// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include #include #include #include #include "db/db_impl.h" #include "db/version_set.h" #include "db/db_statistics.h" #include "rocksdb/options.h" #include "rocksdb/cache.h" #include "rocksdb/db.h" #include "rocksdb/env.h" #include "rocksdb/write_batch.h" #include "rocksdb/statistics.h" #include "port/port.h" #include "util/bit_set.h" #include "util/crc32c.h" #include "util/histogram.h" #include "util/mutexlock.h" #include "util/random.h" #include "util/stack_trace.h" #include "util/string_util.h" #include "util/testutil.h" #include "hdfs/env_hdfs.h" #include "utilities/merge_operators.h" // Comma-separated list of operations to run in the specified order // Actual benchmarks: // fillseq -- write N values in sequential key order in async mode // fillrandom -- write N values in random key order in async mode // overwrite -- overwrite N values in random key order in async mode // fillsync -- write N/100 values in random key order in sync mode // fill100K -- write N/1000 100K values in random order in async mode // deleteseq -- delete N keys in sequential order // deleterandom -- delete N keys in random order // readseq -- read N times sequentially // readreverse -- read N times in reverse order // readrandom -- read N times in random order // readmissing -- read N missing keys in random order // readhot -- read N times in random order from 1% section of DB // readwhilewriting -- 1 writer, N threads doing random reads // readrandomwriterandom -- N threads doing random-read, random-write // prefixscanrandom -- prefix scan N times in random order // updaterandom -- N threads doing read-modify-write for random keys // appendrandom -- N threads doing read-modify-write with growing values // mergerandom -- same as updaterandom/appendrandom using merge operator // -- must be used with FLAGS_merge_operator (see below) // seekrandom -- N random seeks // crc32c -- repeated crc32c of 4K of data // acquireload -- load N*1000 times // Meta operations: // compact -- Compact the entire DB // stats -- Print DB stats // levelstats -- Print the number of files and bytes per level // sstables -- Print sstable info // heapprofile -- Dump a heap profile (if supported by this port) static const char* FLAGS_benchmarks = "fillseq," "fillsync," "fillrandom," "overwrite," "readrandom," "readrandom," // Extra run to allow previous compactions to quiesce "readseq," "readreverse," "compact," "readrandom," "readseq," "readreverse," "readwhilewriting," "readrandomwriterandom," // mix reads and writes based on FLAGS_readwritepercent "updaterandom," // read-modify-write for random keys "randomwithverify," // random reads and writes with some verification "fill100K," "crc32c," "snappycomp," "snappyuncomp," "acquireload," ; // the maximum size of key in bytes static const int MAX_KEY_SIZE = 128; // Number of key/values to place in database static long long FLAGS_num = 1000000; // Number of distinct keys to use. Used in RandomWithVerify to read/write // on fewer keys so that gets are more likely to find the key and puts // are more likely to update the same key static long long FLAGS_numdistinct = 1000; // Number of read operations to do. If negative, do FLAGS_num reads. static long FLAGS_reads = -1; // When ==1 reads use ::Get, when >1 reads use an iterator static long FLAGS_read_range = 1; // Whether to place prefixes in blooms static bool FLAGS_use_prefix_blooms = false; // Whether to set ReadOptions.prefix for prefixscanrandom. If this // true, use_prefix_blooms must also be true. static bool FLAGS_use_prefix_api = false; // Seed base for random number generators. When 0 it is deterministic. static long FLAGS_seed = 0; // Number of concurrent threads to run. static int FLAGS_threads = 1; // Time in seconds for the random-ops tests to run. When 0 then // FLAGS_num & FLAGS_reads determine the test duration static int FLAGS_duration = 0; // Size of each value static int FLAGS_value_size = 100; //size of each key static int FLAGS_key_size = 16; // Arrange to generate values that shrink to this fraction of // their original size after compression static double FLAGS_compression_ratio = 0.5; // Print histogram of operation timings static bool FLAGS_histogram = false; // Number of bytes to buffer in memtable before compacting // (initialized to default value by "main") static int FLAGS_write_buffer_size = 0; // The number of in-memory memtables. // Each memtable is of size FLAGS_write_buffer_size. // This is initialized to default value of 2 in "main" function. static int FLAGS_max_write_buffer_number = 0; // The minimum number of write buffers that will be merged together // before writing to storage. This is cheap because it is an // in-memory merge. If this feature is not enabled, then all these // write buffers are flushed to L0 as separate files and this increases // read amplification because a get request has to check in all of these // files. Also, an in-memory merge may result in writing less // data to storage if there are duplicate records in each of these // individual write buffers. static int FLAGS_min_write_buffer_number_to_merge = 0; // The maximum number of concurrent background compactions // that can occur in parallel. // This is initialized to default value of 1 in "main" function. static int FLAGS_max_background_compactions = 0; // style of compaction: level-based vs universal static leveldb::CompactionStyle FLAGS_compaction_style = leveldb::kCompactionStyleLevel; // Percentage flexibility while comparing file size // (for universal compaction only). static int FLAGS_universal_size_ratio = 1; // The minimum number of files in a single compaction run // (for universal compaction only). static int FLAGS_compaction_universal_min_merge_width = 2; // Number of bytes to use as a cache of uncompressed data. // Negative means use default settings. static long FLAGS_cache_size = -1; // Number of bytes in a block. static int FLAGS_block_size = 0; // Maximum number of files to keep open at the same time (use default if == 0) static int FLAGS_open_files = 0; // Bloom filter bits per key. // Negative means use default settings. static int FLAGS_bloom_bits = -1; // If true, do not destroy the existing database. If you set this // flag and also specify a benchmark that wants a fresh database, that // benchmark will fail. static bool FLAGS_use_existing_db = false; // Use the db with the following name. static const char* FLAGS_db = nullptr; // Number of shards for the block cache is 2 ** FLAGS_cache_numshardbits. // Negative means use default settings. This is applied only // if FLAGS_cache_size is non-negative. static int FLAGS_cache_numshardbits = -1; // Verify checksum for every block read from storage static bool FLAGS_verify_checksum = false; // Database statistics static bool FLAGS_statistics = false; static class std::shared_ptr dbstats; // Number of write operations to do. If negative, do FLAGS_num reads. static long FLAGS_writes = -1; // Per-thread rate limit on writes per second. No limit when <= 0. // Only for the readwhilewriting test. static int FLAGS_writes_per_second = 0; // These default values might change if the hardcoded // Sync all writes to disk static bool FLAGS_sync = false; // If true, do not wait until data is synced to disk. static bool FLAGS_disable_data_sync = false; // If true, issue fsync instead of fdatasync static bool FLAGS_use_fsync = false; // If true, do not write WAL for write. static bool FLAGS_disable_wal = false; // If true, create a snapshot per query when randomread benchmark is used static bool FLAGS_use_snapshot = false; // If true, call GetApproximateSizes per query when FLAGS_read_range is > 1 // and randomread benchmark is used static bool FLAGS_get_approx = false; // The total number of levels static int FLAGS_num_levels = 7; // Target file size at level-1 static int FLAGS_target_file_size_base = 2 * 1048576; // A multiplier to compute target level-N file size (N >= 2) static int FLAGS_target_file_size_multiplier = 1; // Max bytes for level-1 static uint64_t FLAGS_max_bytes_for_level_base = 10 * 1048576; // A multiplier to compute max bytes for level-N (N >= 2) static int FLAGS_max_bytes_for_level_multiplier = 10; // A vector that specifies additional fanout per level static std::vector FLAGS_max_bytes_for_level_multiplier_additional; // Number of files in level-0 that will trigger put stop. static int FLAGS_level0_stop_writes_trigger = 12; // Number of files in level-0 that will slow down writes. static int FLAGS_level0_slowdown_writes_trigger = 8; // Number of files in level-0 when compactions start static int FLAGS_level0_file_num_compaction_trigger = 4; // Ratio of reads to reads/writes (expressed as percentage) for the // ReadRandomWriteRandom workload. The default value 90 means 90% operations // out of all reads and writes operations are reads. In other words, 9 gets // for every 1 put. static int FLAGS_readwritepercent = 90; // Percentage of deletes out of reads/writes/deletes (used in RandomWithVerify // only). RandomWithVerify calculates writepercent as // (100 - FLAGS_readwritepercent - FLAGS_deletepercent), so FLAGS_deletepercent // must be smaller than (100 - FLAGS_readwritepercent) static int FLAGS_deletepercent = 2; // Option to disable compaction triggered by read. static int FLAGS_disable_seek_compaction = false; // Option to delete obsolete files periodically // Default: 0 which means that obsolete files are // deleted after every compaction run. static uint64_t FLAGS_delete_obsolete_files_period_micros = 0; // Algorithm used to compress the database static enum leveldb::CompressionType FLAGS_compression_type = leveldb::kSnappyCompression; // If non-negative, compression starts from this level. Levels with number // < FLAGS_min_level_to_compress are not compressed. // Otherwise, apply FLAGS_compression_type to all levels. static int FLAGS_min_level_to_compress = -1; static int FLAGS_table_cache_numshardbits = 4; // posix or hdfs environment static leveldb::Env* FLAGS_env = leveldb::Env::Default(); // Stats are reported every N operations when this is greater // than zero. When 0 the interval grows over time. static long long FLAGS_stats_interval = 0; // Reports additional stats per interval when this is greater // than 0. static int FLAGS_stats_per_interval = 0; static double FLAGS_soft_rate_limit = 0; // When not equal to 0 this make threads sleep at each stats // reporting interval until the compaction score for all levels is // less than or equal to this value. static double FLAGS_hard_rate_limit = 0; // When FLAGS_hard_rate_limit is set then this is the max time a put will be // stalled. static int FLAGS_rate_limit_delay_max_milliseconds = 1000; // Control maximum bytes of overlaps in grandparent (i.e., level+2) before we // stop building a single file in a level->level+1 compaction. static int FLAGS_max_grandparent_overlap_factor = 10; // Run read only benchmarks. static bool FLAGS_read_only = false; // Do not auto trigger compactions static bool FLAGS_disable_auto_compactions = false; // Cap the size of data in level-K for a compaction run // that compacts Level-K with Level-(K+1) (for K >= 1) static int FLAGS_source_compaction_factor = 1; // Set the TTL for the WAL Files. static uint64_t FLAGS_WAL_ttl_seconds = 0; // Allow buffered io using OS buffers static bool FLAGS_use_os_buffer; // Allow reads to occur via mmap-ing files static bool FLAGS_use_mmap_reads; // Allow writes to occur via mmap-ing files static bool FLAGS_use_mmap_writes; // Advise random access on table file open static bool FLAGS_advise_random_on_open = leveldb::Options().advise_random_on_open; // Access pattern advice when a file is compacted static auto FLAGS_compaction_fadvice = leveldb::Options().access_hint_on_compaction_start; // Use multiget to access a series of keys instead of get static bool FLAGS_use_multiget = false; // If FLAGS_use_multiget is true, determines number of keys to group per call // Arbitrary default. 90 is good because it agrees with FLAGS_readwritepercent static long FLAGS_keys_per_multiget = 90; // Print a message to user when a key is missing in a Get/MultiGet call // TODO: Apply this flag to generic Get calls too. Currently only with Multiget static bool FLAGS_warn_missing_keys = true; // Use adaptive mutex static auto FLAGS_use_adaptive_mutex = leveldb::Options().use_adaptive_mutex; // Allows OS to incrementally sync files to disk while they are being // written, in the background. Issue one request for every bytes_per_sync // written. 0 turns it off. static auto FLAGS_bytes_per_sync = leveldb::Options().bytes_per_sync; // On true, deletes use bloom-filter and drop the delete if key not present static bool FLAGS_filter_deletes = false; // Control the prefix size for PrefixHashRep static bool FLAGS_prefix_size = 0; enum RepFactory { kSkipList, kPrefixHash, kUnsorted, kVectorRep }; static enum RepFactory FLAGS_rep_factory; // The merge operator to use with the database. // If a new merge operator is specified, be sure to use fresh database // The possible merge operators are defined in utilities/merge_operators.h static std::string FLAGS_merge_operator = ""; namespace leveldb { // Helper for quickly generating random data. class RandomGenerator { private: std::string data_; unsigned int pos_; public: RandomGenerator() { // We use a limited amount of data over and over again and ensure // that it is larger than the compression window (32KB), and also // large enough to serve all typical value sizes we want to write. Random rnd(301); std::string piece; while (data_.size() < (unsigned)std::max(1048576, FLAGS_value_size)) { // Add a short fragment that is as compressible as specified // by FLAGS_compression_ratio. test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece); data_.append(piece); } pos_ = 0; } Slice Generate(unsigned int len) { if (pos_ + len > data_.size()) { pos_ = 0; assert(len < data_.size()); } pos_ += len; return Slice(data_.data() + pos_ - len, len); } }; static Slice TrimSpace(Slice s) { unsigned int start = 0; while (start < s.size() && isspace(s[start])) { start++; } unsigned int limit = s.size(); while (limit > start && isspace(s[limit-1])) { limit--; } return Slice(s.data() + start, limit - start); } static void AppendWithSpace(std::string* str, Slice msg) { if (msg.empty()) return; if (!str->empty()) { str->push_back(' '); } str->append(msg.data(), msg.size()); } class Stats { private: int id_; double start_; double finish_; double seconds_; long long done_; long long last_report_done_; long long next_report_; int64_t bytes_; double last_op_finish_; double last_report_finish_; HistogramImpl hist_; std::string message_; bool exclude_from_merge_; public: Stats() { Start(-1); } void Start(int id) { id_ = id; next_report_ = FLAGS_stats_interval ? FLAGS_stats_interval : 100; last_op_finish_ = start_; hist_.Clear(); done_ = 0; last_report_done_ = 0; bytes_ = 0; seconds_ = 0; start_ = FLAGS_env->NowMicros(); finish_ = start_; last_report_finish_ = start_; message_.clear(); // When set, stats from this thread won't be merged with others. exclude_from_merge_ = false; } void Merge(const Stats& other) { if (other.exclude_from_merge_) return; hist_.Merge(other.hist_); done_ += other.done_; bytes_ += other.bytes_; seconds_ += other.seconds_; if (other.start_ < start_) start_ = other.start_; if (other.finish_ > finish_) finish_ = other.finish_; // Just keep the messages from one thread if (message_.empty()) message_ = other.message_; } void Stop() { finish_ = FLAGS_env->NowMicros(); seconds_ = (finish_ - start_) * 1e-6; } void AddMessage(Slice msg) { AppendWithSpace(&message_, msg); } void SetId(int id) { id_ = id; } void SetExcludeFromMerge() { exclude_from_merge_ = true; } void FinishedSingleOp(DB* db) { if (FLAGS_histogram) { double now = FLAGS_env->NowMicros(); double micros = now - last_op_finish_; hist_.Add(micros); if (micros > 20000 && !FLAGS_stats_interval) { fprintf(stderr, "long op: %.1f micros%30s\r", micros, ""); fflush(stderr); } last_op_finish_ = now; } done_++; if (done_ >= next_report_) { if (!FLAGS_stats_interval) { if (next_report_ < 1000) next_report_ += 100; else if (next_report_ < 5000) next_report_ += 500; else if (next_report_ < 10000) next_report_ += 1000; else if (next_report_ < 50000) next_report_ += 5000; else if (next_report_ < 100000) next_report_ += 10000; else if (next_report_ < 500000) next_report_ += 50000; else next_report_ += 100000; fprintf(stderr, "... finished %lld ops%30s\r", done_, ""); fflush(stderr); } else { double now = FLAGS_env->NowMicros(); fprintf(stderr, "%s ... thread %d: (%lld,%lld) ops and " "(%.1f,%.1f) ops/second in (%.6f,%.6f) seconds\n", FLAGS_env->TimeToString((uint64_t) now/1000000).c_str(), id_, done_ - last_report_done_, done_, (done_ - last_report_done_) / ((now - last_report_finish_) / 1000000.0), done_ / ((now - start_) / 1000000.0), (now - last_report_finish_) / 1000000.0, (now - start_) / 1000000.0); if (FLAGS_stats_per_interval) { std::string stats; if (db && db->GetProperty("leveldb.stats", &stats)) fprintf(stderr, "%s\n", stats.c_str()); } fflush(stderr); next_report_ += FLAGS_stats_interval; last_report_finish_ = now; last_report_done_ = done_; } } } void AddBytes(int64_t n) { bytes_ += n; } void Report(const Slice& name) { // Pretend at least one op was done in case we are running a benchmark // that does not call FinishedSingleOp(). if (done_ < 1) done_ = 1; std::string extra; if (bytes_ > 0) { // Rate is computed on actual elapsed time, not the sum of per-thread // elapsed times. double elapsed = (finish_ - start_) * 1e-6; char rate[100]; snprintf(rate, sizeof(rate), "%6.1f MB/s", (bytes_ / 1048576.0) / elapsed); extra = rate; } AppendWithSpace(&extra, message_); double elapsed = (finish_ - start_) * 1e-6; double throughput = (double)done_/elapsed; fprintf(stdout, "%-12s : %11.3f micros/op %ld ops/sec;%s%s\n", name.ToString().c_str(), elapsed * 1e6 / done_, (long)throughput, (extra.empty() ? "" : " "), extra.c_str()); if (FLAGS_histogram) { fprintf(stdout, "Microseconds per op:\n%s\n", hist_.ToString().c_str()); } fflush(stdout); } }; // State shared by all concurrent executions of the same benchmark. struct SharedState { port::Mutex mu; port::CondVar cv; int total; // Each thread goes through the following states: // (1) initializing // (2) waiting for others to be initialized // (3) running // (4) done long num_initialized; long num_done; bool start; SharedState() : cv(&mu) { } }; // Per-thread state for concurrent executions of the same benchmark. struct ThreadState { int tid; // 0..n-1 when running in n threads Random64 rand; // Has different seeds for different threads Stats stats; SharedState* shared; /* implicit */ ThreadState(int index) : tid(index), rand((FLAGS_seed ? FLAGS_seed : 1000) + index) { } }; class Duration { public: Duration(int max_seconds, long long max_ops) { max_seconds_ = max_seconds; max_ops_= max_ops; ops_ = 0; start_at_ = FLAGS_env->NowMicros(); } bool Done(int increment) { if (increment <= 0) increment = 1; // avoid Done(0) and infinite loops ops_ += increment; if (max_seconds_) { // Recheck every appx 1000 ops (exact iff increment is factor of 1000) if ((ops_/1000) != ((ops_-increment)/1000)) { double now = FLAGS_env->NowMicros(); return ((now - start_at_) / 1000000.0) >= max_seconds_; } else { return false; } } else { return ops_ > max_ops_; } } private: int max_seconds_; long long max_ops_; long long ops_; double start_at_; }; class Benchmark { private: shared_ptr cache_; const FilterPolicy* filter_policy_; const SliceTransform* prefix_extractor_; DB* db_; long long num_; int value_size_; int key_size_; int entries_per_batch_; WriteOptions write_options_; long long reads_; long long writes_; long long readwrites_; int heap_counter_; char keyFormat_[100]; // this string will contain the format of key. e.g "%016d" void PrintHeader() { PrintEnvironment(); fprintf(stdout, "Keys: %d bytes each\n", FLAGS_key_size); fprintf(stdout, "Values: %d bytes each (%d bytes after compression)\n", FLAGS_value_size, static_cast(FLAGS_value_size * FLAGS_compression_ratio + 0.5)); fprintf(stdout, "Entries: %lld\n", num_); fprintf(stdout, "RawSize: %.1f MB (estimated)\n", ((static_cast(FLAGS_key_size + FLAGS_value_size) * num_) / 1048576.0)); fprintf(stdout, "FileSize: %.1f MB (estimated)\n", (((FLAGS_key_size + FLAGS_value_size * FLAGS_compression_ratio) * num_) / 1048576.0)); fprintf(stdout, "Write rate limit: %d\n", FLAGS_writes_per_second); switch (FLAGS_compression_type) { case leveldb::kNoCompression: fprintf(stdout, "Compression: none\n"); break; case leveldb::kSnappyCompression: fprintf(stdout, "Compression: snappy\n"); break; case leveldb::kZlibCompression: fprintf(stdout, "Compression: zlib\n"); break; case leveldb::kBZip2Compression: fprintf(stdout, "Compression: bzip2\n"); break; } switch (FLAGS_rep_factory) { case kPrefixHash: fprintf(stdout, "Memtablerep: prefix_hash\n"); break; case kSkipList: fprintf(stdout, "Memtablerep: skip_list\n"); break; case kUnsorted: fprintf(stdout, "Memtablerep: unsorted\n"); break; case kVectorRep: fprintf(stdout, "Memtablerep: vector\n"); break; } PrintWarnings(); fprintf(stdout, "------------------------------------------------\n"); } void PrintWarnings() { #if defined(__GNUC__) && !defined(__OPTIMIZE__) fprintf(stdout, "WARNING: Optimization is disabled: benchmarks unnecessarily slow\n" ); #endif #ifndef NDEBUG fprintf(stdout, "WARNING: Assertions are enabled; benchmarks unnecessarily slow\n"); #endif if (FLAGS_compression_type != leveldb::kNoCompression) { // The test string should not be too small. const int len = FLAGS_block_size; char* text = (char*) malloc(len+1); bool result = true; const char* name = nullptr; std::string compressed; memset(text, (int) 'y', len); text[len] = '\0'; switch (FLAGS_compression_type) { case kSnappyCompression: result = port::Snappy_Compress(Options().compression_opts, text, strlen(text), &compressed); name = "Snappy"; break; case kZlibCompression: result = port::Zlib_Compress(Options().compression_opts, text, strlen(text), &compressed); name = "Zlib"; break; case kBZip2Compression: result = port::BZip2_Compress(Options().compression_opts, text, strlen(text), &compressed); name = "BZip2"; break; case kNoCompression: assert(false); // cannot happen break; } if (!result) { fprintf(stdout, "WARNING: %s compression is not enabled\n", name); } else if (name && compressed.size() >= strlen(text)) { fprintf(stdout, "WARNING: %s compression is not effective\n", name); } free(text); } } void PrintEnvironment() { fprintf(stderr, "LevelDB: version %d.%d\n", kMajorVersion, kMinorVersion); #if defined(__linux) time_t now = time(nullptr); fprintf(stderr, "Date: %s", ctime(&now)); // ctime() adds newline FILE* cpuinfo = fopen("/proc/cpuinfo", "r"); if (cpuinfo != nullptr) { char line[1000]; int num_cpus = 0; std::string cpu_type; std::string cache_size; while (fgets(line, sizeof(line), cpuinfo) != nullptr) { const char* sep = strchr(line, ':'); if (sep == nullptr) { continue; } Slice key = TrimSpace(Slice(line, sep - 1 - line)); Slice val = TrimSpace(Slice(sep + 1)); if (key == "model name") { ++num_cpus; cpu_type = val.ToString(); } else if (key == "cache size") { cache_size = val.ToString(); } } fclose(cpuinfo); fprintf(stderr, "CPU: %d * %s\n", num_cpus, cpu_type.c_str()); fprintf(stderr, "CPUCache: %s\n", cache_size.c_str()); } #endif } public: Benchmark() : cache_(FLAGS_cache_size >= 0 ? (FLAGS_cache_numshardbits >= 1 ? NewLRUCache(FLAGS_cache_size, FLAGS_cache_numshardbits) : NewLRUCache(FLAGS_cache_size)) : nullptr), filter_policy_(FLAGS_bloom_bits >= 0 ? NewBloomFilterPolicy(FLAGS_bloom_bits) : nullptr), prefix_extractor_(NewFixedPrefixTransform(FLAGS_key_size-1)), db_(nullptr), num_(FLAGS_num), value_size_(FLAGS_value_size), key_size_(FLAGS_key_size), entries_per_batch_(1), reads_(FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads), writes_(FLAGS_writes < 0 ? FLAGS_num : FLAGS_writes), readwrites_((FLAGS_writes < 0 && FLAGS_reads < 0)? FLAGS_num : ((FLAGS_writes > FLAGS_reads) ? FLAGS_writes : FLAGS_reads) ), heap_counter_(0) { std::vector files; FLAGS_env->GetChildren(FLAGS_db, &files); for (unsigned int i = 0; i < files.size(); i++) { if (Slice(files[i]).starts_with("heap-")) { FLAGS_env->DeleteFile(std::string(FLAGS_db) + "/" + files[i]); } } if (!FLAGS_use_existing_db) { DestroyDB(FLAGS_db, Options()); } } ~Benchmark() { delete db_; delete filter_policy_; delete prefix_extractor_; } //this function will construct string format for key. e.g "%016lld" void ConstructStrFormatForKey(char* str, int keySize) { str[0] = '%'; str[1] = '0'; sprintf(str+2, "%dlld%s", keySize, "%s"); } unique_ptr GenerateKeyFromInt(long long v, const char* suffix = "") { unique_ptr keyInStr(new char[MAX_KEY_SIZE]); snprintf(keyInStr.get(), MAX_KEY_SIZE, keyFormat_, v, suffix); return keyInStr; } void Run() { PrintHeader(); Open(); const char* benchmarks = FLAGS_benchmarks; while (benchmarks != nullptr) { const char* sep = strchr(benchmarks, ','); Slice name; if (sep == nullptr) { name = benchmarks; benchmarks = nullptr; } else { name = Slice(benchmarks, sep - benchmarks); benchmarks = sep + 1; } // Sanitize parameters num_ = FLAGS_num; reads_ = (FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads); writes_ = (FLAGS_writes < 0 ? FLAGS_num : FLAGS_writes); value_size_ = FLAGS_value_size; key_size_ = FLAGS_key_size; ConstructStrFormatForKey(keyFormat_, key_size_); entries_per_batch_ = 1; write_options_ = WriteOptions(); if (FLAGS_sync) { write_options_.sync = true; } write_options_.disableWAL = FLAGS_disable_wal; void (Benchmark::*method)(ThreadState*) = nullptr; bool fresh_db = false; int num_threads = FLAGS_threads; if (name == Slice("fillseq")) { fresh_db = true; method = &Benchmark::WriteSeq; } else if (name == Slice("fillbatch")) { fresh_db = true; entries_per_batch_ = 1000; method = &Benchmark::WriteSeq; } else if (name == Slice("fillrandom")) { fresh_db = true; method = &Benchmark::WriteRandom; } else if (name == Slice("filluniquerandom")) { fresh_db = true; if (num_threads > 1) { fprintf(stderr, "filluniquerandom multithreaded not supported" " set --threads=1"); exit(1); } method = &Benchmark::WriteUniqueRandom; } else if (name == Slice("overwrite")) { fresh_db = false; method = &Benchmark::WriteRandom; } else if (name == Slice("fillsync")) { fresh_db = true; num_ /= 1000; write_options_.sync = true; method = &Benchmark::WriteRandom; } else if (name == Slice("fill100K")) { fresh_db = true; num_ /= 1000; value_size_ = 100 * 1000; method = &Benchmark::WriteRandom; } else if (name == Slice("readseq")) { method = &Benchmark::ReadSequential; } else if (name == Slice("readreverse")) { method = &Benchmark::ReadReverse; } else if (name == Slice("readrandom")) { method = &Benchmark::ReadRandom; } else if (name == Slice("readmissing")) { method = &Benchmark::ReadMissing; } else if (name == Slice("seekrandom")) { method = &Benchmark::SeekRandom; } else if (name == Slice("readhot")) { method = &Benchmark::ReadHot; } else if (name == Slice("readrandomsmall")) { reads_ /= 1000; method = &Benchmark::ReadRandom; } else if (name == Slice("prefixscanrandom")) { method = &Benchmark::PrefixScanRandom; } else if (name == Slice("deleteseq")) { method = &Benchmark::DeleteSeq; } else if (name == Slice("deleterandom")) { method = &Benchmark::DeleteRandom; } else if (name == Slice("readwhilewriting")) { num_threads++; // Add extra thread for writing method = &Benchmark::ReadWhileWriting; } else if (name == Slice("readrandomwriterandom")) { method = &Benchmark::ReadRandomWriteRandom; } else if (name == Slice("updaterandom")) { method = &Benchmark::UpdateRandom; } else if (name == Slice("appendrandom")) { method = &Benchmark::AppendRandom; } else if (name == Slice("mergerandom")) { if (FLAGS_merge_operator.empty()) { fprintf(stdout, "%-12s : skipped (--merge_operator is unknown)\n", name.ToString().c_str()); method = nullptr; } else { method = &Benchmark::MergeRandom; } } else if (name == Slice("randomwithverify")) { method = &Benchmark::RandomWithVerify; } else if (name == Slice("compact")) { method = &Benchmark::Compact; } else if (name == Slice("crc32c")) { method = &Benchmark::Crc32c; } else if (name == Slice("acquireload")) { method = &Benchmark::AcquireLoad; } else if (name == Slice("snappycomp")) { method = &Benchmark::SnappyCompress; } else if (name == Slice("snappyuncomp")) { method = &Benchmark::SnappyUncompress; } else if (name == Slice("heapprofile")) { HeapProfile(); } else if (name == Slice("stats")) { PrintStats("leveldb.stats"); } else if (name == Slice("levelstats")) { PrintStats("leveldb.levelstats"); } else if (name == Slice("sstables")) { PrintStats("leveldb.sstables"); } else { if (name != Slice()) { // No error message for empty name fprintf(stderr, "unknown benchmark '%s'\n", name.ToString().c_str()); } } if (fresh_db) { if (FLAGS_use_existing_db) { fprintf(stdout, "%-12s : skipped (--use_existing_db is true)\n", name.ToString().c_str()); method = nullptr; } else { delete db_; db_ = nullptr; DestroyDB(FLAGS_db, Options()); Open(); } } if (method != nullptr) { fprintf(stdout, "DB path: [%s]\n", FLAGS_db); RunBenchmark(num_threads, name, method); } } if (FLAGS_statistics) { fprintf(stdout, "STATISTICS:\n%s\n", dbstats->ToString().c_str()); } } private: struct ThreadArg { Benchmark* bm; SharedState* shared; ThreadState* thread; void (Benchmark::*method)(ThreadState*); }; static void ThreadBody(void* v) { ThreadArg* arg = reinterpret_cast(v); SharedState* shared = arg->shared; ThreadState* thread = arg->thread; { MutexLock l(&shared->mu); shared->num_initialized++; if (shared->num_initialized >= shared->total) { shared->cv.SignalAll(); } while (!shared->start) { shared->cv.Wait(); } } thread->stats.Start(thread->tid); (arg->bm->*(arg->method))(thread); thread->stats.Stop(); { MutexLock l(&shared->mu); shared->num_done++; if (shared->num_done >= shared->total) { shared->cv.SignalAll(); } } } void RunBenchmark(int n, Slice name, void (Benchmark::*method)(ThreadState*)) { SharedState shared; shared.total = n; shared.num_initialized = 0; shared.num_done = 0; shared.start = false; ThreadArg* arg = new ThreadArg[n]; for (int i = 0; i < n; i++) { arg[i].bm = this; arg[i].method = method; arg[i].shared = &shared; arg[i].thread = new ThreadState(i); arg[i].thread->shared = &shared; FLAGS_env->StartThread(ThreadBody, &arg[i]); } shared.mu.Lock(); while (shared.num_initialized < n) { shared.cv.Wait(); } shared.start = true; shared.cv.SignalAll(); while (shared.num_done < n) { shared.cv.Wait(); } shared.mu.Unlock(); // Stats for some threads can be excluded. Stats merge_stats; for (int i = 0; i < n; i++) { merge_stats.Merge(arg[i].thread->stats); } merge_stats.Report(name); for (int i = 0; i < n; i++) { delete arg[i].thread; } delete[] arg; } void Crc32c(ThreadState* thread) { // Checksum about 500MB of data total const int size = 4096; const char* label = "(4K per op)"; std::string data(size, 'x'); int64_t bytes = 0; uint32_t crc = 0; while (bytes < 500 * 1048576) { crc = crc32c::Value(data.data(), size); thread->stats.FinishedSingleOp(nullptr); bytes += size; } // Print so result is not dead fprintf(stderr, "... crc=0x%x\r", static_cast(crc)); thread->stats.AddBytes(bytes); thread->stats.AddMessage(label); } void AcquireLoad(ThreadState* thread) { int dummy; port::AtomicPointer ap(&dummy); int count = 0; void *ptr = nullptr; thread->stats.AddMessage("(each op is 1000 loads)"); while (count < 100000) { for (int i = 0; i < 1000; i++) { ptr = ap.Acquire_Load(); } count++; thread->stats.FinishedSingleOp(nullptr); } if (ptr == nullptr) exit(1); // Disable unused variable warning. } void SnappyCompress(ThreadState* thread) { RandomGenerator gen; Slice input = gen.Generate(Options().block_size); int64_t bytes = 0; int64_t produced = 0; bool ok = true; std::string compressed; while (ok && bytes < 1024 * 1048576) { // Compress 1G ok = port::Snappy_Compress(Options().compression_opts, input.data(), input.size(), &compressed); produced += compressed.size(); bytes += input.size(); thread->stats.FinishedSingleOp(nullptr); } if (!ok) { thread->stats.AddMessage("(snappy failure)"); } else { char buf[100]; snprintf(buf, sizeof(buf), "(output: %.1f%%)", (produced * 100.0) / bytes); thread->stats.AddMessage(buf); thread->stats.AddBytes(bytes); } } void SnappyUncompress(ThreadState* thread) { RandomGenerator gen; Slice input = gen.Generate(Options().block_size); std::string compressed; bool ok = port::Snappy_Compress(Options().compression_opts, input.data(), input.size(), &compressed); int64_t bytes = 0; char* uncompressed = new char[input.size()]; while (ok && bytes < 1024 * 1048576) { // Compress 1G ok = port::Snappy_Uncompress(compressed.data(), compressed.size(), uncompressed); bytes += input.size(); thread->stats.FinishedSingleOp(nullptr); } delete[] uncompressed; if (!ok) { thread->stats.AddMessage("(snappy failure)"); } else { thread->stats.AddBytes(bytes); } } void Open() { assert(db_ == nullptr); Options options; options.create_if_missing = !FLAGS_use_existing_db; options.block_cache = cache_; if (cache_ == nullptr) { options.no_block_cache = true; } options.write_buffer_size = FLAGS_write_buffer_size; options.max_write_buffer_number = FLAGS_max_write_buffer_number; options.min_write_buffer_number_to_merge = FLAGS_min_write_buffer_number_to_merge; options.max_background_compactions = FLAGS_max_background_compactions; options.compaction_style = FLAGS_compaction_style; options.compaction_options_universal.size_ratio = FLAGS_universal_size_ratio; options.compaction_options_universal.min_merge_width = FLAGS_compaction_universal_min_merge_width; options.block_size = FLAGS_block_size; options.filter_policy = filter_policy_; options.prefix_extractor = FLAGS_use_prefix_blooms ? prefix_extractor_ : nullptr; options.max_open_files = FLAGS_open_files; options.statistics = dbstats; options.env = FLAGS_env; options.disableDataSync = FLAGS_disable_data_sync; options.use_fsync = FLAGS_use_fsync; options.num_levels = FLAGS_num_levels; options.target_file_size_base = FLAGS_target_file_size_base; options.target_file_size_multiplier = FLAGS_target_file_size_multiplier; options.max_bytes_for_level_base = FLAGS_max_bytes_for_level_base; options.max_bytes_for_level_multiplier = FLAGS_max_bytes_for_level_multiplier; options.filter_deletes = FLAGS_filter_deletes; if ((FLAGS_prefix_size == 0) == (FLAGS_rep_factory == kPrefixHash)) { fprintf(stderr, "prefix_size should be non-zero iff memtablerep == prefix_hash\n"); exit(1); } switch (FLAGS_rep_factory) { case kPrefixHash: options.memtable_factory.reset( new PrefixHashRepFactory(NewFixedPrefixTransform(FLAGS_prefix_size)) ); break; case kUnsorted: options.memtable_factory.reset( new UnsortedRepFactory ); break; case kSkipList: // no need to do anything break; case kVectorRep: options.memtable_factory.reset( new VectorRepFactory ); break; } if (FLAGS_max_bytes_for_level_multiplier_additional.size() > 0) { if (FLAGS_max_bytes_for_level_multiplier_additional.size() != (unsigned int)FLAGS_num_levels) { fprintf(stderr, "Insufficient number of fanouts specified %d\n", (int)FLAGS_max_bytes_for_level_multiplier_additional.size()); exit(1); } options.max_bytes_for_level_multiplier_additional = FLAGS_max_bytes_for_level_multiplier_additional; } options.level0_stop_writes_trigger = FLAGS_level0_stop_writes_trigger; options.level0_file_num_compaction_trigger = FLAGS_level0_file_num_compaction_trigger; options.level0_slowdown_writes_trigger = FLAGS_level0_slowdown_writes_trigger; options.compression = FLAGS_compression_type; options.WAL_ttl_seconds = FLAGS_WAL_ttl_seconds; if (FLAGS_min_level_to_compress >= 0) { assert(FLAGS_min_level_to_compress <= FLAGS_num_levels); options.compression_per_level.resize(FLAGS_num_levels); for (int i = 0; i < FLAGS_min_level_to_compress; i++) { options.compression_per_level[i] = kNoCompression; } for (int i = FLAGS_min_level_to_compress; i < FLAGS_num_levels; i++) { options.compression_per_level[i] = FLAGS_compression_type; } } options.disable_seek_compaction = FLAGS_disable_seek_compaction; options.delete_obsolete_files_period_micros = FLAGS_delete_obsolete_files_period_micros; options.soft_rate_limit = FLAGS_soft_rate_limit; options.hard_rate_limit = FLAGS_hard_rate_limit; options.rate_limit_delay_max_milliseconds = FLAGS_rate_limit_delay_max_milliseconds; options.table_cache_numshardbits = FLAGS_table_cache_numshardbits; options.max_grandparent_overlap_factor = FLAGS_max_grandparent_overlap_factor; options.disable_auto_compactions = FLAGS_disable_auto_compactions; options.source_compaction_factor = FLAGS_source_compaction_factor; // fill storage options options.allow_os_buffer = FLAGS_use_os_buffer; options.allow_mmap_reads = FLAGS_use_mmap_reads; options.allow_mmap_writes = FLAGS_use_mmap_writes; options.advise_random_on_open = FLAGS_advise_random_on_open; options.access_hint_on_compaction_start = FLAGS_compaction_fadvice; options.use_adaptive_mutex = FLAGS_use_adaptive_mutex; options.bytes_per_sync = FLAGS_bytes_per_sync; // merge operator options options.merge_operator = MergeOperators::CreateFromStringId( FLAGS_merge_operator); if (options.merge_operator == nullptr && !FLAGS_merge_operator.empty()) { fprintf(stderr, "invalid merge operator: %s\n", FLAGS_merge_operator.c_str()); exit(1); } Status s; if(FLAGS_read_only) { s = DB::OpenForReadOnly(options, FLAGS_db, &db_); } else { s = DB::Open(options, FLAGS_db, &db_); } if (!s.ok()) { fprintf(stderr, "open error: %s\n", s.ToString().c_str()); exit(1); } if (FLAGS_min_level_to_compress >= 0) { options.compression_per_level.clear(); } } enum WriteMode { RANDOM, SEQUENTIAL, UNIQUE_RANDOM }; void WriteSeq(ThreadState* thread) { DoWrite(thread, SEQUENTIAL); } void WriteRandom(ThreadState* thread) { DoWrite(thread, RANDOM); } void WriteUniqueRandom(ThreadState* thread) { DoWrite(thread, UNIQUE_RANDOM); } void DoWrite(ThreadState* thread, WriteMode write_mode) { const int test_duration = write_mode == RANDOM ? FLAGS_duration : 0; const int num_ops = writes_ == 0 ? num_ : writes_ ; Duration duration(test_duration, num_ops); unique_ptr bit_set; if (write_mode == UNIQUE_RANDOM) { bit_set.reset(new BitSet(num_ops)); } if (num_ != FLAGS_num) { char msg[100]; snprintf(msg, sizeof(msg), "(%lld ops)", num_); thread->stats.AddMessage(msg); } RandomGenerator gen; WriteBatch batch; Status s; int64_t bytes = 0; int i = 0; while (!duration.Done(entries_per_batch_)) { batch.Clear(); for (int j = 0; j < entries_per_batch_; j++) { long long k = 0; switch(write_mode) { case SEQUENTIAL: k = i +j; break; case RANDOM: k = thread->rand.Next() % FLAGS_num; break; case UNIQUE_RANDOM: { const long long t = thread->rand.Next() % FLAGS_num; if (!bit_set->test(t)) { // best case k = t; } else { bool found = false; // look forward for (size_t i = t + 1; i < bit_set->size(); ++i) { if (!bit_set->test(i)) { found = true; k = i; break; } } if (!found) { for (size_t i = t; i-- > 0;) { if (!bit_set->test(i)) { found = true; k = i; break; } } } } bit_set->set(k); break; } }; unique_ptr key = GenerateKeyFromInt(k); batch.Put(key.get(), gen.Generate(value_size_)); bytes += value_size_ + strlen(key.get()); thread->stats.FinishedSingleOp(db_); } s = db_->Write(write_options_, &batch); if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); exit(1); } i += entries_per_batch_; } thread->stats.AddBytes(bytes); } void ReadSequential(ThreadState* thread) { Iterator* iter = db_->NewIterator(ReadOptions(FLAGS_verify_checksum, true)); long long i = 0; int64_t bytes = 0; for (iter->SeekToFirst(); i < reads_ && iter->Valid(); iter->Next()) { bytes += iter->key().size() + iter->value().size(); thread->stats.FinishedSingleOp(db_); ++i; } delete iter; thread->stats.AddBytes(bytes); } void ReadReverse(ThreadState* thread) { Iterator* iter = db_->NewIterator(ReadOptions(FLAGS_verify_checksum, true)); long long i = 0; int64_t bytes = 0; for (iter->SeekToLast(); i < reads_ && iter->Valid(); iter->Prev()) { bytes += iter->key().size() + iter->value().size(); thread->stats.FinishedSingleOp(db_); ++i; } delete iter; thread->stats.AddBytes(bytes); } // Calls MultiGet over a list of keys from a random distribution. // Returns the total number of keys found. long MultiGetRandom(ReadOptions& options, int num_keys, Random64& rand, long long range, const char* suffix) { assert(num_keys > 0); std::vector keys(num_keys); std::vector values(num_keys); std::vector > gen_keys(num_keys); int i; long long k; // Fill the keys vector for(i=0; iGetSnapshot(); } // Apply the operation std::vector statuses = db_->MultiGet(options, keys, &values); assert((long)statuses.size() == num_keys); assert((long)keys.size() == num_keys); // Should always be the case. assert((long)values.size() == num_keys); if (FLAGS_use_snapshot) { db_->ReleaseSnapshot(options.snapshot); options.snapshot = nullptr; } // Count number found long found = 0; for(i=0; irand, FLAGS_num, ""); thread->stats.FinishedSingleOp(db_); keys_left -= num_keys; } } else { // Regular case. Do one "get" at a time Get Iterator* iter = db_->NewIterator(options); std::string value; while (!duration.Done(1)) { const long long k = thread->rand.Next() % FLAGS_num; unique_ptr key = GenerateKeyFromInt(k); if (FLAGS_use_snapshot) { options.snapshot = db_->GetSnapshot(); } if (FLAGS_read_range < 2) { if (db_->Get(options, key.get(), &value).ok()) { found++; } } else { Slice skey(key.get()); int count = 1; if (FLAGS_get_approx) { unique_ptr key2 = GenerateKeyFromInt(k + (int) FLAGS_read_range); Slice skey2(key2.get()); Range range(skey, skey2); uint64_t sizes; db_->GetApproximateSizes(&range, 1, &sizes); } for (iter->Seek(skey); iter->Valid() && count <= FLAGS_read_range; ++count, iter->Next()) { found++; } } if (FLAGS_use_snapshot) { db_->ReleaseSnapshot(options.snapshot); options.snapshot = nullptr; } thread->stats.FinishedSingleOp(db_); } delete iter; } char msg[100]; snprintf(msg, sizeof(msg), "(%lld of %lld found)", found, reads_); thread->stats.AddMessage(msg); } void PrefixScanRandom(ThreadState* thread) { if (FLAGS_use_prefix_api) { assert(FLAGS_use_prefix_blooms); assert(FLAGS_bloom_bits >= 1); } ReadOptions options(FLAGS_verify_checksum, true); Duration duration(FLAGS_duration, reads_); long long found = 0; while (!duration.Done(1)) { std::string value; const int k = thread->rand.Next() % FLAGS_num; unique_ptr key = GenerateKeyFromInt(k); Slice skey(key.get()); Slice prefix = prefix_extractor_->Transform(skey); options.prefix = FLAGS_use_prefix_api ? &prefix : nullptr; Iterator* iter = db_->NewIterator(options); for (iter->Seek(skey); iter->Valid() && iter->key().starts_with(prefix); iter->Next()) { found++; } delete iter; thread->stats.FinishedSingleOp(db_); } char msg[100]; snprintf(msg, sizeof(msg), "(%lld of %lld found)", found, reads_); thread->stats.AddMessage(msg); } void ReadMissing(ThreadState* thread) { FLAGS_warn_missing_keys = false; // Never warn about missing keys Duration duration(FLAGS_duration, reads_); ReadOptions options(FLAGS_verify_checksum, true); if (FLAGS_use_multiget) { const long& kpg = FLAGS_keys_per_multiget; // keys per multiget group long keys_left = reads_; // Recalculate number of keys per group, and call MultiGet until done long num_keys; long found; while(num_keys = std::min(keys_left, kpg), !duration.Done(num_keys)) { found = MultiGetRandom(options, num_keys, thread->rand, FLAGS_num, "."); // We should not find any key since the key we try to get has a // different suffix if (found) { assert(false); } thread->stats.FinishedSingleOp(db_); keys_left -= num_keys; } } else { // Regular case (not MultiGet) std::string value; Status s; while (!duration.Done(1)) { const long long k = thread->rand.Next() % FLAGS_num; unique_ptr key = GenerateKeyFromInt(k, "."); s = db_->Get(options, key.get(), &value); assert(!s.ok() && s.IsNotFound()); thread->stats.FinishedSingleOp(db_); } } } void ReadHot(ThreadState* thread) { Duration duration(FLAGS_duration, reads_); ReadOptions options(FLAGS_verify_checksum, true); const long long range = (FLAGS_num + 99) / 100; long long found = 0; if (FLAGS_use_multiget) { const long long kpg = FLAGS_keys_per_multiget; // keys per multiget group long long keys_left = reads_; // Recalculate number of keys per group, and call MultiGet until done long num_keys; while(num_keys = std::min(keys_left, kpg), !duration.Done(num_keys)) { found += MultiGetRandom(options, num_keys, thread->rand, range, ""); thread->stats.FinishedSingleOp(db_); keys_left -= num_keys; } } else { std::string value; while (!duration.Done(1)) { const long long k = thread->rand.Next() % range; unique_ptr key = GenerateKeyFromInt(k); if (db_->Get(options, key.get(), &value).ok()){ ++found; } thread->stats.FinishedSingleOp(db_); } } char msg[100]; snprintf(msg, sizeof(msg), "(%lld of %lld found)", found, reads_); thread->stats.AddMessage(msg); } void SeekRandom(ThreadState* thread) { Duration duration(FLAGS_duration, reads_); ReadOptions options(FLAGS_verify_checksum, true); std::string value; long long found = 0; while (!duration.Done(1)) { Iterator* iter = db_->NewIterator(options); const long long k = thread->rand.Next() % FLAGS_num; unique_ptr key = GenerateKeyFromInt(k); iter->Seek(key.get()); if (iter->Valid() && iter->key() == key.get()) found++; delete iter; thread->stats.FinishedSingleOp(db_); } char msg[100]; snprintf(msg, sizeof(msg), "(%lld of %lld found)", found, num_); thread->stats.AddMessage(msg); } void DoDelete(ThreadState* thread, bool seq) { WriteBatch batch; Status s; Duration duration(seq ? 0 : FLAGS_duration, num_); long i = 0; while (!duration.Done(entries_per_batch_)) { batch.Clear(); for (int j = 0; j < entries_per_batch_; j++) { const long long k = seq ? i+j : (thread->rand.Next() % FLAGS_num); unique_ptr key = GenerateKeyFromInt(k); batch.Delete(key.get()); thread->stats.FinishedSingleOp(db_); } s = db_->Write(write_options_, &batch); if (!s.ok()) { fprintf(stderr, "del error: %s\n", s.ToString().c_str()); exit(1); } ++i; } } void DeleteSeq(ThreadState* thread) { DoDelete(thread, true); } void DeleteRandom(ThreadState* thread) { DoDelete(thread, false); } void ReadWhileWriting(ThreadState* thread) { if (thread->tid > 0) { ReadRandom(thread); } else { // Special thread that keeps writing until other threads are done. RandomGenerator gen; double last = FLAGS_env->NowMicros(); int writes_per_second_by_10 = 0; int num_writes = 0; // --writes_per_second rate limit is enforced per 100 milliseconds // intervals to avoid a burst of writes at the start of each second. if (FLAGS_writes_per_second > 0) writes_per_second_by_10 = FLAGS_writes_per_second / 10; // Don't merge stats from this thread with the readers. thread->stats.SetExcludeFromMerge(); while (true) { { MutexLock l(&thread->shared->mu); if (thread->shared->num_done + 1 >= thread->shared->num_initialized) { // Other threads have finished break; } } const long long k = thread->rand.Next() % FLAGS_num; unique_ptr key = GenerateKeyFromInt(k); Status s = db_->Put(write_options_, key.get(), gen.Generate(value_size_)); if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); exit(1); } thread->stats.FinishedSingleOp(db_); ++num_writes; if (writes_per_second_by_10 && num_writes >= writes_per_second_by_10) { double now = FLAGS_env->NowMicros(); double usecs_since_last = now - last; num_writes = 0; last = now; if (usecs_since_last < 100000.0) { FLAGS_env->SleepForMicroseconds(100000.0 - usecs_since_last); last = FLAGS_env->NowMicros(); } } } } } // Given a key K and value V, this puts (K+"0", V), (K+"1", V), (K+"2", V) // in DB atomically i.e in a single batch. Also refer GetMany. Status PutMany(const WriteOptions& writeoptions, const Slice& key, const Slice& value) { std::string suffixes[3] = {"2", "1", "0"}; std::string keys[3]; WriteBatch batch; Status s; for (int i = 0; i < 3; i++) { keys[i] = key.ToString() + suffixes[i]; batch.Put(keys[i], value); } s = db_->Write(writeoptions, &batch); return s; } // Given a key K, this deletes (K+"0", V), (K+"1", V), (K+"2", V) // in DB atomically i.e in a single batch. Also refer GetMany. Status DeleteMany(const WriteOptions& writeoptions, const Slice& key) { std::string suffixes[3] = {"1", "2", "0"}; std::string keys[3]; WriteBatch batch; Status s; for (int i = 0; i < 3; i++) { keys[i] = key.ToString() + suffixes[i]; batch.Delete(keys[i]); } s = db_->Write(writeoptions, &batch); return s; } // Given a key K and value V, this gets values for K+"0", K+"1" and K+"2" // in the same snapshot, and verifies that all the values are identical. // ASSUMES that PutMany was used to put (K, V) into the DB. Status GetMany(const ReadOptions& readoptions, const Slice& key, std::string* value) { std::string suffixes[3] = {"0", "1", "2"}; std::string keys[3]; Slice key_slices[3]; std::string values[3]; ReadOptions readoptionscopy = readoptions; readoptionscopy.snapshot = db_->GetSnapshot(); Status s; for (int i = 0; i < 3; i++) { keys[i] = key.ToString() + suffixes[i]; key_slices[i] = keys[i]; s = db_->Get(readoptionscopy, key_slices[i], value); if (!s.ok() && !s.IsNotFound()) { fprintf(stderr, "get error: %s\n", s.ToString().c_str()); values[i] = ""; // we continue after error rather than exiting so that we can // find more errors if any } else if (s.IsNotFound()) { values[i] = ""; } else { values[i] = *value; } } db_->ReleaseSnapshot(readoptionscopy.snapshot); if ((values[0] != values[1]) || (values[1] != values[2])) { fprintf(stderr, "inconsistent values for key %s: %s, %s, %s\n", key.ToString().c_str(), values[0].c_str(), values[1].c_str(), values[2].c_str()); // we continue after error rather than exiting so that we can // find more errors if any } return s; } // Differs from readrandomwriterandom in the following ways: // (a) Uses GetMany/PutMany to read/write key values. Refer to those funcs. // (b) Does deletes as well (per FLAGS_deletepercent) // (c) In order to achieve high % of 'found' during lookups, and to do // multiple writes (including puts and deletes) it uses upto // FLAGS_numdistinct distinct keys instead of FLAGS_num distinct keys. // (d) Does not have a MultiGet option. void RandomWithVerify(ThreadState* thread) { ReadOptions options(FLAGS_verify_checksum, true); RandomGenerator gen; std::string value; long long found = 0; int get_weight = 0; int put_weight = 0; int delete_weight = 0; long long gets_done = 0; long long puts_done = 0; long long deletes_done = 0; // the number of iterations is the larger of read_ or write_ for (long long i = 0; i < readwrites_; i++) { const long long k = thread->rand.Next() % (FLAGS_numdistinct); unique_ptr key = GenerateKeyFromInt(k); if (get_weight == 0 && put_weight == 0 && delete_weight == 0) { // one batch completed, reinitialize for next batch get_weight = FLAGS_readwritepercent; delete_weight = FLAGS_deletepercent; put_weight = 100 - get_weight - delete_weight; } if (get_weight > 0) { // do all the gets first Status s = GetMany(options, key.get(), &value); if (!s.ok() && !s.IsNotFound()) { fprintf(stderr, "getmany error: %s\n", s.ToString().c_str()); // we continue after error rather than exiting so that we can // find more errors if any } else if (!s.IsNotFound()) { found++; } get_weight--; gets_done++; } else if (put_weight > 0) { // then do all the corresponding number of puts // for all the gets we have done earlier Status s = PutMany(write_options_, key.get(), gen.Generate(value_size_)); if (!s.ok()) { fprintf(stderr, "putmany error: %s\n", s.ToString().c_str()); exit(1); } put_weight--; puts_done++; } else if (delete_weight > 0) { Status s = DeleteMany(write_options_, key.get()); if (!s.ok()) { fprintf(stderr, "deletemany error: %s\n", s.ToString().c_str()); exit(1); } delete_weight--; deletes_done++; } thread->stats.FinishedSingleOp(db_); } char msg[100]; snprintf(msg, sizeof(msg), "( get:%lld put:%lld del:%lld total:%lld found:%lld)", gets_done, puts_done, deletes_done, readwrites_, found); thread->stats.AddMessage(msg); } // This is different from ReadWhileWriting because it does not use // an extra thread. void ReadRandomWriteRandom(ThreadState* thread) { if (FLAGS_use_multiget){ // Separate function for multiget (for ease of reading) ReadRandomWriteRandomMultiGet(thread); return; } ReadOptions options(FLAGS_verify_checksum, true); RandomGenerator gen; std::string value; long long found = 0; int get_weight = 0; int put_weight = 0; long long reads_done = 0; long long writes_done = 0; Duration duration(FLAGS_duration, readwrites_); // the number of iterations is the larger of read_ or write_ while (!duration.Done(1)) { const long long k = thread->rand.Next() % FLAGS_num; unique_ptr key = GenerateKeyFromInt(k); if (get_weight == 0 && put_weight == 0) { // one batch completed, reinitialize for next batch get_weight = FLAGS_readwritepercent; put_weight = 100 - get_weight; } if (get_weight > 0) { if (FLAGS_use_snapshot) { options.snapshot = db_->GetSnapshot(); } if (FLAGS_get_approx) { char key2[100]; snprintf(key2, sizeof(key2), "%016lld", k + 1); Slice skey2(key2); Slice skey(key2); Range range(skey, skey2); uint64_t sizes; db_->GetApproximateSizes(&range, 1, &sizes); } // do all the gets first Status s = db_->Get(options, key.get(), &value); if (!s.ok() && !s.IsNotFound()) { fprintf(stderr, "get error: %s\n", s.ToString().c_str()); // we continue after error rather than exiting so that we can // find more errors if any } else if (!s.IsNotFound()) { found++; } get_weight--; reads_done++; if (FLAGS_use_snapshot) { db_->ReleaseSnapshot(options.snapshot); } } else if (put_weight > 0) { // then do all the corresponding number of puts // for all the gets we have done earlier Status s = db_->Put(write_options_, key.get(), gen.Generate(value_size_)); if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); exit(1); } put_weight--; writes_done++; } thread->stats.FinishedSingleOp(db_); } char msg[100]; snprintf(msg, sizeof(msg), "( reads:%lld writes:%lld total:%lld found:%lld)", reads_done, writes_done, readwrites_, found); thread->stats.AddMessage(msg); } // ReadRandomWriteRandom (with multiget) // Does FLAGS_keys_per_multiget reads (per multiget), followed by some puts. // FLAGS_readwritepercent will specify the ratio of gets to puts. // e.g.: If FLAGS_keys_per_multiget == 100 and FLAGS_readwritepercent == 75 // Then each block will do 100 multigets and 33 puts // So there are 133 operations in-total: 100 of them (75%) are gets, and 33 // of them (25%) are puts. void ReadRandomWriteRandomMultiGet(ThreadState* thread) { ReadOptions options(FLAGS_verify_checksum, true); RandomGenerator gen; // For multiget const long& kpg = FLAGS_keys_per_multiget; // keys per multiget group long keys_left = readwrites_; // number of keys still left to read long num_keys; // number of keys to read in current group long num_put_keys; // number of keys to put in current group long found = 0; long reads_done = 0; long writes_done = 0; long multigets_done = 0; // the number of iterations is the larger of read_ or write_ Duration duration(FLAGS_duration, readwrites_); while(true) { // Read num_keys keys, then write num_put_keys keys. // The ratio of num_keys to num_put_keys is always FLAGS_readwritepercent // And num_keys is set to be FLAGS_keys_per_multiget (kpg) // num_put_keys is calculated accordingly (to maintain the ratio) // Note: On the final iteration, num_keys and num_put_keys will be smaller num_keys = std::min(keys_left*(FLAGS_readwritepercent + 99)/100, kpg); num_put_keys = num_keys * (100-FLAGS_readwritepercent) / FLAGS_readwritepercent; // This will break the loop when duration is complete if (duration.Done(num_keys + num_put_keys)) { break; } // A quick check to make sure our formula doesn't break on edge cases assert(num_keys >= 1); assert(num_keys + num_put_keys <= keys_left); // Apply the MultiGet operations found += MultiGetRandom(options, num_keys, thread->rand, FLAGS_num, ""); ++multigets_done; reads_done+=num_keys; thread->stats.FinishedSingleOp(db_); // Now do the puts int i; long long k; for(i=0; irand.Next() % FLAGS_num; unique_ptr key = GenerateKeyFromInt(k); Status s = db_->Put(write_options_, key.get(), gen.Generate(value_size_)); if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); exit(1); } writes_done++; thread->stats.FinishedSingleOp(db_); } keys_left -= (num_keys + num_put_keys); } char msg[100]; snprintf(msg, sizeof(msg), "( reads:%ld writes:%ld total:%lld multiget_ops:%ld found:%ld)", reads_done, writes_done, readwrites_, multigets_done, found); thread->stats.AddMessage(msg); } // // Read-modify-write for random keys void UpdateRandom(ThreadState* thread) { ReadOptions options(FLAGS_verify_checksum, true); RandomGenerator gen; std::string value; long long found = 0; Duration duration(FLAGS_duration, readwrites_); // the number of iterations is the larger of read_ or write_ while (!duration.Done(1)) { const long long k = thread->rand.Next() % FLAGS_num; unique_ptr key = GenerateKeyFromInt(k); if (FLAGS_use_snapshot) { options.snapshot = db_->GetSnapshot(); } if (FLAGS_get_approx) { char key2[100]; snprintf(key2, sizeof(key2), "%016lld", k + 1); Slice skey2(key2); Slice skey(key2); Range range(skey, skey2); uint64_t sizes; db_->GetApproximateSizes(&range, 1, &sizes); } if (db_->Get(options, key.get(), &value).ok()) { found++; } if (FLAGS_use_snapshot) { db_->ReleaseSnapshot(options.snapshot); } Status s = db_->Put(write_options_, key.get(), gen.Generate(value_size_)); if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); exit(1); } thread->stats.FinishedSingleOp(db_); } char msg[100]; snprintf(msg, sizeof(msg), "( updates:%lld found:%lld)", readwrites_, found); thread->stats.AddMessage(msg); } // Read-modify-write for random keys. // Each operation causes the key grow by value_size (simulating an append). // Generally used for benchmarking against merges of similar type void AppendRandom(ThreadState* thread) { ReadOptions options(FLAGS_verify_checksum, true); RandomGenerator gen; std::string value; long found = 0; // The number of iterations is the larger of read_ or write_ Duration duration(FLAGS_duration, readwrites_); while (!duration.Done(1)) { const long long k = thread->rand.Next() % FLAGS_num; unique_ptr key = GenerateKeyFromInt(k); if (FLAGS_use_snapshot) { options.snapshot = db_->GetSnapshot(); } if (FLAGS_get_approx) { char key2[100]; snprintf(key2, sizeof(key2), "%016lld", k + 1); Slice skey2(key2); Slice skey(key2); Range range(skey, skey2); uint64_t sizes; db_->GetApproximateSizes(&range, 1, &sizes); } // Get the existing value if (db_->Get(options, key.get(), &value).ok()) { found++; } else { // If not existing, then just assume an empty string of data value.clear(); } if (FLAGS_use_snapshot) { db_->ReleaseSnapshot(options.snapshot); } // Update the value (by appending data) Slice operand = gen.Generate(value_size_); if (value.size() > 0) { // Use a delimeter to match the semantics for StringAppendOperator value.append(1,','); } value.append(operand.data(), operand.size()); // Write back to the database Status s = db_->Put(write_options_, key.get(), value); if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); exit(1); } thread->stats.FinishedSingleOp(db_); } char msg[100]; snprintf(msg, sizeof(msg), "( updates:%lld found:%ld)", readwrites_, found); thread->stats.AddMessage(msg); } // Read-modify-write for random keys (using MergeOperator) // The merge operator to use should be defined by FLAGS_merge_operator // Adjust FLAGS_value_size so that the keys are reasonable for this operator // Assumes that the merge operator is non-null (i.e.: is well-defined) // // For example, use FLAGS_merge_operator="uint64add" and FLAGS_value_size=8 // to simulate random additions over 64-bit integers using merge. void MergeRandom(ThreadState* thread) { RandomGenerator gen; // The number of iterations is the larger of read_ or write_ Duration duration(FLAGS_duration, readwrites_); while (!duration.Done(1)) { const long long k = thread->rand.Next() % FLAGS_num; unique_ptr key = GenerateKeyFromInt(k); Status s = db_->Merge(write_options_, key.get(), gen.Generate(value_size_)); if (!s.ok()) { fprintf(stderr, "merge error: %s\n", s.ToString().c_str()); exit(1); } thread->stats.FinishedSingleOp(db_); } // Print some statistics char msg[100]; snprintf(msg, sizeof(msg), "( updates:%lld)", readwrites_); thread->stats.AddMessage(msg); } void Compact(ThreadState* thread) { db_->CompactRange(nullptr, nullptr); } void PrintStats(const char* key) { std::string stats; if (!db_->GetProperty(key, &stats)) { stats = "(failed)"; } fprintf(stdout, "\n%s\n", stats.c_str()); } static void WriteToFile(void* arg, const char* buf, int n) { reinterpret_cast(arg)->Append(Slice(buf, n)); } void HeapProfile() { char fname[100]; EnvOptions soptions; snprintf(fname, sizeof(fname), "%s/heap-%04d", FLAGS_db, ++heap_counter_); unique_ptr file; Status s = FLAGS_env->NewWritableFile(fname, &file, soptions); if (!s.ok()) { fprintf(stderr, "%s\n", s.ToString().c_str()); return; } bool ok = port::GetHeapProfile(WriteToFile, file.get()); if (!ok) { fprintf(stderr, "heap profiling not supported\n"); FLAGS_env->DeleteFile(fname); } } }; } // namespace leveldb int main(int argc, char** argv) { leveldb::InstallStackTraceHandler(); FLAGS_write_buffer_size = leveldb::Options().write_buffer_size; FLAGS_max_write_buffer_number = leveldb::Options().max_write_buffer_number; FLAGS_min_write_buffer_number_to_merge = leveldb::Options().min_write_buffer_number_to_merge; FLAGS_open_files = leveldb::Options().max_open_files; FLAGS_max_background_compactions = leveldb::Options().max_background_compactions; FLAGS_compaction_style = leveldb::Options().compaction_style; FLAGS_universal_size_ratio = leveldb::Options().compaction_options_universal.size_ratio; FLAGS_compaction_universal_min_merge_width = leveldb::Options().compaction_options_universal.min_merge_width; // Compression test code above refers to FLAGS_block_size FLAGS_block_size = leveldb::Options().block_size; FLAGS_use_os_buffer = leveldb::EnvOptions().use_os_buffer; FLAGS_use_mmap_reads = leveldb::EnvOptions().use_mmap_reads; FLAGS_use_mmap_writes = leveldb::EnvOptions().use_mmap_writes; std::string default_db_path; for (int i = 1; i < argc; i++) { double d; int n; long l; long long ll; char junk; char buf[2048]; char str[512]; if (leveldb::Slice(argv[i]).starts_with("--benchmarks=")) { FLAGS_benchmarks = argv[i] + strlen("--benchmarks="); } else if (sscanf(argv[i], "--compression_ratio=%lf%c", &d, &junk) == 1) { FLAGS_compression_ratio = d; } else if (sscanf(argv[i], "--histogram=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_histogram = n; } else if (sscanf(argv[i], "--use_existing_db=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_use_existing_db = n; } else if (sscanf(argv[i], "--num=%lld%c", &ll, &junk) == 1) { FLAGS_num = ll; } else if (sscanf(argv[i], "--numdistinct=%lld%c", &ll, &junk) == 1) { FLAGS_numdistinct = ll; } else if (sscanf(argv[i], "--reads=%lld%c", &ll, &junk) == 1) { FLAGS_reads = ll; } else if (sscanf(argv[i], "--read_range=%d%c", &n, &junk) == 1) { FLAGS_read_range = n; } else if (sscanf(argv[i], "--use_prefix_blooms=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_use_prefix_blooms = n; } else if (sscanf(argv[i], "--use_prefix_api=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_use_prefix_api = n; } else if (sscanf(argv[i], "--duration=%d%c", &n, &junk) == 1) { FLAGS_duration = n; } else if (sscanf(argv[i], "--seed=%ld%c", &l, &junk) == 1) { FLAGS_seed = l; } else if (sscanf(argv[i], "--threads=%d%c", &n, &junk) == 1) { FLAGS_threads = n; } else if (sscanf(argv[i], "--value_size=%d%c", &n, &junk) == 1) { FLAGS_value_size = n; } else if (sscanf(argv[i], "--key_size=%d%c", &n, &junk) == 1) { if (MAX_KEY_SIZE < n) { fprintf(stderr, "key_size should not be larger than %d\n", MAX_KEY_SIZE); exit(1); } else { FLAGS_key_size = n; } } else if (sscanf(argv[i], "--write_buffer_size=%d%c", &n, &junk) == 1) { FLAGS_write_buffer_size = n; } else if (sscanf(argv[i], "--max_write_buffer_number=%d%c", &n, &junk) == 1) { FLAGS_max_write_buffer_number = n; } else if (sscanf(argv[i], "--min_write_buffer_number_to_merge=%d%c", &n, &junk) == 1) { FLAGS_min_write_buffer_number_to_merge = n; } else if (sscanf(argv[i], "--max_background_compactions=%d%c", &n, &junk) == 1) { FLAGS_max_background_compactions = n; } else if (sscanf(argv[i], "--compaction_style=%d%c", &n, &junk) == 1) { FLAGS_compaction_style = (leveldb::CompactionStyle)n; } else if (sscanf(argv[i], "--universal_size_ratio=%d%c", &n, &junk) == 1) { FLAGS_universal_size_ratio = n; } else if (sscanf(argv[i], "--universal_min_merge_width=%d%c", &n, &junk) == 1) { FLAGS_compaction_universal_min_merge_width = n; } else if (sscanf(argv[i], "--cache_size=%ld%c", &l, &junk) == 1) { FLAGS_cache_size = l; } else if (sscanf(argv[i], "--block_size=%d%c", &n, &junk) == 1) { FLAGS_block_size = n; } else if (sscanf(argv[i], "--cache_numshardbits=%d%c", &n, &junk) == 1) { if (n < 20) { FLAGS_cache_numshardbits = n; } else { fprintf(stderr, "The cache cannot be sharded into 2**%d pieces\n", n); exit(1); } } else if (sscanf(argv[i], "--table_cache_numshardbits=%d%c", &n, &junk) == 1) { if (n <= 0 || n > 20) { fprintf(stderr, "The cache cannot be sharded into 2**%d pieces\n", n); exit(1); } FLAGS_table_cache_numshardbits = n; } else if (sscanf(argv[i], "--bloom_bits=%d%c", &n, &junk) == 1) { FLAGS_bloom_bits = n; } else if (sscanf(argv[i], "--open_files=%d%c", &n, &junk) == 1) { FLAGS_open_files = n; } else if (strncmp(argv[i], "--db=", 5) == 0) { FLAGS_db = argv[i] + 5; } else if (sscanf(argv[i], "--verify_checksum=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_verify_checksum = n; } else if (sscanf(argv[i], "--bufferedio=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_use_os_buffer = n; } else if (sscanf(argv[i], "--mmap_read=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_use_mmap_reads = n; } else if (sscanf(argv[i], "--mmap_write=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_use_mmap_writes = n; } else if (sscanf(argv[i], "--statistics=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { if (n == 1) { dbstats = leveldb::CreateDBStatistics(); FLAGS_statistics = true; } } else if (sscanf(argv[i], "--writes=%lld%c", &ll, &junk) == 1) { FLAGS_writes = ll; } else if (sscanf(argv[i], "--writes_per_second=%d%c", &n, &junk) == 1) { FLAGS_writes_per_second = n; } else if (sscanf(argv[i], "--sync=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_sync = n; } else if (sscanf(argv[i], "--readwritepercent=%d%c", &n, &junk) == 1 && n > 0 && n < 100) { FLAGS_readwritepercent = n; } else if (sscanf(argv[i], "--deletepercent=%d%c", &n, &junk) == 1 && n > 0 && n < 100) { FLAGS_deletepercent = n; } else if (sscanf(argv[i], "--disable_data_sync=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_disable_data_sync = n; } else if (sscanf(argv[i], "--use_fsync=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_use_fsync = n; } else if (sscanf(argv[i], "--disable_wal=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_disable_wal = n; } else if (sscanf(argv[i], "--use_snapshot=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_use_snapshot = n; } else if (sscanf(argv[i], "--get_approx=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_get_approx = n; } else if (sscanf(argv[i], "--hdfs=%s", buf) == 1) { FLAGS_env = new leveldb::HdfsEnv(buf); } else if (sscanf(argv[i], "--num_levels=%d%c", &n, &junk) == 1) { FLAGS_num_levels = n; } else if (sscanf(argv[i], "--target_file_size_base=%d%c", &n, &junk) == 1) { FLAGS_target_file_size_base = n; } else if ( sscanf(argv[i], "--target_file_size_multiplier=%d%c", &n, &junk) == 1) { FLAGS_target_file_size_multiplier = n; } else if ( sscanf(argv[i], "--max_bytes_for_level_base=%ld%c", &l, &junk) == 1) { FLAGS_max_bytes_for_level_base = l; } else if (sscanf(argv[i], "--max_bytes_for_level_multiplier=%d%c", &n, &junk) == 1) { FLAGS_max_bytes_for_level_multiplier = n; } else if (sscanf(argv[i],"--level0_stop_writes_trigger=%d%c", &n, &junk) == 1) { FLAGS_level0_stop_writes_trigger = n; } else if (sscanf(argv[i], "--max_bytes_for_level_multiplier_additional=%s%c", str, &junk) == 1) { std::vector fanout = leveldb::stringSplit(str, ','); for (unsigned int j= 0; j < fanout.size(); j++) { FLAGS_max_bytes_for_level_multiplier_additional.push_back( std::stoi(fanout[j])); } } else if (sscanf(argv[i],"--level0_slowdown_writes_trigger=%d%c", &n, &junk) == 1) { FLAGS_level0_slowdown_writes_trigger = n; } else if (sscanf(argv[i],"--level0_file_num_compaction_trigger=%d%c", &n, &junk) == 1) { FLAGS_level0_file_num_compaction_trigger = n; } else if (strncmp(argv[i], "--compression_type=", 19) == 0) { const char* ctype = argv[i] + 19; if (!strcasecmp(ctype, "none")) FLAGS_compression_type = leveldb::kNoCompression; else if (!strcasecmp(ctype, "snappy")) FLAGS_compression_type = leveldb::kSnappyCompression; else if (!strcasecmp(ctype, "zlib")) FLAGS_compression_type = leveldb::kZlibCompression; else if (!strcasecmp(ctype, "bzip2")) FLAGS_compression_type = leveldb::kBZip2Compression; else { fprintf(stdout, "Cannot parse %s\n", argv[i]); } } else if (strncmp(argv[i], "--memtablerep=", 14) == 0) { const char* ctype = argv[i] + 14; if (!strcasecmp(ctype, "skip_list")) FLAGS_rep_factory = kSkipList; else if (!strcasecmp(ctype, "prefix_hash")) FLAGS_rep_factory = kPrefixHash; else if (!strcasecmp(ctype, "unsorted")) FLAGS_rep_factory = kUnsorted; else if (!strcasecmp(ctype, "vector")) FLAGS_rep_factory = kVectorRep; else { fprintf(stdout, "Cannot parse %s\n", argv[i]); } } else if (sscanf(argv[i], "--min_level_to_compress=%d%c", &n, &junk) == 1 && n >= 0) { FLAGS_min_level_to_compress = n; } else if (sscanf(argv[i], "--disable_seek_compaction=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_disable_seek_compaction = n; } else if (sscanf(argv[i], "--delete_obsolete_files_period_micros=%ld%c", &l, &junk) == 1) { FLAGS_delete_obsolete_files_period_micros = l; } else if (sscanf(argv[i], "--stats_interval=%lld%c", &ll, &junk) == 1) { FLAGS_stats_interval = ll; } else if (sscanf(argv[i], "--stats_per_interval=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_stats_per_interval = n; } else if (sscanf(argv[i], "--prefix_size=%d%c", &n, &junk) == 1 && n >= 0 && n < 2000000000) { FLAGS_prefix_size = n; } else if (sscanf(argv[i], "--soft_rate_limit=%lf%c", &d, &junk) == 1 && d > 0.0) { FLAGS_soft_rate_limit = d; } else if (sscanf(argv[i], "--hard_rate_limit=%lf%c", &d, &junk) == 1 && d > 1.0) { FLAGS_hard_rate_limit = d; } else if (sscanf(argv[i], "--rate_limit_delay_max_milliseconds=%d%c", &n, &junk) == 1 && n >= 0) { FLAGS_rate_limit_delay_max_milliseconds = n; } else if (sscanf(argv[i], "--readonly=%d%c", &n, &junk) == 1 && (n == 0 || n ==1 )) { FLAGS_read_only = n; } else if (sscanf(argv[i], "--max_grandparent_overlap_factor=%d%c", &n, &junk) == 1) { FLAGS_max_grandparent_overlap_factor = n; } else if (sscanf(argv[i], "--disable_auto_compactions=%d%c", &n, &junk) == 1 && (n == 0 || n ==1)) { FLAGS_disable_auto_compactions = n; } else if (sscanf(argv[i], "--source_compaction_factor=%d%c", &n, &junk) == 1 && n > 0) { FLAGS_source_compaction_factor = n; } else if (sscanf(argv[i], "--wal_ttl=%d%c", &n, &junk) == 1) { FLAGS_WAL_ttl_seconds = static_cast(n); } else if (sscanf(argv[i], "--advise_random_on_open=%d%c", &n, &junk) == 1 && (n == 0 || n ==1 )) { FLAGS_advise_random_on_open = n; } else if (sscanf(argv[i], "--compaction_fadvice=%s", buf) == 1) { if (!strcasecmp(buf, "NONE")) FLAGS_compaction_fadvice = leveldb::Options::NONE; else if (!strcasecmp(buf, "NORMAL")) FLAGS_compaction_fadvice = leveldb::Options::NORMAL; else if (!strcasecmp(buf, "SEQUENTIAL")) FLAGS_compaction_fadvice = leveldb::Options::SEQUENTIAL; else if (!strcasecmp(buf, "WILLNEED")) FLAGS_compaction_fadvice = leveldb::Options::WILLNEED; else { fprintf(stdout, "Unknown compaction fadvice:%s\n", buf); } } else if (sscanf(argv[i], "--use_adaptive_mutex=%d%c", &n, &junk) == 1 && (n == 0 || n ==1 )) { FLAGS_use_adaptive_mutex = n; } else if (sscanf(argv[i], "--use_multiget=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_use_multiget = n; } else if (sscanf(argv[i], "--keys_per_multiget=%d%c", &n, &junk) == 1) { FLAGS_keys_per_multiget = n; } else if (sscanf(argv[i], "--bytes_per_sync=%ld%c", &l, &junk) == 1) { FLAGS_bytes_per_sync = l; } else if (sscanf(argv[i], "--filter_deletes=%d%c", &n, &junk) == 1 && (n == 0 || n ==1 )) { FLAGS_filter_deletes = n; } else if (sscanf(argv[i], "--merge_operator=%s", buf) == 1) { FLAGS_merge_operator = buf; } else { fprintf(stderr, "Invalid flag '%s'\n", argv[i]); exit(1); } } // The number of background threads should be at least as much the // max number of concurrent compactions. FLAGS_env->SetBackgroundThreads(FLAGS_max_background_compactions); // Choose a location for the test database if none given with --db= if (FLAGS_db == nullptr) { leveldb::Env::Default()->GetTestDirectory(&default_db_path); default_db_path += "/dbbench"; FLAGS_db = default_db_path.c_str(); } leveldb::Benchmark benchmark; benchmark.Run(); return 0; }