--- category: - Java核心 - 并发编程 tag: - Java --- # Java并发编程volatile关键字解析 ## 几个基本概念 在介绍volatile之前,我们先回顾及介绍几个基本的概念。 ### 内存可见性 在Java内存模型那一章我们介绍了JMM有一个主内存,每个线程有自己私有的工作内存,工作内存中保存了一些变量在主内存的拷贝。 **内存可见性,指的是线程之间的可见性,当一个线程修改了共享变量时,另一个线程可以读取到这个修改后的值**。 ### 重排序 为优化程序性能,对原有的指令执行顺序进行优化重新排序。重排序可能发生在多个阶段,比如编译重排序、CPU重排序等。 ### happens-before规则 是一个给程序员使用的规则,只要程序员在写代码的时候遵循happens-before规则,JVM就能保证指令在多线程之间的顺序性符合程序员的预期。 ## volatile的内存语义 在Java中,volatile关键字有特殊的内存语义。volatile主要有以下两个功能: - 保证变量的**内存可见性** - 禁止volatile变量与普通变量**重排序**(JSR133提出,Java 5 开始才有这个“增强的volatile内存语义”) ### 内存可见性 以一段示例代码开始: ```java public class VolatileExample { int a = 0; volatile boolean flag = false; public void writer() { a = 1; // step 1 flag = true; // step 2 } public void reader() { if (flag) { // step 3 System.out.println(a); // step 4 } } } ``` 在这段代码里,我们使用`volatile`关键字修饰了一个`boolean`类型的变量`flag`。 所谓内存可见性,指的是当一个线程对`volatile`修饰的变量进行**写操作**(比如step 2)时,JMM会立即把该线程对应的本地内存中的共享变量的值刷新到主内存;当一个线程对`volatile`修饰的变量进行**读操作**(比如step 3)时,JMM会把立即该线程对应的本地内存置为无效,从主内存中读取共享变量的值。 > 在这一点上,volatile与锁具有相同的内存效果,volatile变量的写和锁的释放具有相同的内存语义,volatile变量的读和锁的获取具有相同的内存语义。 假设在时间线上,线程A先执行方法`writer`方法,线程B后执行`reader`方法。那必然会有下图: ![volatile内存示意图](http://cdn.tobebetterjavaer.com/tobebetterjavaer/images/thread/volatile-1f5e263e-dd3e-4fb9-a21f-67e160b3dbf2.jpg) 而如果`flag`变量**没有**用`volatile`修饰,在step 2,线程A的本地内存里面的变量就不会立即更新到主内存,那随后线程B也同样不会去主内存拿最新的值,仍然使用线程B本地内存缓存的变量的值`a = 0,flag = false`。 ### 禁止重排序 在JSR-133之前的旧的Java内存模型中,是允许volatile变量与普通变量重排序的。那上面的案例中,可能就会被重排序成下列时序来执行: 1. 线程A写volatile变量,step 2,设置flag为true; 2. 线程B读同一个volatile,step 3,读取到flag为true; 3. 线程B读普通变量,step 4,读取到 a = 0; 4. 线程A修改普通变量,step 1,设置 a = 1; 可见,如果volatile变量与普通变量发生了重排序,虽然volatile变量能保证内存可见性,也可能导致普通变量读取错误。 所以在旧的内存模型中,volatile的写-读就不能与锁的释放-获取具有相同的内存语义了。为了提供一种比锁更轻量级的**线程间的通信机制**,**JSR-133**专家组决定增强volatile的内存语义:严格限制编译器和处理器对volatile变量与普通变量的重排序。 编译器还好说,JVM是怎么还能限制处理器的重排序的呢?它是通过**内存屏障**来实现的。 什么是内存屏障?硬件层面,内存屏障分两种:读屏障(Load Barrier)和写屏障(Store Barrier)。内存屏障有两个作用: 1. 阻止屏障两侧的指令重排序; 2. 强制把写缓冲区/高速缓存中的脏数据等写回主内存,或者让缓存中相应的数据失效。 > 注意这里的缓存主要指的是CPU缓存,如L1,L2等 编译器在**生成字节码时**,会在指令序列中插入内存屏障来禁止特定类型的处理器重排序。编译器选择了一个**比较保守的JMM内存屏障插入策略**,这样可以保证在任何处理器平台,任何程序中都能得到正确的volatile内存语义。这个策略是: - 在每个volatile写操作前插入一个StoreStore屏障; - 在每个volatile写操作后插入一个StoreLoad屏障; - 在每个volatile读操作后插入一个LoadLoad屏障; - 在每个volatile读操作后再插入一个LoadStore屏障。 大概示意图是这个样子: ![内存屏障](http://cdn.tobebetterjavaer.com/tobebetterjavaer/images/thread/volatile-aaa0fa44-341f-401f-bfb7-03d0c03dc2b1.png) > 再逐个解释一下这几个屏障。注:下述Load代表读操作,Store代表写操作 > > **LoadLoad屏障**:对于这样的语句Load1; LoadLoad; Load2,在Load2及后续读取操作要读取的数据被访问前,保证Load1要读取的数据被读取完毕。 > **StoreStore屏障**:对于这样的语句Store1; StoreStore; Store2,在Store2及后续写入操作执行前,这个屏障会把Store1强制刷新到内存,保证Store1的写入操作对其它处理器可见。 > **LoadStore屏障**:对于这样的语句Load1; LoadStore; Store2,在Store2及后续写入操作被刷出前,保证Load1要读取的数据被读取完毕。 > **StoreLoad屏障**:对于这样的语句Store1; StoreLoad; Load2,在Load2及后续所有读取操作执行前,保证Store1的写入对所有处理器可见。它的开销是四种屏障中最大的(冲刷写缓冲器,清空无效化队列)。在大多数处理器的实现中,这个屏障是个万能屏障,兼具其它三种内存屏障的功能 对于连续多个volatile变量读或者连续多个volatile变量写,编译器做了一定的优化来提高性能,比如: > 第一个volatile读; > > LoadLoad屏障; > > 第二个volatile读; > > LoadStore屏障 再介绍一下volatile与普通变量的重排序规则: 1. 如果第一个操作是volatile读,那无论第二个操作是什么,都不能重排序; 2. 如果第二个操作是volatile写,那无论第一个操作是什么,都不能重排序; 3. 如果第一个操作是volatile写,第二个操作是volatile读,那不能重排序。 举个例子,我们在案例中step 1,是普通变量的写,step 2是volatile变量的写,那符合第2个规则,这两个steps不能重排序。而step 3是volatile变量读,step 4是普通变量读,符合第1个规则,同样不能重排序。 但如果是下列情况:第一个操作是普通变量读,第二个操作是volatile变量读,那是可以重排序的: ```java // 声明变量 int a = 0; // 声明普通变量 volatile boolean flag = false; // 声明volatile变量 // 以下两个变量的读操作是可以重排序的 int i = a; // 普通变量读 boolean j = flag; // volatile变量读 ``` ## volatile的用途 从volatile的内存语义上来看,volatile可以保证内存可见性且禁止重排序。 在保证内存可见性这一点上,volatile有着与锁相同的内存语义,所以可以作为一个“轻量级”的锁来使用。但由于volatile仅仅保证对单个volatile变量的读/写具有原子性,而锁可以保证整个**临界区代码**的执行具有原子性。所以**在功能上,锁比volatile更强大;在性能上,volatile更有优势**。 在禁止重排序这一点上,volatile也是非常有用的。比如我们熟悉的单例模式,其中有一种实现方式是“双重锁检查”,比如这样的代码: ```java public class Singleton { private static Singleton instance; // 不使用volatile关键字 // 双重锁检验 public static Singleton getInstance() { if (instance == null) { // 第7行 synchronized (Singleton.class) { if (instance == null) { instance = new Singleton(); // 第10行 } } } return instance; } } ``` 如果这里的变量声明不使用volatile关键字,是可能会发生错误的。它可能会被重排序: ```java instance = new Singleton(); // 第10行 // 可以分解为以下三个步骤 1 memory=allocate();// 分配内存 相当于c的malloc 2 ctorInstanc(memory) //初始化对象 3 s=memory //设置s指向刚分配的地址 // 上述三个步骤可能会被重排序为 1-3-2,也就是: 1 memory=allocate();// 分配内存 相当于c的malloc 3 s=memory //设置s指向刚分配的地址 2 ctorInstanc(memory) //初始化对象 ``` 而一旦假设发生了这样的重排序,比如线程A在第10行执行了步骤1和步骤3,但是步骤2还没有执行完。这个时候另一个线程B执行到了第7行,它会判定instance不为空,然后直接返回了一个未初始化完成的instance! 所以JSR-133对volatile做了增强后,volatile的禁止重排序功能还是非常有用的。 --- >编辑:沉默王二,内容大部分来源以下三个开源仓库: >- [深入浅出 Java 多线程](http://concurrent.redspider.group/) >- [并发编程知识总结](https://github.com/CL0610/Java-concurrency) >- [Java八股文](https://github.com/CoderLeixiaoshuai/java-eight-part)