// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use core::prelude::*; use driver::session::Session; use driver::session; use middle::ty; use util::ppaux::{ty_to_str}; use core::char; use core::cmp; use core::either; use core::i8; use core::i16; use core::i32; use core::i64; use core::int; use core::str; use core::u8; use core::u16; use core::u32; use core::u64; use core::uint; use core::vec; use std::oldmap::{Map, HashMap}; use std::oldmap; use std::smallintmap::SmallIntMap; use syntax::attr; use syntax::codemap::span; use syntax::codemap; use syntax::print::pprust::{expr_to_str, mode_to_str, pat_to_str}; use syntax::{ast, ast_util, visit}; /** * A 'lint' check is a kind of miscellaneous constraint that a user _might_ * want to enforce, but might reasonably want to permit as well, on a * module-by-module basis. They contrast with static constraints enforced by * other phases of the compiler, which are generally required to hold in order * to compile the program at all. * * We also build up a table containing information about lint settings, in * order to allow other passes to take advantage of the lint attribute * infrastructure. To save space, the table is keyed by the id of /items/, not * of every expression. When an item has the default settings, the entry will * be omitted. If we start allowing lint attributes on expressions, we will * start having entries for expressions that do not share their enclosing * items settings. * * This module then, exports two passes: one that populates the lint * settings table in the session and is run early in the compile process, and * one that does a variety of lint checks, and is run late in the compile * process. */ #[deriving_eq] pub enum lint { ctypes, unused_imports, while_true, path_statement, implicit_copies, unrecognized_lint, non_implicitly_copyable_typarams, vecs_implicitly_copyable, deprecated_mode, deprecated_pattern, non_camel_case_types, type_limits, default_methods, deprecated_self, deprecated_mutable_fields, deprecated_drop, foreign_mode, managed_heap_memory, owned_heap_memory, heap_memory, legacy_modes, // FIXME(#3266)--make liveness warnings lintable // unused_variable, // dead_assignment } pub fn level_to_str(lv: level) -> &static/str { match lv { allow => "allow", warn => "warn", deny => "deny", forbid => "forbid" } } #[deriving_eq] pub enum level { allow, warn, deny, forbid } struct LintSpec { lint: lint, desc: &static/str, default: level } pub type LintDict = HashMap<@~str, @LintSpec>; /* Pass names should not contain a '-', as the compiler normalizes '-' to '_' in command-line flags */ pub fn get_lint_dict() -> LintDict { let v = ~[ (@~"ctypes", @LintSpec { lint: ctypes, desc: "proper use of core::libc types in foreign modules", default: warn }), (@~"unused_imports", @LintSpec { lint: unused_imports, desc: "imports that are never used", default: warn }), (@~"while_true", @LintSpec { lint: while_true, desc: "suggest using loop { } instead of while(true) { }", default: warn }), (@~"path_statement", @LintSpec { lint: path_statement, desc: "path statements with no effect", default: warn }), (@~"unrecognized_lint", @LintSpec { lint: unrecognized_lint, desc: "unrecognized lint attribute", default: warn }), (@~"non_implicitly_copyable_typarams", @LintSpec { lint: non_implicitly_copyable_typarams, desc: "passing non implicitly copyable types as copy type params", default: warn }), (@~"vecs_implicitly_copyable", @LintSpec { lint: vecs_implicitly_copyable, desc: "make vecs and strs not implicitly copyable \ (only checked at top level)", default: warn }), (@~"implicit_copies", @LintSpec { lint: implicit_copies, desc: "implicit copies of non implicitly copyable data", default: warn }), (@~"deprecated_mode", @LintSpec { lint: deprecated_mode, desc: "warn about deprecated uses of modes", default: warn }), (@~"foreign_mode", @LintSpec { lint: foreign_mode, desc: "warn about deprecated uses of modes in foreign fns", default: warn }), (@~"deprecated_pattern", @LintSpec { lint: deprecated_pattern, desc: "warn about deprecated uses of pattern bindings", default: allow }), (@~"non_camel_case_types", @LintSpec { lint: non_camel_case_types, desc: "types, variants and traits should have camel case names", default: allow }), (@~"managed_heap_memory", @LintSpec { lint: managed_heap_memory, desc: "use of managed (@ type) heap memory", default: allow }), (@~"owned_heap_memory", @LintSpec { lint: owned_heap_memory, desc: "use of owned (~ type) heap memory", default: allow }), (@~"heap_memory", @LintSpec { lint: heap_memory, desc: "use of any (~ type or @ type) heap memory", default: allow }), (@~"legacy modes", @LintSpec { lint: legacy_modes, desc: "allow legacy modes", default: forbid }), (@~"type_limits", @LintSpec { lint: type_limits, desc: "comparisons made useless by limits of the types involved", default: warn }), (@~"default_methods", @LintSpec { lint: default_methods, desc: "allow default methods", default: deny }), (@~"deprecated_self", @LintSpec { lint: deprecated_self, desc: "warn about deprecated uses of `self`", default: warn }), (@~"deprecated_mutable_fields", @LintSpec { lint: deprecated_mutable_fields, desc: "deprecated mutable fields in structures", default: deny }), (@~"deprecated_drop", @LintSpec { lint: deprecated_drop, desc: "deprecated \"drop\" notation for the destructor", default: deny }), /* FIXME(#3266)--make liveness warnings lintable (@~"unused_variable", @LintSpec { lint: unused_variable, desc: "detect variables which are not used in any way", default: warn }), (@~"dead_assignment", @LintSpec { lint: dead_assignment, desc: "detect assignments that will never be read", default: warn }), */ ]; oldmap::hash_from_vec(v) } // This is a highly not-optimal set of data structure decisions. type LintModes = @mut SmallIntMap; type LintModeMap = HashMap; // settings_map maps node ids of items with non-default lint settings // to their settings; default_settings contains the settings for everything // not in the map. pub struct LintSettings { default_settings: LintModes, settings_map: LintModeMap } pub fn mk_lint_settings() -> LintSettings { LintSettings { default_settings: @mut SmallIntMap::new(), settings_map: HashMap() } } pub fn get_lint_level(modes: LintModes, lint: lint) -> level { match modes.find(&(lint as uint)) { Some(&c) => c, None => allow } } pub fn get_lint_settings_level(settings: LintSettings, lint_mode: lint, _expr_id: ast::node_id, item_id: ast::node_id) -> level { match settings.settings_map.find(&item_id) { Some(modes) => get_lint_level(modes, lint_mode), None => get_lint_level(settings.default_settings, lint_mode) } } // This is kind of unfortunate. It should be somewhere else, or we should use // a persistent data structure... fn clone_lint_modes(modes: LintModes) -> LintModes { @mut (copy *modes) } struct Context { dict: LintDict, curr: LintModes, is_default: bool, sess: Session } pub impl Context { fn get_level(&self, lint: lint) -> level { get_lint_level(self.curr, lint) } fn set_level(&self, lint: lint, level: level) { if level == allow { self.curr.remove(&(lint as uint)); } else { self.curr.insert(lint as uint, level); } } fn span_lint(&self, level: level, span: span, +msg: ~str) { self.sess.span_lint_level(level, span, msg); } /** * Merge the lints specified by any lint attributes into the * current lint context, call the provided function, then reset the * lints in effect to their previous state. */ fn with_lint_attrs(&self, attrs: ~[ast::attribute], f: &fn(Context)) { let mut new_ctxt = *self; let mut triples = ~[]; for [allow, warn, deny, forbid].each |level| { let level_name = level_to_str(*level); let metas = attr::attr_metas(attr::find_attrs_by_name(attrs, level_name)); for metas.each |meta| { match /*bad*/copy meta.node { ast::meta_list(_, metas) => { for metas.each |meta| { match meta.node { ast::meta_word(ref lintname) => { triples.push((*meta, *level, /*bad*/copy *lintname)); } _ => { self.sess.span_err( meta.span, ~"malformed lint attribute"); } } } } _ => { self.sess.span_err(meta.span, ~"malformed lint attribute"); } } } } for triples.each |triple| { // FIXME(#3874): it would be nicer to write this... // let (meta, level, lintname) = /*bad*/copy *pair; let (meta, level, lintname) = match *triple { (ref meta, level, lintname) => (meta, level, lintname) }; match self.dict.find(&lintname) { None => { self.span_lint( new_ctxt.get_level(unrecognized_lint), meta.span, fmt!("unknown `%s` attribute: `%s`", level_to_str(level), *lintname)); } Some(lint) => { if new_ctxt.get_level(lint.lint) == forbid && level != forbid { self.span_lint( forbid, meta.span, fmt!("%s(%s) overruled by outer forbid(%s)", level_to_str(level), *lintname, *lintname)); } // we do multiple unneeded copies of the // map if many attributes are set, but // this shouldn't actually be a problem... let c = clone_lint_modes(new_ctxt.curr); new_ctxt = Context { is_default: false, curr: c, .. new_ctxt }; new_ctxt.set_level(lint.lint, level); } } } f(new_ctxt); } } fn build_settings_item(i: @ast::item, &&cx: Context, v: visit::vt) { do cx.with_lint_attrs(/*bad*/copy i.attrs) |cx| { if !cx.is_default { cx.sess.lint_settings.settings_map.insert(i.id, cx.curr); } visit::visit_item(i, cx, v); } } pub fn build_settings_crate(sess: session::Session, crate: @ast::crate) { let cx = Context { dict: get_lint_dict(), curr: @mut SmallIntMap::new(), is_default: true, sess: sess }; // Install defaults. for cx.dict.each_value |&spec| { cx.set_level(spec.lint, spec.default); } // Install command-line options, overriding defaults. for sess.opts.lint_opts.each |pair| { let (lint,level) = *pair; cx.set_level(lint, level); } do cx.with_lint_attrs(/*bad*/copy crate.node.attrs) |cx| { // Copy out the default settings for cx.curr.each |&(k, &v)| { sess.lint_settings.default_settings.insert(k, v); } let cx = Context { is_default: true, .. cx }; let visit = visit::mk_vt(@visit::Visitor { visit_item: build_settings_item, .. *visit::default_visitor() }); visit::visit_crate(*crate, cx, visit); } sess.abort_if_errors(); } fn check_item(i: @ast::item, cx: ty::ctxt) { check_item_ctypes(cx, i); check_item_while_true(cx, i); check_item_path_statement(cx, i); check_item_non_camel_case_types(cx, i); check_item_heap(cx, i); check_item_deprecated_modes(cx, i); check_item_type_limits(cx, i); check_item_default_methods(cx, i); check_item_deprecated_self(cx, i); check_item_deprecated_mutable_fields(cx, i); check_item_deprecated_drop(cx, i); } // Take a visitor, and modify it so that it will not proceed past subitems. // This is used to make the simple visitors used for the lint passes // not traverse into subitems, since that is handled by the outer // lint visitor. fn item_stopping_visitor(v: visit::vt) -> visit::vt { visit::mk_vt(@visit::Visitor {visit_item: |_i, _e, _v| { },.. **v}) } fn check_item_while_true(cx: ty::ctxt, it: @ast::item) { let visit = item_stopping_visitor( visit::mk_simple_visitor(@visit::SimpleVisitor { visit_expr: |e: @ast::expr| { match e.node { ast::expr_while(cond, _) => { match cond.node { ast::expr_lit(@codemap::spanned { node: ast::lit_bool(true), _}) => { cx.sess.span_lint( while_true, e.id, it.id, e.span, ~"denote infinite loops \ with loop { ... }"); } _ => () } } _ => () } }, .. *visit::default_simple_visitor() })); visit::visit_item(it, (), visit); } fn check_item_type_limits(cx: ty::ctxt, it: @ast::item) { pure fn is_valid(binop: ast::binop, v: T, min: T, max: T) -> bool { match binop { ast::lt => v <= max, ast::le => v < max, ast::gt => v >= min, ast::ge => v > min, ast::eq | ast::ne => v >= min && v <= max, _ => fail!() } } pure fn rev_binop(binop: ast::binop) -> ast::binop { match binop { ast::lt => ast::gt, ast::le => ast::ge, ast::gt => ast::lt, ast::ge => ast::le, _ => binop } } pure fn int_ty_range(int_ty: ast::int_ty) -> (i64, i64) { match int_ty { ast::ty_i => (int::min_value as i64, int::max_value as i64), ast::ty_char => (u32::min_value as i64, u32::max_value as i64), ast::ty_i8 => (i8::min_value as i64, i8::max_value as i64), ast::ty_i16 => (i16::min_value as i64, i16::max_value as i64), ast::ty_i32 => (i32::min_value as i64, i32::max_value as i64), ast::ty_i64 => (i64::min_value, i64::max_value) } } pure fn uint_ty_range(uint_ty: ast::uint_ty) -> (u64, u64) { match uint_ty { ast::ty_u => (uint::min_value as u64, uint::max_value as u64), ast::ty_u8 => (u8::min_value as u64, u8::max_value as u64), ast::ty_u16 => (u16::min_value as u64, u16::max_value as u64), ast::ty_u32 => (u32::min_value as u64, u32::max_value as u64), ast::ty_u64 => (u64::min_value, u64::max_value) } } fn check_limits(cx: ty::ctxt, binop: ast::binop, l: &ast::expr, r: &ast::expr) -> bool { let (lit, expr, swap) = match (&l.node, &r.node) { (&ast::expr_lit(_), _) => (l, r, true), (_, &ast::expr_lit(_)) => (r, l, false), _ => return true }; // Normalize the binop so that the literal is always on the RHS in // the comparison let norm_binop = if (swap) { rev_binop(binop) } else { binop }; match ty::get(ty::expr_ty(cx, @/*bad*/copy *expr)).sty { ty::ty_int(int_ty) => { let (min, max) = int_ty_range(int_ty); let lit_val: i64 = match lit.node { ast::expr_lit(@li) => match li.node { ast::lit_int(v, _) => v, ast::lit_uint(v, _) => v as i64, ast::lit_int_unsuffixed(v) => v, _ => return true }, _ => fail!() }; is_valid(norm_binop, lit_val, min, max) } ty::ty_uint(uint_ty) => { let (min, max): (u64, u64) = uint_ty_range(uint_ty); let lit_val: u64 = match lit.node { ast::expr_lit(@li) => match li.node { ast::lit_int(v, _) => v as u64, ast::lit_uint(v, _) => v, ast::lit_int_unsuffixed(v) => v as u64, _ => return true }, _ => fail!() }; is_valid(norm_binop, lit_val, min, max) } _ => true } } pure fn is_comparison(binop: ast::binop) -> bool { match binop { ast::eq | ast::lt | ast::le | ast::ne | ast::ge | ast::gt => true, _ => false } } let visit_expr: @fn(@ast::expr) = |e| { match e.node { ast::expr_binary(ref binop, @ref l, @ref r) => { if is_comparison(*binop) && !check_limits(cx, *binop, l, r) { cx.sess.span_lint( type_limits, e.id, it.id, e.span, ~"comparison is useless due to type limits"); } } _ => () } }; let visit = item_stopping_visitor( visit::mk_simple_visitor(@visit::SimpleVisitor { visit_expr: visit_expr, .. *visit::default_simple_visitor() })); visit::visit_item(it, (), visit); } fn check_item_default_methods(cx: ty::ctxt, item: @ast::item) { match /*bad*/copy item.node { ast::item_trait(_, _, methods) => { for methods.each |method| { match *method { ast::required(*) => {} ast::provided(*) => { cx.sess.span_lint( default_methods, item.id, item.id, item.span, ~"default methods are experimental"); } } } } _ => {} } } fn check_item_deprecated_self(cx: ty::ctxt, item: @ast::item) { fn maybe_warn(cx: ty::ctxt, item: @ast::item, self_ty: ast::self_ty) { match self_ty.node { ast::sty_by_ref => { cx.sess.span_lint( deprecated_self, item.id, item.id, self_ty.span, ~"this method form is deprecated; use an explicit `self` \ parameter or mark the method as static"); } _ => {} } } match /*bad*/copy item.node { ast::item_trait(_, _, methods) => { for methods.each |method| { match /*bad*/copy *method { ast::required(ty_method) => { maybe_warn(cx, item, ty_method.self_ty); } ast::provided(method) => { maybe_warn(cx, item, method.self_ty); } } } } ast::item_impl(_, _, _, methods) => { for methods.each |method| { maybe_warn(cx, item, method.self_ty); } } _ => {} } } fn check_item_deprecated_mutable_fields(cx: ty::ctxt, item: @ast::item) { match item.node { ast::item_struct(struct_def, _) => { for struct_def.fields.each |field| { match field.node.kind { ast::named_field(_, ast::struct_mutable, _) => { cx.sess.span_lint(deprecated_mutable_fields, item.id, item.id, field.span, ~"mutable fields are deprecated"); } ast::named_field(*) | ast::unnamed_field => {} } } } _ => {} } } fn check_item_deprecated_drop(cx: ty::ctxt, item: @ast::item) { match item.node { ast::item_struct(struct_def, _) => { match struct_def.dtor { None => {} Some(ref dtor) => { cx.sess.span_lint(deprecated_drop, item.id, item.id, dtor.span, ~"`drop` notation for destructors is \ deprecated; implement the `Drop` \ trait instead"); } } } _ => {} } } fn check_item_ctypes(cx: ty::ctxt, it: @ast::item) { fn check_foreign_fn(cx: ty::ctxt, fn_id: ast::node_id, decl: &ast::fn_decl) { // warn about `&&` mode on foreign functions, both because it is // deprecated and because its semantics have changed recently: for decl.inputs.eachi |i, arg| { match ty::resolved_mode(cx, arg.mode) { ast::by_val | ast::by_copy => {} ast::by_ref => { cx.sess.span_lint( foreign_mode, fn_id, fn_id, arg.ty.span, fmt!("foreign function uses `&&` mode \ on argument %u", i)); } } } let tys = vec::map(decl.inputs, |a| a.ty ); for vec::each(vec::append_one(tys, decl.output)) |ty| { match ty.node { ast::ty_path(_, id) => { match cx.def_map.get(&id) { ast::def_prim_ty(ast::ty_int(ast::ty_i)) => { cx.sess.span_lint( ctypes, id, fn_id, ty.span, ~"found rust type `int` in foreign module, while \ libc::c_int or libc::c_long should be used"); } ast::def_prim_ty(ast::ty_uint(ast::ty_u)) => { cx.sess.span_lint( ctypes, id, fn_id, ty.span, ~"found rust type `uint` in foreign module, while \ libc::c_uint or libc::c_ulong should be used"); } _ => () } } _ => () } } } match it.node { ast::item_foreign_mod(ref nmod) if attr::foreign_abi(it.attrs) != either::Right(ast::foreign_abi_rust_intrinsic) => { for nmod.items.each |ni| { match ni.node { ast::foreign_item_fn(ref decl, _, _) => { check_foreign_fn(cx, it.id, decl); } // FIXME #4622: Not implemented. ast::foreign_item_const(*) => {} } } } _ => {/* nothing to do */ } } } fn check_item_heap(cx: ty::ctxt, it: @ast::item) { fn check_type_for_lint(cx: ty::ctxt, lint: lint, node: ast::node_id, item: ast::node_id, span: span, ty: ty::t) { if get_lint_settings_level(cx.sess.lint_settings, lint, node, item) != allow { let mut n_box = 0; let mut n_uniq = 0; ty::fold_ty(cx, ty, |t| { match ty::get(t).sty { ty::ty_box(_) => n_box += 1, ty::ty_uniq(_) => n_uniq += 1, _ => () }; t }); if (n_uniq > 0 && lint != managed_heap_memory) { let s = ty_to_str(cx, ty); let m = ~"type uses owned (~ type) pointers: " + s; cx.sess.span_lint(lint, node, item, span, m); } if (n_box > 0 && lint != owned_heap_memory) { let s = ty_to_str(cx, ty); let m = ~"type uses managed (@ type) pointers: " + s; cx.sess.span_lint(lint, node, item, span, m); } } } fn check_type(cx: ty::ctxt, node: ast::node_id, item: ast::node_id, span: span, ty: ty::t) { for [managed_heap_memory, owned_heap_memory, heap_memory].each |lint| { check_type_for_lint(cx, *lint, node, item, span, ty); } } match it.node { ast::item_fn(*) | ast::item_ty(*) | ast::item_enum(*) | ast::item_struct(*) | ast::item_trait(*) => check_type(cx, it.id, it.id, it.span, ty::node_id_to_type(cx, it.id)), _ => () } // If it's a struct, we also have to check the fields' types match it.node { ast::item_struct(struct_def, _) => { for struct_def.fields.each |struct_field| { check_type(cx, struct_field.node.id, it.id, struct_field.span, ty::node_id_to_type(cx, struct_field.node.id)); } } _ => () } let visit = item_stopping_visitor( visit::mk_simple_visitor(@visit::SimpleVisitor { visit_expr: |e: @ast::expr| { let ty = ty::expr_ty(cx, e); check_type(cx, e.id, it.id, e.span, ty); }, .. *visit::default_simple_visitor() })); visit::visit_item(it, (), visit); } fn check_item_path_statement(cx: ty::ctxt, it: @ast::item) { let visit = item_stopping_visitor( visit::mk_simple_visitor(@visit::SimpleVisitor { visit_stmt: |s: @ast::stmt| { match s.node { ast::stmt_semi( @ast::expr { id: id, node: ast::expr_path(_), _ }, _ ) => { cx.sess.span_lint( path_statement, id, it.id, s.span, ~"path statement with no effect"); } _ => () } }, .. *visit::default_simple_visitor() })); visit::visit_item(it, (), visit); } fn check_item_non_camel_case_types(cx: ty::ctxt, it: @ast::item) { fn is_camel_case(cx: ty::ctxt, ident: ast::ident) -> bool { let ident = cx.sess.str_of(ident); fail_unless!(!ident.is_empty()); let ident = ident_without_trailing_underscores(*ident); let ident = ident_without_leading_underscores(ident); char::is_uppercase(str::char_at(ident, 0)) && !ident.contains_char('_') } fn ident_without_trailing_underscores(ident: &r/str) -> &r/str { match str::rfind(ident, |c| c != '_') { Some(idx) => str::view(ident, 0, idx + 1), None => ident, // all underscores } } fn ident_without_leading_underscores(ident: &r/str) -> &r/str { match str::find(ident, |c| c != '_') { Some(idx) => str::view(ident, idx, ident.len()), None => ident // all underscores } } fn check_case(cx: ty::ctxt, ident: ast::ident, expr_id: ast::node_id, item_id: ast::node_id, span: span) { if !is_camel_case(cx, ident) { cx.sess.span_lint( non_camel_case_types, expr_id, item_id, span, ~"type, variant, or trait should have \ a camel case identifier"); } } match it.node { ast::item_ty(*) | ast::item_struct(*) | ast::item_trait(*) => { check_case(cx, it.ident, it.id, it.id, it.span) } ast::item_enum(ref enum_definition, _) => { check_case(cx, it.ident, it.id, it.id, it.span); for enum_definition.variants.each |variant| { check_case(cx, variant.node.name, variant.node.id, it.id, variant.span); } } _ => () } } fn check_fn(tcx: ty::ctxt, fk: &visit::fn_kind, decl: &ast::fn_decl, _body: &ast::blk, span: span, id: ast::node_id) { debug!("lint check_fn fk=%? id=%?", fk, id); // don't complain about blocks, since they tend to get their modes // specified from the outside match *fk { visit::fk_fn_block(*) => { return; } _ => {} } let fn_ty = ty::node_id_to_type(tcx, id); check_fn_deprecated_modes(tcx, fn_ty, decl, span, id); } fn check_fn_deprecated_modes(tcx: ty::ctxt, fn_ty: ty::t, decl: &ast::fn_decl, span: span, id: ast::node_id) { match ty::get(fn_ty).sty { ty::ty_closure(ty::ClosureTy {sig: ref sig, _}) | ty::ty_bare_fn(ty::BareFnTy {sig: ref sig, _}) => { let mut counter = 0; for vec::each2(sig.inputs, decl.inputs) |arg_ty, arg_ast| { counter += 1; debug!("arg %d, ty=%s, mode=%s", counter, ty_to_str(tcx, arg_ty.ty), mode_to_str(arg_ast.mode)); match arg_ast.mode { ast::expl(ast::by_copy) => { if !tcx.legacy_modes { tcx.sess.span_lint( deprecated_mode, id, id, span, fmt!("argument %d uses by-copy mode", counter)); } } ast::expl(_) => { tcx.sess.span_lint( deprecated_mode, id, id, span, fmt!("argument %d uses an explicit mode", counter)); } ast::infer(_) => { if tcx.legacy_modes { let kind = ty::type_contents(tcx, arg_ty.ty); if !kind.is_safe_for_default_mode(tcx) { tcx.sess.span_lint( deprecated_mode, id, id, span, fmt!("argument %d uses the default mode \ but shouldn't", counter)); } } } } match ty::get(arg_ty.ty).sty { ty::ty_closure(*) | ty::ty_bare_fn(*) => { let span = arg_ast.ty.span; // Recurse to check fn-type argument match arg_ast.ty.node { ast::ty_closure(@ast::TyClosure{decl: ref d, _}) | ast::ty_bare_fn(@ast::TyBareFn{decl: ref d, _})=>{ check_fn_deprecated_modes(tcx, arg_ty.ty, d, span, id); } ast::ty_path(*) => { // This is probably a typedef, so we can't // see the actual fn decl // e.g. fn foo(f: InitOp) } _ => { tcx.sess.span_warn(span, ~"what"); error!("arg %d, ty=%s, mode=%s", counter, ty_to_str(tcx, arg_ty.ty), mode_to_str(arg_ast.mode)); error!("%?",arg_ast.ty.node); fail!() } }; } _ => () } } } _ => tcx.sess.impossible_case(span, ~"check_fn: function has \ non-fn type") } } fn check_item_deprecated_modes(tcx: ty::ctxt, it: @ast::item) { match it.node { ast::item_ty(ty, _) => { match ty.node { ast::ty_closure(@ast::TyClosure {decl: ref decl, _}) | ast::ty_bare_fn(@ast::TyBareFn {decl: ref decl, _}) => { let fn_ty = ty::node_id_to_type(tcx, it.id); check_fn_deprecated_modes( tcx, fn_ty, decl, ty.span, it.id) } _ => () } } _ => () } } pub fn check_crate(tcx: ty::ctxt, crate: @ast::crate) { let v = visit::mk_simple_visitor(@visit::SimpleVisitor { visit_item: |it| check_item(it, tcx), visit_fn: |fk, decl, body, span, id| check_fn(tcx, fk, decl, body, span, id), .. *visit::default_simple_visitor() }); visit::visit_crate(*crate, (), v); tcx.sess.abort_if_errors(); } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //