// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // The test uses an array to compare against values written to the database. // Keys written to the array are in 1:1 correspondence to the actual values in // the database according to the formula in the function GenerateValue. // Space is reserved in the array from 0 to FLAGS_max_key and values are // randomly written/deleted/read from those positions. During verification we // compare all the positions in the array. To shorten/elongate the running // time, you could change the settings: FLAGS_max_key, FLAGS_ops_per_thread, // (sometimes also FLAGS_threads). // // NOTE that if FLAGS_test_batches_snapshots is set, the test will have // different behavior. See comment of the flag for details. #include #include #include #include "db/db_impl.h" #include "db/version_set.h" #include "db/db_statistics.h" #include "leveldb/cache.h" #include "utilities/utility_db.h" #include "leveldb/env.h" #include "leveldb/write_batch.h" #include "leveldb/statistics.h" #include "port/port.h" #include "util/coding.h" #include "util/crc32c.h" #include "util/histogram.h" #include "util/mutexlock.h" #include "util/random.h" #include "util/testutil.h" #include "util/logging.h" #include "utilities/ttl/db_ttl.h" #include "hdfs/env_hdfs.h" static const long KB = 1024; // Seed for PRNG static uint32_t FLAGS_seed = 2341234; // Max number of key/values to place in database static long FLAGS_max_key = 1 * KB * KB * KB; // If set, the test uses MultiGet(), MultiPut() and MultiDelete() which // read/write/delete multiple keys in a batch. In this mode, we do not verify // db content by comparing the content with the pre-allocated array. Instead, // we do partial verification inside MultiGet() by checking various values in // a batch. Benefit of this mode: // (a) No need to acquire mutexes during writes (less cache flushes // in multi-core leading to speed up) // (b) No long validation at the end (more speed up) // (c) Test snapshot and atomicity of batch writes static bool FLAGS_test_batches_snapshots = false; // Number of concurrent threads to run. static int FLAGS_threads = 32; // Opens the db with this ttl value if this is not -1 // Carefully specify a large value such that verifications on deleted // values don't fail static int FLAGS_ttl = -1; // Size of each value will be this number times rand_int(1,3) bytes static int FLAGS_value_size_mult = 8; static bool FLAGS_verify_before_write = false; // Print histogram of operation timings static bool FLAGS_histogram = false; // Destroys the database dir before start if this is true static bool FLAGS_destroy_db_initially = true; static bool FLAGS_verbose = false; // Number of bytes to buffer in memtable before compacting // (initialized to default value by "main") static int FLAGS_write_buffer_size = 0; // The number of in-memory memtables. // Each memtable is of size FLAGS_write_buffer_size. // This is initialized to default value of 2 in "main" function. static int FLAGS_max_write_buffer_number = 0; // The maximum number of concurrent background compactions // that can occur in parallel. // This is initialized to default value of 1 in "main" function. static int FLAGS_max_background_compactions = 0; // This is initialized to default value of false static leveldb::CompactionStyle FLAGS_compaction_style = leveldb::kCompactionStyleLevel; // Number of bytes to use as a cache of uncompressed data. static long FLAGS_cache_size = 2 * KB * KB * KB; // Number of bytes in a block. static int FLAGS_block_size = 4 * KB; // Number of times database reopens static int FLAGS_reopen = 10; // Maximum number of files to keep open at the same time (use default if == 0) static int FLAGS_open_files = 0; // Bloom filter bits per key. // Negative means use default settings. static int FLAGS_bloom_bits = 10; // Use the db with the following name. static const char* FLAGS_db = nullptr; // Verify checksum for every block read from storage static bool FLAGS_verify_checksum = false; // Allow reads to occur via mmap-ing files static bool FLAGS_use_mmap_reads = leveldb::EnvOptions().use_mmap_reads; // Database statistics static std::shared_ptr dbstats; // Sync all writes to disk static bool FLAGS_sync = false; // If true, do not wait until data is synced to disk. static bool FLAGS_disable_data_sync = false; // If true, issue fsync instead of fdatasync static bool FLAGS_use_fsync = false; // If non-zero, kill at various points in source code with probability 1/this static int FLAGS_kill_random_test = 0; extern int leveldb_kill_odds; // If true, do not write WAL for write. static bool FLAGS_disable_wal = false; // Target level-1 file size for compaction static int FLAGS_target_file_size_base = 64 * KB; // A multiplier to compute targe level-N file size (N >= 2) static int FLAGS_target_file_size_multiplier = 1; // Max bytes for level-1 static uint64_t FLAGS_max_bytes_for_level_base = 256 * KB; // A multiplier to compute max bytes for level-N (N >= 2) static int FLAGS_max_bytes_for_level_multiplier = 2; // Number of files in level-0 that will trigger put stop. static int FLAGS_level0_stop_writes_trigger = 12; // Number of files in level-0 that will slow down writes. static int FLAGS_level0_slowdown_writes_trigger = 8; // Ratio of reads to total workload (expressed as a percentage) static unsigned int FLAGS_readpercent = 10; // Ratio of prefix iterators to total workload (expressed as a percentage) static unsigned int FLAGS_prefixpercent = 25; // Ratio of deletes to total workload (expressed as a percentage) static unsigned int FLAGS_writepercent = 50; // Ratio of deletes to total workload (expressed as a percentage) static unsigned int FLAGS_delpercent = 15; // Option to disable compation triggered by read. static int FLAGS_disable_seek_compaction = false; // Option to delete obsolete files periodically // Default: 0 which means that obsolete files are // deleted after every compaction run. static uint64_t FLAGS_delete_obsolete_files_period_micros = 0; // Algorithm to use to compress the database static enum leveldb::CompressionType FLAGS_compression_type = leveldb::kSnappyCompression; // posix or hdfs environment static leveldb::Env* FLAGS_env = leveldb::Env::Default(); // Number of operations per thread. static uint32_t FLAGS_ops_per_thread = 600000; // Log2 of number of keys per lock static uint32_t FLAGS_log2_keys_per_lock = 2; // implies 2^2 keys per lock // Percentage of times we want to purge redundant keys in memory before flushing static uint32_t FLAGS_purge_redundant_percent = 50; // On true, deletes use KeyMayExist to drop the delete if key not present static bool FLAGS_filter_deletes = false; // Level0 compaction start trigger static int FLAGS_level0_file_num_compaction_trigger = 0; namespace leveldb { // convert long to a big-endian slice key static std::string Key(long val) { std::string little_endian_key; std::string big_endian_key; PutFixed64(&little_endian_key, val); assert(little_endian_key.size() == sizeof(val)); big_endian_key.resize(sizeof(val)); for (int i=0; i<(int)sizeof(val); i++) { big_endian_key[i] = little_endian_key[sizeof(val) - 1 - i]; } return big_endian_key; } class StressTest; namespace { class Stats { private: double start_; double finish_; double seconds_; long done_; long gets_; long prefixes_; long writes_; long deletes_; long iterator_size_sums_; long founds_; long errors_; int next_report_; size_t bytes_; double last_op_finish_; HistogramImpl hist_; public: Stats() { } void Start() { next_report_ = 100; hist_.Clear(); done_ = 0; gets_ = 0; prefixes_ = 0; writes_ = 0; deletes_ = 0; iterator_size_sums_ = 0; founds_ = 0; errors_ = 0; bytes_ = 0; seconds_ = 0; start_ = FLAGS_env->NowMicros(); last_op_finish_ = start_; finish_ = start_; } void Merge(const Stats& other) { hist_.Merge(other.hist_); done_ += other.done_; gets_ += other.gets_; prefixes_ += other.prefixes_; writes_ += other.writes_; deletes_ += other.deletes_; iterator_size_sums_ += other.iterator_size_sums_; founds_ += other.founds_; errors_ += other.errors_; bytes_ += other.bytes_; seconds_ += other.seconds_; if (other.start_ < start_) start_ = other.start_; if (other.finish_ > finish_) finish_ = other.finish_; } void Stop() { finish_ = FLAGS_env->NowMicros(); seconds_ = (finish_ - start_) * 1e-6; } void FinishedSingleOp() { if (FLAGS_histogram) { double now = FLAGS_env->NowMicros(); double micros = now - last_op_finish_; hist_.Add(micros); if (micros > 20000) { fprintf(stdout, "long op: %.1f micros%30s\r", micros, ""); } last_op_finish_ = now; } done_++; if (done_ >= next_report_) { if (next_report_ < 1000) next_report_ += 100; else if (next_report_ < 5000) next_report_ += 500; else if (next_report_ < 10000) next_report_ += 1000; else if (next_report_ < 50000) next_report_ += 5000; else if (next_report_ < 100000) next_report_ += 10000; else if (next_report_ < 500000) next_report_ += 50000; else next_report_ += 100000; fprintf(stdout, "... finished %ld ops%30s\r", done_, ""); } } void AddBytesForWrites(int nwrites, size_t nbytes) { writes_ += nwrites; bytes_ += nbytes; } void AddGets(int ngets, int nfounds) { founds_ += nfounds; gets_ += ngets; } void AddPrefixes(int nprefixes, int count) { prefixes_ += nprefixes; iterator_size_sums_ += count; } void AddDeletes(int n) { deletes_ += n; } void AddErrors(int n) { errors_ += n; } void Report(const char* name) { std::string extra; if (bytes_ < 1 || done_ < 1) { fprintf(stderr, "No writes or ops?\n"); return; } double elapsed = (finish_ - start_) * 1e-6; double bytes_mb = bytes_ / 1048576.0; double rate = bytes_mb / elapsed; double throughput = (double)done_/elapsed; fprintf(stdout, "%-12s: ", name); fprintf(stdout, "%.3f micros/op %ld ops/sec\n", seconds_ * 1e6 / done_, (long)throughput); fprintf(stdout, "%-12s: Wrote %.2f MB (%.2f MB/sec) (%ld%% of %ld ops)\n", "", bytes_mb, rate, (100*writes_)/done_, done_); fprintf(stdout, "%-12s: Wrote %ld times\n", "", writes_); fprintf(stdout, "%-12s: Deleted %ld times\n", "", deletes_); fprintf(stdout, "%-12s: %ld read and %ld found the key\n", "", gets_, founds_); fprintf(stdout, "%-12s: Prefix scanned %ld times\n", "", prefixes_); fprintf(stdout, "%-12s: Iterator size sum is %ld\n", "", iterator_size_sums_); fprintf(stdout, "%-12s: Got errors %ld times\n", "", errors_); if (FLAGS_histogram) { fprintf(stdout, "Microseconds per op:\n%s\n", hist_.ToString().c_str()); } fflush(stdout); } }; // State shared by all concurrent executions of the same benchmark. class SharedState { public: static const uint32_t SENTINEL = 0xffffffff; explicit SharedState(StressTest* stress_test) : cv_(&mu_), seed_(FLAGS_seed), max_key_(FLAGS_max_key), log2_keys_per_lock_(FLAGS_log2_keys_per_lock), num_threads_(FLAGS_threads), num_initialized_(0), num_populated_(0), vote_reopen_(0), num_done_(0), start_(false), start_verify_(false), stress_test_(stress_test) { if (FLAGS_test_batches_snapshots) { key_locks_ = nullptr; values_ = nullptr; fprintf(stdout, "No lock creation because test_batches_snapshots set\n"); return; } values_ = new uint32_t[max_key_]; for (long i = 0; i < max_key_; i++) { values_[i] = SENTINEL; } long num_locks = (max_key_ >> log2_keys_per_lock_); if (max_key_ & ((1 << log2_keys_per_lock_) - 1)) { num_locks ++; } fprintf(stdout, "Creating %ld locks\n", num_locks); key_locks_ = new port::Mutex[num_locks]; } ~SharedState() { delete[] values_; delete[] key_locks_; } port::Mutex* GetMutex() { return &mu_; } port::CondVar* GetCondVar() { return &cv_; } StressTest* GetStressTest() const { return stress_test_; } long GetMaxKey() const { return max_key_; } uint32_t GetNumThreads() const { return num_threads_; } void IncInitialized() { num_initialized_++; } void IncOperated() { num_populated_++; } void IncDone() { num_done_++; } void IncVotedReopen() { vote_reopen_ = (vote_reopen_ + 1) % num_threads_; } bool AllInitialized() const { return num_initialized_ >= num_threads_; } bool AllOperated() const { return num_populated_ >= num_threads_; } bool AllDone() const { return num_done_ >= num_threads_; } bool AllVotedReopen() { return (vote_reopen_ == 0); } void SetStart() { start_ = true; } void SetStartVerify() { start_verify_ = true; } bool Started() const { return start_; } bool VerifyStarted() const { return start_verify_; } port::Mutex* GetMutexForKey(long key) { return &key_locks_[key >> log2_keys_per_lock_]; } void Put(long key, uint32_t value_base) { values_[key] = value_base; } uint32_t Get(long key) const { return values_[key]; } void Delete(long key) const { values_[key] = SENTINEL; } uint32_t GetSeed() const { return seed_; } private: port::Mutex mu_; port::CondVar cv_; const uint32_t seed_; const long max_key_; const uint32_t log2_keys_per_lock_; const int num_threads_; long num_initialized_; long num_populated_; long vote_reopen_; long num_done_; bool start_; bool start_verify_; StressTest* stress_test_; uint32_t *values_; port::Mutex *key_locks_; }; // Per-thread state for concurrent executions of the same benchmark. struct ThreadState { uint32_t tid; // 0..n-1 Random rand; // Has different seeds for different threads SharedState* shared; Stats stats; ThreadState(uint32_t index, SharedState *shared) : tid(index), rand(1000 + index + shared->GetSeed()), shared(shared) { } }; } // namespace class StressTest { public: StressTest() : cache_(NewLRUCache(FLAGS_cache_size)), filter_policy_(FLAGS_bloom_bits >= 0 ? NewBloomFilterPolicy(FLAGS_bloom_bits) : nullptr), prefix_extractor_(NewFixedPrefixTransform( FLAGS_test_batches_snapshots ? sizeof(long) : sizeof(long)-1)), db_(nullptr), num_times_reopened_(0) { if (FLAGS_destroy_db_initially) { std::vector files; FLAGS_env->GetChildren(FLAGS_db, &files); for (unsigned int i = 0; i < files.size(); i++) { if (Slice(files[i]).starts_with("heap-")) { FLAGS_env->DeleteFile(std::string(FLAGS_db) + "/" + files[i]); } } DestroyDB(FLAGS_db, Options()); } } ~StressTest() { delete db_; delete filter_policy_; delete prefix_extractor_; } void Run() { PrintEnv(); Open(); SharedState shared(this); uint32_t n = shared.GetNumThreads(); std::vector threads(n); for (uint32_t i = 0; i < n; i++) { threads[i] = new ThreadState(i, &shared); FLAGS_env->StartThread(ThreadBody, threads[i]); } // Each thread goes through the following states: // initializing -> wait for others to init -> read/populate/depopulate // wait for others to operate -> verify -> done { MutexLock l(shared.GetMutex()); while (!shared.AllInitialized()) { shared.GetCondVar()->Wait(); } double now = FLAGS_env->NowMicros(); fprintf(stdout, "%s Starting database operations\n", FLAGS_env->TimeToString((uint64_t) now/1000000).c_str()); shared.SetStart(); shared.GetCondVar()->SignalAll(); while (!shared.AllOperated()) { shared.GetCondVar()->Wait(); } now = FLAGS_env->NowMicros(); if (FLAGS_test_batches_snapshots) { fprintf(stdout, "%s Limited verification already done during gets\n", FLAGS_env->TimeToString((uint64_t) now/1000000).c_str()); } else { fprintf(stdout, "%s Starting verification\n", FLAGS_env->TimeToString((uint64_t) now/1000000).c_str()); } shared.SetStartVerify(); shared.GetCondVar()->SignalAll(); while (!shared.AllDone()) { shared.GetCondVar()->Wait(); } } for (unsigned int i = 1; i < n; i++) { threads[0]->stats.Merge(threads[i]->stats); } threads[0]->stats.Report("Stress Test"); for (unsigned int i = 0; i < n; i++) { delete threads[i]; threads[i] = nullptr; } double now = FLAGS_env->NowMicros(); if (!FLAGS_test_batches_snapshots) { fprintf(stdout, "%s Verification successful\n", FLAGS_env->TimeToString((uint64_t) now/1000000).c_str()); } PrintStatistics(); } private: static void ThreadBody(void* v) { ThreadState* thread = reinterpret_cast(v); SharedState* shared = thread->shared; { MutexLock l(shared->GetMutex()); shared->IncInitialized(); if (shared->AllInitialized()) { shared->GetCondVar()->SignalAll(); } while (!shared->Started()) { shared->GetCondVar()->Wait(); } } thread->shared->GetStressTest()->OperateDb(thread); { MutexLock l(shared->GetMutex()); shared->IncOperated(); if (shared->AllOperated()) { shared->GetCondVar()->SignalAll(); } while (!shared->VerifyStarted()) { shared->GetCondVar()->Wait(); } } if (!FLAGS_test_batches_snapshots) { thread->shared->GetStressTest()->VerifyDb(*(thread->shared), thread->tid); } { MutexLock l(shared->GetMutex()); shared->IncDone(); if (shared->AllDone()) { shared->GetCondVar()->SignalAll(); } } } // Given a key K and value V, this puts ("0"+K, "0"+V), ("1"+K, "1"+V), ... // ("9"+K, "9"+V) in DB atomically i.e in a single batch. // Also refer MultiGet. Status MultiPut(ThreadState* thread, const WriteOptions& writeoptions, const Slice& key, const Slice& value, size_t sz) { std::string keys[10] = {"9", "8", "7", "6", "5", "4", "3", "2", "1", "0"}; std::string values[10] = {"9", "8", "7", "6", "5", "4", "3", "2", "1", "0"}; Slice value_slices[10]; WriteBatch batch; Status s; for (int i = 0; i < 10; i++) { keys[i] += key.ToString(); values[i] += value.ToString(); value_slices[i] = values[i]; batch.Put(keys[i], value_slices[i]); } s = db_->Write(writeoptions, &batch); if (!s.ok()) { fprintf(stderr, "multiput error: %s\n", s.ToString().c_str()); thread->stats.AddErrors(1); } else { // we did 10 writes each of size sz + 1 thread->stats.AddBytesForWrites(10, (sz + 1) * 10); } return s; } // Given a key K, this deletes ("0"+K), ("1"+K),... ("9"+K) // in DB atomically i.e in a single batch. Also refer MultiGet. Status MultiDelete(ThreadState* thread, const WriteOptions& writeoptions, const Slice& key) { std::string keys[10] = {"9", "7", "5", "3", "1", "8", "6", "4", "2", "0"}; WriteBatch batch; Status s; for (int i = 0; i < 10; i++) { keys[i] += key.ToString(); batch.Delete(keys[i]); } s = db_->Write(writeoptions, &batch); if (!s.ok()) { fprintf(stderr, "multidelete error: %s\n", s.ToString().c_str()); thread->stats.AddErrors(1); } else { thread->stats.AddDeletes(10); } return s; } // Given a key K, this gets values for "0"+K, "1"+K,..."9"+K // in the same snapshot, and verifies that all the values are of the form // "0"+V, "1"+V,..."9"+V. // ASSUMES that MultiPut was used to put (K, V) into the DB. Status MultiGet(ThreadState* thread, const ReadOptions& readoptions, const Slice& key, std::string* value) { std::string keys[10] = {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"}; Slice key_slices[10]; std::string values[10]; ReadOptions readoptionscopy = readoptions; readoptionscopy.snapshot = db_->GetSnapshot(); Status s; for (int i = 0; i < 10; i++) { keys[i] += key.ToString(); key_slices[i] = keys[i]; s = db_->Get(readoptionscopy, key_slices[i], value); if (!s.ok() && !s.IsNotFound()) { fprintf(stderr, "get error: %s\n", s.ToString().c_str()); values[i] = ""; thread->stats.AddErrors(1); // we continue after error rather than exiting so that we can // find more errors if any } else if (s.IsNotFound()) { values[i] = ""; thread->stats.AddGets(1, 0); } else { values[i] = *value; char expected_prefix = (keys[i])[0]; char actual_prefix = (values[i])[0]; if (actual_prefix != expected_prefix) { fprintf(stderr, "error expected prefix = %c actual = %c\n", expected_prefix, actual_prefix); } (values[i])[0] = ' '; // blank out the differing character thread->stats.AddGets(1, 1); } } db_->ReleaseSnapshot(readoptionscopy.snapshot); // Now that we retrieved all values, check that they all match for (int i = 1; i < 10; i++) { if (values[i] != values[0]) { fprintf(stderr, "error : inconsistent values for key %s: %s, %s\n", key.ToString().c_str(), values[0].c_str(), values[i].c_str()); // we continue after error rather than exiting so that we can // find more errors if any } } return s; } // Given a prefix P, this does prefix scans for "0"+P, "1"+P,..."9"+P // in the same snapshot. Each of these 10 scans returns a series of // values; each series should be the same length, and it is verified // for each index i that all the i'th values are of the form "0"+V, // "1"+V,..."9"+V. // ASSUMES that MultiPut was used to put (K, V) Status MultiPrefixScan(ThreadState* thread, const ReadOptions& readoptions, const Slice& prefix) { std::string prefixes[10] = {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"}; Slice prefix_slices[10]; ReadOptions readoptionscopy[10]; const Snapshot* snapshot = db_->GetSnapshot(); Iterator* iters[10]; Status s = Status::OK(); for (int i = 0; i < 10; i++) { prefixes[i] += prefix.ToString(); prefix_slices[i] = prefixes[i]; readoptionscopy[i] = readoptions; readoptionscopy[i].prefix = &prefix_slices[i]; readoptionscopy[i].snapshot = snapshot; iters[i] = db_->NewIterator(readoptionscopy[i]); iters[i]->SeekToFirst(); } int count = 0; while (iters[0]->Valid()) { count++; std::string values[10]; // get list of all values for this iteration for (int i = 0; i < 10; i++) { // no iterator should finish before the first one assert(iters[i]->Valid()); values[i] = iters[i]->value().ToString(); char expected_first = (prefixes[i])[0]; char actual_first = (values[i])[0]; if (actual_first != expected_first) { fprintf(stderr, "error expected first = %c actual = %c\n", expected_first, actual_first); } (values[i])[0] = ' '; // blank out the differing character } // make sure all values are equivalent for (int i = 0; i < 10; i++) { if (values[i] != values[0]) { fprintf(stderr, "error : inconsistent values for prefix %s: %s, %s\n", prefix.ToString().c_str(), values[0].c_str(), values[i].c_str()); // we continue after error rather than exiting so that we can // find more errors if any } iters[i]->Next(); } } // cleanup iterators and snapshot for (int i = 0; i < 10; i++) { // if the first iterator finished, they should have all finished assert(!iters[i]->Valid()); assert(iters[i]->status().ok()); delete iters[i]; } db_->ReleaseSnapshot(snapshot); if (s.ok()) { thread->stats.AddPrefixes(1, count); } else { thread->stats.AddErrors(1); } return s; } void OperateDb(ThreadState* thread) { ReadOptions read_opts(FLAGS_verify_checksum, true); WriteOptions write_opts; char value[100]; long max_key = thread->shared->GetMaxKey(); std::string from_db; if (FLAGS_sync) { write_opts.sync = true; } write_opts.disableWAL = FLAGS_disable_wal; thread->stats.Start(); for (long i = 0; i < FLAGS_ops_per_thread; i++) { if(i != 0 && (i % (FLAGS_ops_per_thread / (FLAGS_reopen + 1))) == 0) { { thread->stats.FinishedSingleOp(); MutexLock l(thread->shared->GetMutex()); thread->shared->IncVotedReopen(); if (thread->shared->AllVotedReopen()) { thread->shared->GetStressTest()->Reopen(); thread->shared->GetCondVar()->SignalAll(); } else { thread->shared->GetCondVar()->Wait(); } // Commenting this out as we don't want to reset stats on each open. // thread->stats.Start(); } } long rand_key = thread->rand.Next() % max_key; std::string keystr = Key(rand_key); Slice key = keystr; int prob_op = thread->rand.Uniform(100); // OPERATION read? if (prob_op >= 0 && prob_op < (int)FLAGS_readpercent) { if (!FLAGS_test_batches_snapshots) { Status s = db_->Get(read_opts, key, &from_db); if (s.ok()) { // found case thread->stats.AddGets(1, 1); } else if (s.IsNotFound()) { // not found case thread->stats.AddGets(1, 0); } else { // errors case thread->stats.AddErrors(1); } } else { MultiGet(thread, read_opts, key, &from_db); } } prob_op -= FLAGS_readpercent; // OPERATION prefix scan? if (prob_op >= 0 && prob_op < (int)FLAGS_prefixpercent) { // keys are longs (e.g., 8 bytes), so we let prefixes be // everything except the last byte. So there will be 2^8=256 // keys per prefix. Slice prefix = Slice(key.data(), key.size() - 1); if (!FLAGS_test_batches_snapshots) { read_opts.prefix = &prefix; Iterator* iter = db_->NewIterator(read_opts); int count = 0; for (iter->SeekToFirst(); iter->Valid(); iter->Next()) { assert(iter->key().starts_with(prefix)); count++; } assert(count <= 256); if (iter->status().ok()) { thread->stats.AddPrefixes(1, count); } else { thread->stats.AddErrors(1); } delete iter; } else { MultiPrefixScan(thread, read_opts, prefix); } } prob_op -= FLAGS_prefixpercent; // OPERATION write? if (prob_op >= 0 && prob_op < (int)FLAGS_writepercent) { uint32_t value_base = thread->rand.Next(); size_t sz = GenerateValue(value_base, value, sizeof(value)); Slice v(value, sz); if (!FLAGS_test_batches_snapshots) { MutexLock l(thread->shared->GetMutexForKey(rand_key)); if (FLAGS_verify_before_write) { VerifyValue(rand_key, read_opts, *(thread->shared), &from_db, true); } thread->shared->Put(rand_key, value_base); db_->Put(write_opts, key, v); thread->stats.AddBytesForWrites(1, sz); } else { MultiPut(thread, write_opts, key, v, sz); } PrintKeyValue(rand_key, value, sz); } prob_op -= FLAGS_writepercent; // OPERATION delete? if (prob_op >= 0 && prob_op < (int)FLAGS_delpercent) { if (!FLAGS_test_batches_snapshots) { MutexLock l(thread->shared->GetMutexForKey(rand_key)); thread->shared->Delete(rand_key); db_->Delete(write_opts, key); thread->stats.AddDeletes(1); } else { MultiDelete(thread, write_opts, key); } } prob_op -= FLAGS_delpercent; thread->stats.FinishedSingleOp(); } thread->stats.Stop(); } void VerifyDb(const SharedState &shared, long start) const { ReadOptions options(FLAGS_verify_checksum, true); long max_key = shared.GetMaxKey(); long step = shared.GetNumThreads(); for (long i = start; i < max_key; i+= step) { std::string from_db; VerifyValue(i, options, shared, &from_db, true); if (from_db.length()) { PrintKeyValue(i, from_db.data(), from_db.length()); } } } void VerificationAbort(std::string msg, long key) const { fprintf(stderr, "Verification failed for key %ld: %s\n", key, msg.c_str()); exit(1); } void VerifyValue(long key, const ReadOptions &opts, const SharedState &shared, std::string *value_from_db, bool strict=false) const { std::string keystr = Key(key); Slice k = keystr; char value[100]; uint32_t value_base = shared.Get(key); if (value_base == SharedState::SENTINEL && !strict) { return; } if (db_->Get(opts, k, value_from_db).ok()) { if (value_base == SharedState::SENTINEL) { VerificationAbort("Unexpected value found", key); } size_t sz = GenerateValue(value_base, value, sizeof(value)); if (value_from_db->length() != sz) { VerificationAbort("Length of value read is not equal", key); } if (memcmp(value_from_db->data(), value, sz) != 0) { VerificationAbort("Contents of value read don't match", key); } } else { if (value_base != SharedState::SENTINEL) { VerificationAbort("Value not found", key); } } } static void PrintKeyValue(uint32_t key, const char *value, size_t sz) { if (!FLAGS_verbose) return; fprintf(stdout, "%u ==> (%u) ", key, (unsigned int)sz); for (size_t i=0; i= sizeof(uint32_t)); *((uint32_t*)v) = rand; for (size_t i=sizeof(uint32_t); i < value_sz; i++) { v[i] = (char)(rand ^ i); } v[value_sz] = '\0'; return value_sz; // the size of the value set. } void PrintEnv() const { fprintf(stdout, "LevelDB version : %d.%d\n", kMajorVersion, kMinorVersion); fprintf(stdout, "Number of threads : %d\n", FLAGS_threads); fprintf(stdout, "Ops per thread : %d\n", FLAGS_ops_per_thread); std::string ttl_state("unused"); if (FLAGS_ttl > 0) { ttl_state = NumberToString(FLAGS_ttl); } fprintf(stdout, "Time to live(sec) : %s\n", ttl_state.c_str()); fprintf(stdout, "Read percentage : %d\n", FLAGS_readpercent); fprintf(stdout, "Prefix percentage : %d\n", FLAGS_prefixpercent); fprintf(stdout, "Write percentage : %d\n", FLAGS_writepercent); fprintf(stdout, "Delete percentage : %d\n", FLAGS_delpercent); fprintf(stdout, "Write-buffer-size : %d\n", FLAGS_write_buffer_size); fprintf(stdout, "Delete percentage : %d\n", FLAGS_delpercent); fprintf(stdout, "Max key : %ld\n", FLAGS_max_key); fprintf(stdout, "Ratio #ops/#keys : %f\n", (1.0 * FLAGS_ops_per_thread * FLAGS_threads)/FLAGS_max_key); fprintf(stdout, "Num times DB reopens: %d\n", FLAGS_reopen); fprintf(stdout, "Batches/snapshots : %d\n", FLAGS_test_batches_snapshots); fprintf(stdout, "Purge redundant %% : %d\n", FLAGS_purge_redundant_percent); fprintf(stdout, "Deletes use filter : %d\n", FLAGS_filter_deletes); fprintf(stdout, "Num keys per lock : %d\n", 1 << FLAGS_log2_keys_per_lock); const char* compression = ""; switch (FLAGS_compression_type) { case leveldb::kNoCompression: compression = "none"; break; case leveldb::kSnappyCompression: compression = "snappy"; break; case leveldb::kZlibCompression: compression = "zlib"; break; case leveldb::kBZip2Compression: compression = "bzip2"; break; } fprintf(stdout, "Compression : %s\n", compression); fprintf(stdout, "------------------------------------------------\n"); } void Open() { assert(db_ == nullptr); Options options; options.block_cache = cache_; options.write_buffer_size = FLAGS_write_buffer_size; options.max_write_buffer_number = FLAGS_max_write_buffer_number; options.max_background_compactions = FLAGS_max_background_compactions; options.compaction_style = FLAGS_compaction_style; options.block_size = FLAGS_block_size; options.filter_policy = filter_policy_; options.prefix_extractor = prefix_extractor_; options.max_open_files = FLAGS_open_files; options.statistics = dbstats; options.env = FLAGS_env; options.disableDataSync = FLAGS_disable_data_sync; options.use_fsync = FLAGS_use_fsync; options.allow_mmap_reads = FLAGS_use_mmap_reads; leveldb_kill_odds = FLAGS_kill_random_test; options.target_file_size_base = FLAGS_target_file_size_base; options.target_file_size_multiplier = FLAGS_target_file_size_multiplier; options.max_bytes_for_level_base = FLAGS_max_bytes_for_level_base; options.max_bytes_for_level_multiplier = FLAGS_max_bytes_for_level_multiplier; options.level0_stop_writes_trigger = FLAGS_level0_stop_writes_trigger; options.level0_slowdown_writes_trigger = FLAGS_level0_slowdown_writes_trigger; options.level0_file_num_compaction_trigger = FLAGS_level0_file_num_compaction_trigger; options.compression = FLAGS_compression_type; options.create_if_missing = true; options.disable_seek_compaction = FLAGS_disable_seek_compaction; options.delete_obsolete_files_period_micros = FLAGS_delete_obsolete_files_period_micros; options.max_manifest_file_size = 1024; options.filter_deletes = FLAGS_filter_deletes; static Random purge_percent(1000); // no benefit from non-determinism here if (purge_percent.Uniform(100) < FLAGS_purge_redundant_percent - 1) { options.purge_redundant_kvs_while_flush = false; } fprintf(stdout, "DB path: [%s]\n", FLAGS_db); Status s; if (FLAGS_ttl == -1) { s = DB::Open(options, FLAGS_db, &db_); } else { s = UtilityDB::OpenTtlDB(options, FLAGS_db, &sdb_, FLAGS_ttl); db_ = sdb_; } if (!s.ok()) { fprintf(stderr, "open error: %s\n", s.ToString().c_str()); exit(1); } } void Reopen() { // do not close the db. Just delete the lock file. This // simulates a crash-recovery kind of situation. if (FLAGS_ttl != -1) { ((DBWithTTL*) db_)->TEST_Destroy_DBWithTtl(); } else { ((DBImpl*) db_)->TEST_Destroy_DBImpl(); } db_ = nullptr; num_times_reopened_++; double now = FLAGS_env->NowMicros(); fprintf(stdout, "%s Reopening database for the %dth time\n", FLAGS_env->TimeToString((uint64_t) now/1000000).c_str(), num_times_reopened_); Open(); } void PrintStatistics() { if (dbstats) { fprintf(stdout, "STATISTICS:\n%s\n", dbstats->ToString().c_str()); } } private: shared_ptr cache_; const FilterPolicy* filter_policy_; const SliceTransform* prefix_extractor_; DB* db_; StackableDB* sdb_; int num_times_reopened_; }; } // namespace leveldb int main(int argc, char** argv) { FLAGS_write_buffer_size = leveldb::Options().write_buffer_size; FLAGS_max_write_buffer_number = leveldb::Options().max_write_buffer_number; FLAGS_open_files = leveldb::Options().max_open_files; FLAGS_max_background_compactions = leveldb::Options().max_background_compactions; FLAGS_compaction_style = leveldb::Options().compaction_style; FLAGS_level0_file_num_compaction_trigger = leveldb::Options().level0_file_num_compaction_trigger; FLAGS_level0_slowdown_writes_trigger = leveldb::Options().level0_slowdown_writes_trigger; FLAGS_level0_stop_writes_trigger = leveldb::Options().level0_stop_writes_trigger; // Compression test code above refers to FLAGS_block_size FLAGS_block_size = leveldb::Options().block_size; std::string default_db_path; for (int i = 1; i < argc; i++) { int n; uint32_t u; long l; char junk; char hdfsname[2048]; if (sscanf(argv[i], "--seed=%uf%c", &u, &junk) == 1) { FLAGS_seed = u; } else if (sscanf(argv[i], "--max_key=%ld%c", &l, &junk) == 1) { FLAGS_max_key = l; } else if (sscanf(argv[i], "--log2_keys_per_lock=%u%c", &u, &junk) == 1) { FLAGS_log2_keys_per_lock = u; } else if (sscanf(argv[i], "--ops_per_thread=%u%c", &u, &junk) == 1) { FLAGS_ops_per_thread = u; } else if (sscanf(argv[i], "--verbose=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_verbose = n; } else if (sscanf(argv[i], "--histogram=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_histogram = n; } else if (sscanf(argv[i], "--destroy_db_initially=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_destroy_db_initially = n; } else if (sscanf(argv[i], "--verify_before_write=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_verify_before_write = n; } else if (sscanf(argv[i], "--test_batches_snapshots=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_test_batches_snapshots = n; } else if (sscanf(argv[i], "--threads=%d%c", &n, &junk) == 1) { FLAGS_threads = n; } else if (sscanf(argv[i], "--ttl=%d%c", &n, &junk) == 1) { FLAGS_ttl = n; } else if (sscanf(argv[i], "--value_size_mult=%d%c", &n, &junk) == 1) { FLAGS_value_size_mult = n; } else if (sscanf(argv[i], "--write_buffer_size=%d%c", &n, &junk) == 1) { FLAGS_write_buffer_size = n; } else if (sscanf(argv[i], "--max_write_buffer_number=%d%c", &n, &junk) == 1) { FLAGS_max_write_buffer_number = n; } else if (sscanf(argv[i], "--max_background_compactions=%d%c", &n, &junk) == 1) { FLAGS_max_background_compactions = n; } else if (sscanf(argv[i], "--compaction_style=%d%c", &n, &junk) == 1) { FLAGS_compaction_style = (leveldb::CompactionStyle)n; } else if (sscanf(argv[i], "--cache_size=%ld%c", &l, &junk) == 1) { FLAGS_cache_size = l; } else if (sscanf(argv[i], "--block_size=%d%c", &n, &junk) == 1) { FLAGS_block_size = n; } else if (sscanf(argv[i], "--reopen=%d%c", &n, &junk) == 1 && n >= 0) { FLAGS_reopen = n; } else if (sscanf(argv[i], "--bloom_bits=%d%c", &n, &junk) == 1) { FLAGS_bloom_bits = n; } else if (sscanf(argv[i], "--open_files=%d%c", &n, &junk) == 1) { FLAGS_open_files = n; } else if (strncmp(argv[i], "--db=", 5) == 0) { FLAGS_db = argv[i] + 5; } else if (sscanf(argv[i], "--verify_checksum=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_verify_checksum = n; } else if (sscanf(argv[i], "--mmap_read=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_use_mmap_reads = n; } else if (sscanf(argv[i], "--statistics=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { if (n == 1) { dbstats = leveldb::CreateDBStatistics(); } } else if (sscanf(argv[i], "--sync=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_sync = n; } else if (sscanf(argv[i], "--readpercent=%d%c", &n, &junk) == 1 && (n >= 0 && n <= 100)) { FLAGS_readpercent = n; } else if (sscanf(argv[i], "--prefixpercent=%d%c", &n, &junk) == 1 && (n >= 0 && n <= 100)) { FLAGS_prefixpercent = n; } else if (sscanf(argv[i], "--writepercent=%d%c", &n, &junk) == 1 && (n >= 0 && n <= 100)) { FLAGS_writepercent = n; } else if (sscanf(argv[i], "--delpercent=%d%c", &n, &junk) == 1 && (n >= 0 && n <= 100)) { FLAGS_delpercent = n; } else if (sscanf(argv[i], "--disable_data_sync=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_disable_data_sync = n; } else if (sscanf(argv[i], "--use_fsync=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_use_fsync = n; } else if (sscanf(argv[i], "--kill_random_test=%d%c", &n, &junk) == 1 && (n >= 0)) { FLAGS_kill_random_test = n; } else if (sscanf(argv[i], "--disable_wal=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_disable_wal = n; } else if (sscanf(argv[i], "--hdfs=%s", hdfsname) == 1) { FLAGS_env = new leveldb::HdfsEnv(hdfsname); } else if (sscanf(argv[i], "--target_file_size_base=%d%c", &n, &junk) == 1) { FLAGS_target_file_size_base = n; } else if ( sscanf(argv[i], "--target_file_size_multiplier=%d%c", &n, &junk) == 1) { FLAGS_target_file_size_multiplier = n; } else if ( sscanf(argv[i], "--max_bytes_for_level_base=%ld%c", &l, &junk) == 1) { FLAGS_max_bytes_for_level_base = l; } else if (sscanf(argv[i], "--max_bytes_for_level_multiplier=%d%c", &n, &junk) == 1) { FLAGS_max_bytes_for_level_multiplier = n; } else if (sscanf(argv[i],"--level0_stop_writes_trigger=%d%c", &n, &junk) == 1) { FLAGS_level0_stop_writes_trigger = n; } else if (sscanf(argv[i],"--level0_slowdown_writes_trigger=%d%c", &n, &junk) == 1) { FLAGS_level0_slowdown_writes_trigger = n; } else if (sscanf(argv[i],"--level0_file_num_compaction_trigger=%d%c", &n, &junk) == 1) { FLAGS_level0_file_num_compaction_trigger = n; } else if (strncmp(argv[i], "--compression_type=", 19) == 0) { const char* ctype = argv[i] + 19; if (!strcasecmp(ctype, "none")) FLAGS_compression_type = leveldb::kNoCompression; else if (!strcasecmp(ctype, "snappy")) FLAGS_compression_type = leveldb::kSnappyCompression; else if (!strcasecmp(ctype, "zlib")) FLAGS_compression_type = leveldb::kZlibCompression; else if (!strcasecmp(ctype, "bzip2")) FLAGS_compression_type = leveldb::kBZip2Compression; else { fprintf(stdout, "Cannot parse %s\n", argv[i]); } } else if (sscanf(argv[i], "--disable_seek_compaction=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_disable_seek_compaction = n; } else if (sscanf(argv[i], "--delete_obsolete_files_period_micros=%ld%c", &l, &junk) == 1) { FLAGS_delete_obsolete_files_period_micros = n; } else if (sscanf(argv[i], "--purge_redundant_percent=%d%c", &n, &junk) == 1 && (n >= 0 && n <= 100)) { FLAGS_purge_redundant_percent = n; } else if (sscanf(argv[i], "--filter_deletes=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_filter_deletes = n; } else { fprintf(stderr, "Invalid flag '%s'\n", argv[i]); exit(1); } } // The number of background threads should be at least as much the // max number of concurrent compactions. FLAGS_env->SetBackgroundThreads(FLAGS_max_background_compactions); if ((FLAGS_readpercent + FLAGS_prefixpercent + FLAGS_writepercent + FLAGS_delpercent) != 100) { fprintf(stderr, "Error: Read+Prefix+Write+Delete percents != 100!\n"); exit(1); } if (FLAGS_disable_wal == 1 && FLAGS_reopen > 0) { fprintf(stderr, "Error: Db cannot reopen safely with disable_wal set!\n"); exit(1); } if ((unsigned)FLAGS_reopen >= FLAGS_ops_per_thread) { fprintf(stderr, "Error: #DB-reopens should be < ops_per_thread\n" "Provided reopens = %d and ops_per_thread = %u\n", FLAGS_reopen, FLAGS_ops_per_thread); exit(1); } // Choose a location for the test database if none given with --db= if (FLAGS_db == nullptr) { leveldb::Env::Default()->GetTestDirectory(&default_db_path); default_db_path += "/dbstress"; FLAGS_db = default_db_path.c_str(); } leveldb::StressTest stress; stress.Run(); return 0; }