[3], followed by write to
dram[3].

5 Capture-DR JTAG DTM captures results of read from dram[3].
Shift-DR Debugger shifts in write of the address the user wants to

read from to dram[4], while also asserting the Debug
Interrupt. The old contents of the fourth word in Debug
RAM are shifted out.

Update-DR DTM starts read from dram[4], followed by write to
dram[4] which also asserts Debug Interrupt. The hart
will respond to the Debug Interrupt by executing the
program in Debug RAM which in this case will read the
address written, and replace the entry in Debug RAM
with the data at that address.

6 Capture-DR JTAG DTM captures results of read from dram[4].
Shift-DR Debugger shifts in read from dram[4], and gets back the

old contents of the fourth word in Debug RAM. (This is
the value that was there just before the address was
written there.)

Update-DR DTM starts read from dram[4].
7 Capture-DR JTAG DTM captures results of read from dram[4].

Shift-DR Debugger shifts in nop, and gets back the contents of
the fourth word in Debug RAM. This is the value that
was there during the previous Update-DR, which is the
result of the Debug Program execution.
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dpc: csrsi DCSR, DCSR_HALT_MASK

dcsr: csrr s1, DPC

sw s1, dpc

csrr s1, DCSR

sw s1, dcsr

j resume

A.7 Reading Registers

Eg. how to read f1:

fsw f1, data

j resume

data: .word 0

A.8 Writing Registers

Eg. how to write mepc.

lw s0, data

csrw MEPC, s0

j resume

data: .word DATA

A.9 Running

To let the core run once it’s halted, the debugger needs to first clear the Halt
Notification using the debug bus directly. If the debugger used any registers
besides s0 and s1 as scratch registers, now is the time to restore them. Fi-
nally:

csrci DCSR, DCSR_HALT_MASK

j resume

A.10 Single Step

A debugger can single step the core by setting a breakpoint on the next instruc-
tion and letting the core run, or by asking the hardware to perform a single
step. The former requires the debugger to have much more knowledge of the
hardware than the latter, so the latter is preferred.

Using the hardware single step feature is almost the same as regular running.
The debugger just sets step in dcsr before leaving Debug Mode. The core
behaves exactly as in the running case, except that interrupts are left off and it
only fetches and executes a single instruction before re-entering Debug Mode.
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A.11 Handling Exceptions

Generally the debugger can avoid exceptions by being careful with the programs
it writes. Sometimes they are unavoidable though, eg. if the user asks to access
memory or a CSR that is not implemented. A typical debugger will not know
enough about the platform to return an error, and must attempt the access to
determine the outcome.

When an exception occurs in Debug Mode no registers are updated, but
Debug ROM will write 0xffffffff to the last word of Debug RAM. If the debugger
thinks an exception may have occurred it should check for that. If no exception
occurred in the last entry to Debug RAM, then the word must contain 0. If
there was an exception, it’s left to the debugger to know what must have caused
it.

B Debug ROM Source

#include "riscv/encoding.h"

#define DEBUG_RAM 0x400

#define DEBUG_RAM_SIZE 64

#define CLEARDEBINT 0x100

#define SETHALTNOT 0x10c

.global entry

.global resume

.global exception

# Automatically called when Debug Mode is first entered.

entry: j _entry

# Should be called by Debug RAM code that has finished execution and

# wants to return to Debug Mode.

resume:

j _resume

exception:

# Set the last word of Debug RAM to all ones, to indicate that we hit

# an exception.

li s0, ~0

j _resume2

_resume:

li s0, 0

_resume2:

fence

50



# Restore s1.

csrr s1, CSR_MISA

bltz s1, restore_not_32

restore_32:

lw s1, (DEBUG_RAM + DEBUG_RAM_SIZE - 4)(zero)

j finish_restore

restore_not_32:

slli s1, s1, 1

bltz s1, restore_128

restore_64:

ld s1, (DEBUG_RAM + DEBUG_RAM_SIZE - 8)(zero)

j finish_restore

restore_128:

nop #lq s1, (DEBUG_RAM + DEBUG_RAM_SIZE - 16)(zero)

finish_restore:

# s0 contains ~0 if we got here through an exception, and 0 otherwise.

# Store this to the last word in Debug RAM so the debugger can tell if

# an exception occurred.

sw s0, (DEBUG_RAM + DEBUG_RAM_SIZE - 4)(zero)

# Clear debug interrupt.

csrr s0, CSR_MHARTID

sw s0, CLEARDEBINT(zero)

check_halt:

csrr s0, CSR_DCSR

andi s0, s0, DCSR_HALT

beqz s0, exit

j wait_for_interrupt

exit:

# Restore s0.

csrr s0, CSR_DSCRATCH

dret

_entry:

# Save s0 in DSCRATCH

csrw CSR_DSCRATCH, s0

# Check why we’re here

csrr s0, CSR_DCSR

# cause is in bits 8:6 of dcsr

andi s0, s0, DCSR_CAUSE

addi s0, s0, -(DCSR_CAUSE_DEBUGINT<<6)

bnez s0, spontaneous_halt
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jdebugram:

# Save s1 so that the debug program can use two registers.

fence.i

csrr s0, CSR_MISA

bltz s0, save_not_32

save_32:

sw s1, (DEBUG_RAM + DEBUG_RAM_SIZE - 4)(zero)

jr zero, DEBUG_RAM

save_not_32:

slli s0, s0, 1

bltz s0, save_128

save_64:

sd s1, (DEBUG_RAM + DEBUG_RAM_SIZE - 8)(zero)

jr zero, DEBUG_RAM

save_128:

nop #sq s1, (DEBUG_RAM + DEBUG_RAM_SIZE - 16)(zero)

jr zero, DEBUG_RAM

spontaneous_halt:

csrr s0, CSR_MHARTID

sw s0, SETHALTNOT(zero)

csrsi CSR_DCSR, DCSR_HALT

wait_for_interrupt:

csrr s0, CSR_DCSR

andi s0, s0, DCSR_DEBUGINT

beqz s0, wait_for_interrupt

j jdebugram

C Trace Module

This part of the spec needs work before it’s ready to be implemented,
which is why it’s in the appendix. It’s left here to give a rough idea
of some of the issues to consider.

Aside from viewing the current state of a core, knowing what happened in
the past can be incredibly helpful. Capturing an execution trace can give a user
that view. Unfortunately processors run so fast that they generate trace data
at a very large rate. To help deal with this, the trace data format allows for
some simple compression.

The trace functionality described here aims to support 3 different use cases:

1. Full reconstruction of all processor state, including register values etc.
To achieve this goal the decoder will have to know what code is being
executed, and know the exact behavior of every RISC-V instruction.
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2. Reconstruct just the instruction stream. Get enough data from the trace
stream that it is possible to make a list of every instruction executed. This
is possible without knowing anything about the code or the core executing
it.

3. Watch memory accesses for a certain memory region.

Trace data may be stored to a special on-core RAM, RAM on the system
bus, or to a dedicated off-chip interface. Only the system RAM destination is
covered here.

C.1 Trace Data Format

Trace data should be both compact and easy to generate. Ideally it’s also easy
to decode, but since decoding doesn’t have to happen in real time and will
usually have a powerful workstation to do the work, this is the least important
concern.

Trace data consists of a stream of 4-bit packets, which are stored in memory
in 32-bit words by putting the first packet in bits 3:0 of the 32-bit word, the
second packet into bits 7:4, and so on. Trace packets and their encoding are
listed in Table 14.

Several header packets are followed by a Value Sequence, which can encode
values between 4 and 64 bits. The sequence consists first of a 4-bit size packet
which contains a single number N. It is followed by N+1 4-bit packets which
contain the value. The first packet contains bits 3:0 of the value. The next
packet contains bits 7:4, and so on.

C.2 Trace Events

Trace events are events that occur when a core is running that result in trace
packets being emitted. They are listed in Table 15.

C.3 Synchronization

If a trace buffer wraps, it is no longer clear what in the buffer is a header
and what isn’t. To guarantee that a trace decoder can sync up easily, each
trace buffer must have 8 synchronization points, spaced evenly throughout the
buffer, with the first one at the very start of the buffer. A synchronization point
is simply an address where there is guaranteed to be a sequence header. To
make this happen, the trace source can insert a number of Nop headers into the
sequence just before writing to the synchronization point.

Aside from synchronizing a place in the data stream, it’s also necessary to
send a full PC, Read Address, Write Address, and Timestamp in order for those
to be fully decoded. Ideally that happens the first time after every synchroniza-
tion point, but bandwidth might prevent that. A trace source should attempt
to send one full value for each of these (assuming they’re enabled) soon after
each synchronization point.
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Table 14: Trace Sequence Header Packets
0000 Nop Packet that indicates no data. The trace

source must use these to ensure that there are
8 synchronization points in each buffer.

0001 PC Followed by a Value Sequence containing bits
XLEN-1:1 of the PC if the compressed ISA is
supported, or bits XLEN-1:2 of the PC if the
compressed ISA is not supported. Missing
bits must be filled in with the last PC value.

0010 Branch Taken
0011 Branch Not Taken
0100 Trace Enabled Followed by a single packet indicating the

version of the trace data (currently 0).
0101 Trace Disabled Indicates that trace was purposefully

disabled, or that some sequences were
dropped because the trace buffer overflowed.

0110 Privilege Level Followed by a packet containing whether the
cause of the change was an interrupt (1) or
something else (0) in bit 3, PRV[1:0] in bits
2:1, and IE in bit 0.

0111 Change Hart Followed by a Value Sequence containing the
hart ID of the hart whose trace data follows.
Missing bits must be filled in with 0.

1000 Load Address Followed by a Value Sequence containing the
address. Missing bits must be filled in with
the last Load Address value.

1001 Store Address Followed by a Value Sequence containing the
address. Missing bits must be filled in with
the last Store Address value.

1010 Load Data Followed by a Value Sequence containing the
data. Missing bits must be filled in by sign
extending the value.

1011 Store Data Followed by a Value Sequence containing the
data. Missing bits must be filled in by sign
extending the value.

1100 Timestamp Followed by a Value Sequence containing the
timestamp. Missing bits should be filled in
with the last Timestamp value.

1101 Reserved Reserved for future standards.
1110 Custom Reserved for custom trace data.
1111 Custom Reserved for custom trace data.
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Table 15: Trace Data Events
Opcode Action
jal If emitbranch is disabled but emitpc is enabled, emit 2

PC values: first the address of the instruction, then the
address being jumped to.

jalr If emitbranch is disabled but emitpc is enabled, emit 2
PC values: first the address of the instruction, then the
address being jumped to. Otherwise, if emitstoredata is
enabled emit just the destination PC.

BRANCH If emitbranch is enabled, emit either Branch Taken or
Branch Not Taken. Otherwise if emitpc is enabled and
the branch is taken, emit 2 PC values: first the address
of the branch, then the address being branched to.

LOAD If emitloadaddr is enabled, emit the address. If
emitloaddata is enabled, emit the data that was loaded.

STORE If emitstoreaddr is enabled, emit the address. If
emitstoredata is enabled, emit the data that is stored.

Traps scall, sbreak, ecall, ebreak, and eret emit the same
as if they were jal instructions. In addition they also
emit a Privilege Level sequence.

Interrupts Emit PC (if enabled) of the last instruction executed.
Emit Privilege Level (if enabled). Finally emit the new
PC (if enabled).

CSR instructions For reads emit Load Data (if enabled). For writes emit
Store Data (if enabled).

Data Dropped After packet sequences are dropped because data is
generated too quickly, Trace Disabled must be emitted.
It’s not necessary to follow that up with a Trace
Enabled sequence.
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C.4 Trace Registers

Table 16: Trace Registers
Address Name

0x728 Trace
0x729 Trace Buffer Start
0x72a Trace Buffer End
0x72b Trace Buffer Write

C.4.1 Trace (trace, at 0x728)

31 25 24 23 22 21 20

0 wrapped emittimestamp emitstoredata emitloaddata emitstoreaddr
7 1 1 1 1 1

19 18 17 16 15 10 9 8

emitloadaddr emitpriv emitbranch emitpc 0 fullaction
1 1 1 1 6 2

7 6 5 4 3 2 1 0

0 destination 0 stall discard supported
2 2 1 1 1 1
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Field Description Access Reset
wrapped 1 if the trace buffer has wrapped since

the last time discard was written. 0 oth-
erwise.

R 0

emittimestamp Emit Timestamp trace sequences. R/W 0
emitstoredata Emit Store Data trace sequences. R/W 0
emitloaddata Emit Load Data trace sequences. R/W 0
emitstoreaddr Emit Store Address trace sequences. R/W 0
emitloadaddr Emit Load Address trace sequences. R/W 0
emitpriv Emit Privilege Level trace sequences. R/W 0
emitbranch Emit Branch Taken and Branch Not

Taken trace sequences.
R/W 0

emitpc Emit PC trace sequences. R/W 0
fullaction Determine what happens when the trace

buffer is full. 0 means wrap and over-
write. 1 means turn off trace until
discard is written as 1. 2 means cause
a trace full exception. 3 is reserved for
future use.

R/W 0

destination 0: Trace to a dedicated on-core RAM
(which is not further defined in this
spec).
1: Trace to RAM on the system bus.
2: Send trace data to a dedicated off-
chip interface (which is not defined in
this spec). This does not affect execu-
tion speed.
3: Reserved for future use.
Options 0 and 1 slow down execution
(eg. because of system bus contention).

R/W Preset

Continued on next page
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stall When 1, the trace logic may stall pro-
cessor execution to ensure it can emit
all the trace sequences required. When
0 individual trace sequences may be
dropped.

R/W 1

discard Writing 1 to this bit tells the trace logic
that any trace collected is no longer re-
quired. When tracing to RAM, it resets
the trace write pointer to the start of
the memory, as well as wrapped.

W1 0

C.4.2 Trace Buffer Start (tbufstart, at 0x729)

If destination is 1, this register contains the start address of block of RAM
reserved for trace data.

XLEN-1 0

address
XLEN

C.4.3 Trace Buffer End (tbufend, at 0x72a)

If destination is 1, this register contains the end address (exclusive) of block of
RAM reserved for trace data.

XLEN-1 0

address
XLEN

C.4.4 Trace Buffer Write (tbufwrite, at 0x72b)

If destination is 1, this read-only register contains the address that the next trace
packet will be written to.

XLEN-1 0

address
XLEN

D Future Ideas

Some future version of this spec may implement some of the following features.

1. The spec defines several additions to the Device Tree which enable a de-
bugger to discover hart IDs and supported triggers for all the cores in the
system.

2. DTMs can function as general bus slaves, so they would look like regular
RAM to bus masters.
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3. Harts can be divided into groups. All the harts in the same group can be
halted/run/stepped simultaneously. When a hart hits a breakpoint, all
the other harts in the same group also halt within a few clock cycles.

4. DTMs are specified for protocols like USB, I2C, SPI, and SWD.

5. Core registers can be read without halting the processor.

6. The debugger can communicate with the power manager to power cores
up or down, and to query their status.

7. Serial ports can raise an interrupt when a send/receive queue becomes
full/empty.

8. The debug interrupt can be masked by running code. If the interrupt
is asserted, then deasserted, and then asserted again the debug interrupt
happens anyway. This mechanism can be used to eg. read/write memory
with minimal interruption, making sure never to interrupt during a critical
piece of code.

9. The debugger can non-intrusively sample a recent PC value from any
running hart.

D.1 Lightweight Brainstorming

At least one person has expressed interest in an absolute minimal gate count
debug spec. Here are some ideas that take this existing design, and attempt to
minimize its gate count while retaining at least its spirit.

This proposal preserves the focus on having the debugger feed the hart in-
structions, as well as not adding any slave interfaces to each hart.

Debug Mode is not like other mode changes. (This is a major difference
with the full-featured spec.) Instead, in Debug Mode all instruction fetches
come from address 0x480 + 8 ∗ hart id regardless of what the PC is. The core
will keep updating the PC as usual. (Eg. an ALU instruction will increment
it, and a jump instruction will change it to the jump destination.) Caches are
disabled, as in the current spec. There may not be any speculative instruction
fetching. When the PC hits the max value, it must wrap to 0 when incremented.

While in Debug Mode, the hart can exchange data with the debugger by
accessing address 0x484 + 8 ∗ hart id.

0x480 is chosen as a base, so a Debug Module can support a mixture of harts
that use the Lightweight and Optimized debug interface.

When the Debug Module has a new instruction for a hart, it returns that
instruction on an instruction fetch. Any other time it will return a jump-to-self
instruction, or keep the access alive until it has an instruction.

When a data write to the Debug Module happens, it must accept and re-
member this write. If necessary it must keep the access alive until the value has
been seen by the debugger. Likewise for reads it must present the hart with a
value it has not yet read.
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The Debug Module can tell that a hart is in Debug Mode, because if it is
then it’ll be performing memory access to it.

A debugger can see this happening, and when it does, it sends:

sw s0, 0x484(zero)

# read s0 from data slot

auipc s0, 0

sw s0, 0x484(zero)

# read "pc" from data slot

to save s0, and then to read the PC. Note that the actual PC where the
target was halted will be 4 (8?) less than the stored value.

No exceptions are taken in Debug Mode, so there is no way to check whether
a load/store raised an exception. Unless we add status bits somewhere? Ditto
for accessing non-existent CSRs.

dret instruction leaves debug mode, leaving the PC exactly where it is. So
to resume:

lw s0, 0x484(zero)

# write "pc" to data slot

jr s0

dret

Simple Debug Module will just pass each access onto the DTM. Ie. set some
bits indicating what kind of access is pending. Then the polling DTM will come
along, read/write a value, and indicate the access can be completed. The DM
could just store bits 6:2 of the address and read/write bit.

RV64. It would be nice to keep the Debug Module 32-bit. That does mean
to store a register value you have to sw/shift/sw. Keeping the Debug Module
32-bit allows for more harts (since less address space is needed per store), and
less bits used for JTAG shift registers etc. It’s also one less parameter needed
to instantiate it.

Read memory:

lw s0, 0x484(zero)

# write address to data slot

lw s1, 0(s0)

sw s1, 0x484(zero)

# read data from data slot

addi s1, s1, 4

# repeat... 3 scans per word

E Change Log

Revision Date Author(s) Description

60



0.10 Jul 11 TN Version shared for 4th RISC-V Work-
shop

0.11 Jul 17 TN Updated Bus Access section
0.11 Jul 29 TN mcontrol is intended to alias tdata0.

Remove conditional writes.
0.11 Aug 11 TN Document wfi behavior in Debug Mode.

Core Debug Registers are only accessible
in Debug Mode. Removed hwbpcount
field from dcsr.

0.11 Aug 22 TN Clarify meaning of mode in tselect. All
triggers are either locked by the debug-
ger, or none are.

0.11 Aug 23 TN Triggers are locked on an individual ba-
sis again. See dmode in tdata0. The
definitions of chain in mcontrol has been
changed to be easier to explain. Changed
recommendations on when store hard-
ware breakpoints fire.

0.11 Aug 25 TN Add timing to mcontrol. Changed en-
coding of action.

0.11 Aug 26 TN Document lr/sc behavior. Rename
tdata0–tdata2 to tdata1–tdata3.

0.11 Sep 6 TN Change Debug Bus to only support sim-
ple read and write operations.

0.11 Sep 7 TN Clarify op in dbus.
0.11 Sep 13 TN Add rough idea of instruction count trig-

gers that could be used for single step.
0.11 Sep 27 TN M-mode writes to triggers with

dmode=1 are ignored instead of raising
an exception.

0.11 Oct 24 TN Change serial full bit to full/overflow.
0.11 Nov 2 TN There actually can be side effects to

reading Debug Bus registers (specifically
reading serial data).
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