use crate::rmeta::table::FixedSizeEncoding; use crate::rmeta::*; use log::{debug, trace}; use rustc_ast::ast; use rustc_ast::attr; use rustc_data_structures::fingerprint::Fingerprint; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_data_structures::stable_hasher::StableHasher; use rustc_data_structures::sync::{join, Lrc}; use rustc_hir as hir; use rustc_hir::def::CtorKind; use rustc_hir::def_id::{CrateNum, DefId, DefIndex, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE}; use rustc_hir::definitions::DefPathTable; use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor}; use rustc_hir::itemlikevisit::{ItemLikeVisitor, ParItemLikeVisitor}; use rustc_hir::lang_items; use rustc_hir::{AnonConst, GenericParamKind}; use rustc_index::vec::Idx; use rustc_middle::hir::map::Map; use rustc_middle::middle::cstore::{EncodedMetadata, ForeignModule, LinkagePreference, NativeLib}; use rustc_middle::middle::dependency_format::Linkage; use rustc_middle::middle::exported_symbols::{ metadata_symbol_name, ExportedSymbol, SymbolExportLevel, }; use rustc_middle::mir::{self, interpret}; use rustc_middle::traits::specialization_graph; use rustc_middle::ty::codec::{self as ty_codec, TyEncoder}; use rustc_middle::ty::{self, SymbolName, Ty, TyCtxt}; use rustc_serialize::{opaque, Encodable, Encoder, SpecializedEncoder, UseSpecializedEncodable}; use rustc_session::config::CrateType; use rustc_span::source_map::Spanned; use rustc_span::symbol::{kw, sym, Ident, Symbol}; use rustc_span::{self, ExternalSource, FileName, SourceFile, Span}; use rustc_target::abi::VariantIdx; use std::hash::Hash; use std::num::NonZeroUsize; use std::path::Path; struct EncodeContext<'tcx> { opaque: opaque::Encoder, tcx: TyCtxt<'tcx>, tables: TableBuilders<'tcx>, lazy_state: LazyState, type_shorthands: FxHashMap, usize>, predicate_shorthands: FxHashMap, usize>, interpret_allocs: FxHashMap, interpret_allocs_inverse: Vec, // This is used to speed up Span encoding. source_file_cache: Lrc, } macro_rules! encoder_methods { ($($name:ident($ty:ty);)*) => { $(fn $name(&mut self, value: $ty) -> Result<(), Self::Error> { self.opaque.$name(value) })* } } impl<'tcx> Encoder for EncodeContext<'tcx> { type Error = ::Error; #[inline] fn emit_unit(&mut self) -> Result<(), Self::Error> { Ok(()) } encoder_methods! { emit_usize(usize); emit_u128(u128); emit_u64(u64); emit_u32(u32); emit_u16(u16); emit_u8(u8); emit_isize(isize); emit_i128(i128); emit_i64(i64); emit_i32(i32); emit_i16(i16); emit_i8(i8); emit_bool(bool); emit_f64(f64); emit_f32(f32); emit_char(char); emit_str(&str); } } impl<'tcx, T> SpecializedEncoder> for EncodeContext<'tcx> { fn specialized_encode(&mut self, lazy: &Lazy) -> Result<(), Self::Error> { self.emit_lazy_distance(*lazy) } } impl<'tcx, T> SpecializedEncoder> for EncodeContext<'tcx> { fn specialized_encode(&mut self, lazy: &Lazy<[T]>) -> Result<(), Self::Error> { self.emit_usize(lazy.meta)?; if lazy.meta == 0 { return Ok(()); } self.emit_lazy_distance(*lazy) } } impl<'tcx, I: Idx, T> SpecializedEncoder, usize>> for EncodeContext<'tcx> where Option: FixedSizeEncoding, { fn specialized_encode(&mut self, lazy: &Lazy>) -> Result<(), Self::Error> { self.emit_usize(lazy.meta)?; self.emit_lazy_distance(*lazy) } } impl<'tcx> SpecializedEncoder for EncodeContext<'tcx> { #[inline] fn specialized_encode(&mut self, cnum: &CrateNum) -> Result<(), Self::Error> { self.emit_u32(cnum.as_u32()) } } impl<'tcx> SpecializedEncoder for EncodeContext<'tcx> { #[inline] fn specialized_encode(&mut self, def_id: &DefId) -> Result<(), Self::Error> { let DefId { krate, index } = *def_id; krate.encode(self)?; index.encode(self) } } impl<'tcx> SpecializedEncoder for EncodeContext<'tcx> { #[inline] fn specialized_encode(&mut self, def_index: &DefIndex) -> Result<(), Self::Error> { self.emit_u32(def_index.as_u32()) } } impl<'tcx> SpecializedEncoder for EncodeContext<'tcx> { fn specialized_encode(&mut self, span: &Span) -> Result<(), Self::Error> { if span.is_dummy() { return TAG_INVALID_SPAN.encode(self); } let span = span.data(); // The Span infrastructure should make sure that this invariant holds: debug_assert!(span.lo <= span.hi); if !self.source_file_cache.contains(span.lo) { let source_map = self.tcx.sess.source_map(); let source_file_index = source_map.lookup_source_file_idx(span.lo); self.source_file_cache = source_map.files()[source_file_index].clone(); } if !self.source_file_cache.contains(span.hi) { // Unfortunately, macro expansion still sometimes generates Spans // that malformed in this way. return TAG_INVALID_SPAN.encode(self); } // There are two possible cases here: // 1. This span comes from a 'foreign' crate - e.g. some crate upstream of the // crate we are writing metadata for. When the metadata for *this* crate gets // deserialized, the deserializer will need to know which crate it originally came // from. We use `TAG_VALID_SPAN_FOREIGN` to indicate that a `CrateNum` should // be deserialized after the rest of the span data, which tells the deserializer // which crate contains the source map information. // 2. This span comes from our own crate. No special hamdling is needed - we just // write `TAG_VALID_SPAN_LOCAL` to let the deserializer know that it should use // our own source map information. let (tag, lo, hi) = if self.source_file_cache.is_imported() { // To simplify deserialization, we 'rebase' this span onto the crate it originally came from // (the crate that 'owns' the file it references. These rebased 'lo' and 'hi' values // are relative to the source map information for the 'foreign' crate whose CrateNum // we write into the metadata. This allows `imported_source_files` to binary // search through the 'foreign' crate's source map information, using the // deserialized 'lo' and 'hi' values directly. // // All of this logic ensures that the final result of deserialization is a 'normal' // Span that can be used without any additional trouble. let external_start_pos = { // Introduce a new scope so that we drop the 'lock()' temporary match &*self.source_file_cache.external_src.lock() { ExternalSource::Foreign { original_start_pos, .. } => *original_start_pos, src => panic!("Unexpected external source {:?}", src), } }; let lo = (span.lo - self.source_file_cache.start_pos) + external_start_pos; let hi = (span.hi - self.source_file_cache.start_pos) + external_start_pos; (TAG_VALID_SPAN_FOREIGN, lo, hi) } else { (TAG_VALID_SPAN_LOCAL, span.lo, span.hi) }; tag.encode(self)?; lo.encode(self)?; // Encode length which is usually less than span.hi and profits more // from the variable-length integer encoding that we use. let len = hi - lo; len.encode(self)?; if tag == TAG_VALID_SPAN_FOREIGN { // This needs to be two lines to avoid holding the `self.source_file_cache` // while calling `cnum.encode(self)` let cnum = self.source_file_cache.cnum; cnum.encode(self)?; } Ok(()) // Don't encode the expansion context. } } impl<'tcx> SpecializedEncoder for EncodeContext<'tcx> { #[inline] fn specialized_encode(&mut self, def_id: &LocalDefId) -> Result<(), Self::Error> { self.specialized_encode(&def_id.to_def_id()) } } impl<'a, 'b, 'tcx> SpecializedEncoder<&'a ty::TyS<'b>> for EncodeContext<'tcx> where &'a ty::TyS<'b>: UseSpecializedEncodable, { fn specialized_encode(&mut self, ty: &&'a ty::TyS<'b>) -> Result<(), Self::Error> { debug_assert!(self.tcx.lift(ty).is_some()); let ty = unsafe { std::mem::transmute::<&&'a ty::TyS<'b>, &&'tcx ty::TyS<'tcx>>(ty) }; ty_codec::encode_with_shorthand(self, ty, |ecx| &mut ecx.type_shorthands) } } impl<'tcx> SpecializedEncoder for EncodeContext<'tcx> { fn specialized_encode(&mut self, alloc_id: &interpret::AllocId) -> Result<(), Self::Error> { use std::collections::hash_map::Entry; let index = match self.interpret_allocs.entry(*alloc_id) { Entry::Occupied(e) => *e.get(), Entry::Vacant(e) => { let idx = self.interpret_allocs_inverse.len(); self.interpret_allocs_inverse.push(*alloc_id); e.insert(idx); idx } }; index.encode(self) } } impl<'a, 'b, 'tcx> SpecializedEncoder<&'a [(ty::Predicate<'b>, Span)]> for EncodeContext<'tcx> { fn specialized_encode( &mut self, predicates: &&'a [(ty::Predicate<'b>, Span)], ) -> Result<(), Self::Error> { debug_assert!(self.tcx.lift(*predicates).is_some()); let predicates = unsafe { std::mem::transmute::< &&'a [(ty::Predicate<'b>, Span)], &&'tcx [(ty::Predicate<'tcx>, Span)], >(predicates) }; ty_codec::encode_spanned_predicates(self, &predicates, |ecx| &mut ecx.predicate_shorthands) } } impl<'tcx> SpecializedEncoder for EncodeContext<'tcx> { fn specialized_encode(&mut self, f: &Fingerprint) -> Result<(), Self::Error> { f.encode_opaque(&mut self.opaque) } } impl<'tcx, T> SpecializedEncoder> for EncodeContext<'tcx> where mir::ClearCrossCrate: UseSpecializedEncodable, { fn specialized_encode(&mut self, _: &mir::ClearCrossCrate) -> Result<(), Self::Error> { Ok(()) } } impl<'tcx> TyEncoder for EncodeContext<'tcx> { fn position(&self) -> usize { self.opaque.position() } } /// Helper trait to allow overloading `EncodeContext::lazy` for iterators. trait EncodeContentsForLazy { fn encode_contents_for_lazy(self, ecx: &mut EncodeContext<'tcx>) -> T::Meta; } impl EncodeContentsForLazy for &T { fn encode_contents_for_lazy(self, ecx: &mut EncodeContext<'tcx>) { self.encode(ecx).unwrap() } } impl EncodeContentsForLazy for T { fn encode_contents_for_lazy(self, ecx: &mut EncodeContext<'tcx>) { self.encode(ecx).unwrap() } } impl EncodeContentsForLazy<[T]> for I where I: IntoIterator, I::Item: EncodeContentsForLazy, { fn encode_contents_for_lazy(self, ecx: &mut EncodeContext<'tcx>) -> usize { self.into_iter().map(|value| value.encode_contents_for_lazy(ecx)).count() } } // Shorthand for `$self.$tables.$table.set($def_id.index, $self.lazy($value))`, which would // normally need extra variables to avoid errors about multiple mutable borrows. macro_rules! record { ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{ { let value = $value; let lazy = $self.lazy(value); $self.$tables.$table.set($def_id.index, lazy); } }}; } impl<'tcx> EncodeContext<'tcx> { fn emit_lazy_distance( &mut self, lazy: Lazy, ) -> Result<(), ::Error> { let min_end = lazy.position.get() + T::min_size(lazy.meta); let distance = match self.lazy_state { LazyState::NoNode => bug!("emit_lazy_distance: outside of a metadata node"), LazyState::NodeStart(start) => { let start = start.get(); assert!(min_end <= start); start - min_end } LazyState::Previous(last_min_end) => { assert!( last_min_end <= lazy.position, "make sure that the calls to `lazy*` \ are in the same order as the metadata fields", ); lazy.position.get() - last_min_end.get() } }; self.lazy_state = LazyState::Previous(NonZeroUsize::new(min_end).unwrap()); self.emit_usize(distance) } fn lazy(&mut self, value: impl EncodeContentsForLazy) -> Lazy { let pos = NonZeroUsize::new(self.position()).unwrap(); assert_eq!(self.lazy_state, LazyState::NoNode); self.lazy_state = LazyState::NodeStart(pos); let meta = value.encode_contents_for_lazy(self); self.lazy_state = LazyState::NoNode; assert!(pos.get() + ::min_size(meta) <= self.position()); Lazy::from_position_and_meta(pos, meta) } fn encode_info_for_items(&mut self) { let krate = self.tcx.hir().krate(); let vis = Spanned { span: rustc_span::DUMMY_SP, node: hir::VisibilityKind::Public }; self.encode_info_for_mod(hir::CRATE_HIR_ID, &krate.item.module, &krate.item.attrs, &vis); krate.visit_all_item_likes(&mut self.as_deep_visitor()); for macro_def in krate.exported_macros { self.visit_macro_def(macro_def); } } fn encode_def_path_table(&mut self) -> Lazy { let definitions = self.tcx.hir().definitions(); self.lazy(definitions.def_path_table()) } fn encode_source_map(&mut self) -> Lazy<[rustc_span::SourceFile]> { let source_map = self.tcx.sess.source_map(); let all_source_files = source_map.files(); let (working_dir, _cwd_remapped) = self.tcx.sess.working_dir.clone(); let adapted = all_source_files .iter() .filter(|source_file| { // No need to re-export imported source_files, as any downstream // crate will import them from their original source. // FIXME(eddyb) the `Span` encoding should take that into account. !source_file.is_imported() }) .map(|source_file| { match source_file.name { // This path of this SourceFile has been modified by // path-remapping, so we use it verbatim (and avoid // cloning the whole map in the process). _ if source_file.name_was_remapped => source_file.clone(), // Otherwise expand all paths to absolute paths because // any relative paths are potentially relative to a // wrong directory. FileName::Real(ref name) => { let name = name.stable_name(); let mut adapted = (**source_file).clone(); adapted.name = Path::new(&working_dir).join(name).into(); adapted.name_hash = { let mut hasher: StableHasher = StableHasher::new(); adapted.name.hash(&mut hasher); hasher.finish::() }; Lrc::new(adapted) } // expanded code, not from a file _ => source_file.clone(), } }) .collect::>(); self.lazy(adapted.iter().map(|rc| &**rc)) } fn encode_crate_root(&mut self) -> Lazy> { let is_proc_macro = self.tcx.sess.crate_types().contains(&CrateType::ProcMacro); let mut i = self.position(); let crate_deps = self.encode_crate_deps(); let dylib_dependency_formats = self.encode_dylib_dependency_formats(); let dep_bytes = self.position() - i; // Encode the lib features. i = self.position(); let lib_features = self.encode_lib_features(); let lib_feature_bytes = self.position() - i; // Encode the language items. i = self.position(); let lang_items = self.encode_lang_items(); let lang_items_missing = self.encode_lang_items_missing(); let lang_item_bytes = self.position() - i; // Encode the diagnostic items. i = self.position(); let diagnostic_items = self.encode_diagnostic_items(); let diagnostic_item_bytes = self.position() - i; // Encode the native libraries used i = self.position(); let native_libraries = self.encode_native_libraries(); let native_lib_bytes = self.position() - i; let foreign_modules = self.encode_foreign_modules(); // Encode source_map i = self.position(); let source_map = self.encode_source_map(); let source_map_bytes = self.position() - i; // Encode DefPathTable i = self.position(); let def_path_table = self.encode_def_path_table(); let def_path_table_bytes = self.position() - i; // Encode the def IDs of impls, for coherence checking. i = self.position(); let impls = self.encode_impls(); let impl_bytes = self.position() - i; let tcx = self.tcx; // Encode the items. i = self.position(); self.encode_info_for_items(); let item_bytes = self.position() - i; // Encode the allocation index let interpret_alloc_index = { let mut interpret_alloc_index = Vec::new(); let mut n = 0; trace!("beginning to encode alloc ids"); loop { let new_n = self.interpret_allocs_inverse.len(); // if we have found new ids, serialize those, too if n == new_n { // otherwise, abort break; } trace!("encoding {} further alloc ids", new_n - n); for idx in n..new_n { let id = self.interpret_allocs_inverse[idx]; let pos = self.position() as u32; interpret_alloc_index.push(pos); interpret::specialized_encode_alloc_id(self, tcx, id).unwrap(); } n = new_n; } self.lazy(interpret_alloc_index) }; i = self.position(); let tables = self.tables.encode(&mut self.opaque); let tables_bytes = self.position() - i; // Encode the proc macro data i = self.position(); let proc_macro_data = self.encode_proc_macros(); let proc_macro_data_bytes = self.position() - i; // Encode exported symbols info. This is prefetched in `encode_metadata` so we encode // this last to give the prefetching as much time as possible to complete. i = self.position(); let exported_symbols = self.tcx.exported_symbols(LOCAL_CRATE); let exported_symbols = self.encode_exported_symbols(&exported_symbols); let exported_symbols_bytes = self.position() - i; let attrs = tcx.hir().krate_attrs(); let has_default_lib_allocator = attr::contains_name(&attrs, sym::default_lib_allocator); let root = self.lazy(CrateRoot { name: tcx.crate_name(LOCAL_CRATE), extra_filename: tcx.sess.opts.cg.extra_filename.clone(), triple: tcx.sess.opts.target_triple.clone(), hash: tcx.crate_hash(LOCAL_CRATE), disambiguator: tcx.sess.local_crate_disambiguator(), panic_strategy: tcx.sess.panic_strategy(), edition: tcx.sess.edition(), has_global_allocator: tcx.has_global_allocator(LOCAL_CRATE), has_panic_handler: tcx.has_panic_handler(LOCAL_CRATE), has_default_lib_allocator, plugin_registrar_fn: tcx.plugin_registrar_fn(LOCAL_CRATE).map(|id| id.index), proc_macro_decls_static: if is_proc_macro { let id = tcx.proc_macro_decls_static(LOCAL_CRATE).unwrap(); Some(id.index) } else { None }, proc_macro_data, proc_macro_stability: if is_proc_macro { tcx.lookup_stability(DefId::local(CRATE_DEF_INDEX)).copied() } else { None }, compiler_builtins: attr::contains_name(&attrs, sym::compiler_builtins), needs_allocator: attr::contains_name(&attrs, sym::needs_allocator), needs_panic_runtime: attr::contains_name(&attrs, sym::needs_panic_runtime), no_builtins: attr::contains_name(&attrs, sym::no_builtins), panic_runtime: attr::contains_name(&attrs, sym::panic_runtime), profiler_runtime: attr::contains_name(&attrs, sym::profiler_runtime), symbol_mangling_version: tcx.sess.opts.debugging_opts.symbol_mangling_version, crate_deps, dylib_dependency_formats, lib_features, lang_items, diagnostic_items, lang_items_missing, native_libraries, foreign_modules, source_map, def_path_table, impls, exported_symbols, interpret_alloc_index, tables, }); let total_bytes = self.position(); if self.tcx.sess.meta_stats() { let mut zero_bytes = 0; for e in self.opaque.data.iter() { if *e == 0 { zero_bytes += 1; } } println!("metadata stats:"); println!(" dep bytes: {}", dep_bytes); println!(" lib feature bytes: {}", lib_feature_bytes); println!(" lang item bytes: {}", lang_item_bytes); println!(" diagnostic item bytes: {}", diagnostic_item_bytes); println!(" native bytes: {}", native_lib_bytes); println!(" source_map bytes: {}", source_map_bytes); println!(" impl bytes: {}", impl_bytes); println!(" exp. symbols bytes: {}", exported_symbols_bytes); println!(" def-path table bytes: {}", def_path_table_bytes); println!(" proc-macro-data-bytes: {}", proc_macro_data_bytes); println!(" item bytes: {}", item_bytes); println!(" table bytes: {}", tables_bytes); println!(" zero bytes: {}", zero_bytes); println!(" total bytes: {}", total_bytes); } root } } impl EncodeContext<'tcx> { fn encode_variances_of(&mut self, def_id: DefId) { debug!("EncodeContext::encode_variances_of({:?})", def_id); record!(self.tables.variances[def_id] <- &self.tcx.variances_of(def_id)[..]); } fn encode_item_type(&mut self, def_id: DefId) { debug!("EncodeContext::encode_item_type({:?})", def_id); record!(self.tables.ty[def_id] <- self.tcx.type_of(def_id)); } fn encode_enum_variant_info(&mut self, def: &ty::AdtDef, index: VariantIdx) { let tcx = self.tcx; let variant = &def.variants[index]; let def_id = variant.def_id; debug!("EncodeContext::encode_enum_variant_info({:?})", def_id); let data = VariantData { ctor_kind: variant.ctor_kind, discr: variant.discr, ctor: variant.ctor_def_id.map(|did| did.index), }; let enum_id = tcx.hir().as_local_hir_id(def.did.expect_local()); let enum_vis = &tcx.hir().expect_item(enum_id).vis; record!(self.tables.kind[def_id] <- EntryKind::Variant(self.lazy(data))); record!(self.tables.visibility[def_id] <- ty::Visibility::from_hir(enum_vis, enum_id, self.tcx)); record!(self.tables.span[def_id] <- self.tcx.def_span(def_id)); record!(self.tables.attributes[def_id] <- &self.tcx.get_attrs(def_id)[..]); record!(self.tables.children[def_id] <- variant.fields.iter().map(|f| { assert!(f.did.is_local()); f.did.index })); self.encode_ident_span(def_id, variant.ident); self.encode_stability(def_id); self.encode_deprecation(def_id); self.encode_item_type(def_id); if variant.ctor_kind == CtorKind::Fn { // FIXME(eddyb) encode signature only in `encode_enum_variant_ctor`. if let Some(ctor_def_id) = variant.ctor_def_id { record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(ctor_def_id)); } // FIXME(eddyb) is this ever used? self.encode_variances_of(def_id); } self.encode_generics(def_id); self.encode_explicit_predicates(def_id); self.encode_inferred_outlives(def_id); self.encode_optimized_mir(def_id.expect_local()); self.encode_promoted_mir(def_id.expect_local()); } fn encode_enum_variant_ctor(&mut self, def: &ty::AdtDef, index: VariantIdx) { let tcx = self.tcx; let variant = &def.variants[index]; let def_id = variant.ctor_def_id.unwrap(); debug!("EncodeContext::encode_enum_variant_ctor({:?})", def_id); // FIXME(eddyb) encode only the `CtorKind` for constructors. let data = VariantData { ctor_kind: variant.ctor_kind, discr: variant.discr, ctor: Some(def_id.index), }; // Variant constructors have the same visibility as the parent enums, unless marked as // non-exhaustive, in which case they are lowered to `pub(crate)`. let enum_id = tcx.hir().as_local_hir_id(def.did.expect_local()); let enum_vis = &tcx.hir().expect_item(enum_id).vis; let mut ctor_vis = ty::Visibility::from_hir(enum_vis, enum_id, tcx); if variant.is_field_list_non_exhaustive() && ctor_vis == ty::Visibility::Public { ctor_vis = ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)); } record!(self.tables.kind[def_id] <- EntryKind::Variant(self.lazy(data))); record!(self.tables.visibility[def_id] <- ctor_vis); record!(self.tables.span[def_id] <- self.tcx.def_span(def_id)); self.encode_stability(def_id); self.encode_deprecation(def_id); self.encode_item_type(def_id); if variant.ctor_kind == CtorKind::Fn { record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id)); self.encode_variances_of(def_id); } self.encode_generics(def_id); self.encode_explicit_predicates(def_id); self.encode_inferred_outlives(def_id); self.encode_optimized_mir(def_id.expect_local()); self.encode_promoted_mir(def_id.expect_local()); } fn encode_info_for_mod( &mut self, id: hir::HirId, md: &hir::Mod<'_>, attrs: &[ast::Attribute], vis: &hir::Visibility<'_>, ) { let tcx = self.tcx; let def_id = tcx.hir().local_def_id(id); debug!("EncodeContext::encode_info_for_mod({:?})", def_id); let data = ModData { reexports: match tcx.module_exports(def_id) { Some(exports) => { let hir_map = self.tcx.hir(); self.lazy( exports .iter() .map(|export| export.map_id(|id| hir_map.as_local_hir_id(id))), ) } _ => Lazy::empty(), }, }; let def_id = def_id.to_def_id(); record!(self.tables.kind[def_id] <- EntryKind::Mod(self.lazy(data))); record!(self.tables.visibility[def_id] <- ty::Visibility::from_hir(vis, id, self.tcx)); record!(self.tables.span[def_id] <- self.tcx.def_span(def_id)); record!(self.tables.attributes[def_id] <- attrs); record!(self.tables.children[def_id] <- md.item_ids.iter().map(|item_id| { tcx.hir().local_def_id(item_id.id).local_def_index })); self.encode_stability(def_id); self.encode_deprecation(def_id); } fn encode_field( &mut self, adt_def: &ty::AdtDef, variant_index: VariantIdx, field_index: usize, ) { let tcx = self.tcx; let variant = &adt_def.variants[variant_index]; let field = &variant.fields[field_index]; let def_id = field.did; debug!("EncodeContext::encode_field({:?})", def_id); let variant_id = tcx.hir().as_local_hir_id(variant.def_id.expect_local()); let variant_data = tcx.hir().expect_variant_data(variant_id); record!(self.tables.kind[def_id] <- EntryKind::Field); record!(self.tables.visibility[def_id] <- field.vis); record!(self.tables.span[def_id] <- self.tcx.def_span(def_id)); record!(self.tables.attributes[def_id] <- variant_data.fields()[field_index].attrs); self.encode_ident_span(def_id, field.ident); self.encode_stability(def_id); self.encode_deprecation(def_id); self.encode_item_type(def_id); self.encode_generics(def_id); self.encode_explicit_predicates(def_id); self.encode_inferred_outlives(def_id); } fn encode_struct_ctor(&mut self, adt_def: &ty::AdtDef, def_id: DefId) { debug!("EncodeContext::encode_struct_ctor({:?})", def_id); let tcx = self.tcx; let variant = adt_def.non_enum_variant(); let data = VariantData { ctor_kind: variant.ctor_kind, discr: variant.discr, ctor: Some(def_id.index), }; let struct_id = tcx.hir().as_local_hir_id(adt_def.did.expect_local()); let struct_vis = &tcx.hir().expect_item(struct_id).vis; let mut ctor_vis = ty::Visibility::from_hir(struct_vis, struct_id, tcx); for field in &variant.fields { if ctor_vis.is_at_least(field.vis, tcx) { ctor_vis = field.vis; } } // If the structure is marked as non_exhaustive then lower the visibility // to within the crate. if adt_def.non_enum_variant().is_field_list_non_exhaustive() && ctor_vis == ty::Visibility::Public { ctor_vis = ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)); } record!(self.tables.kind[def_id] <- EntryKind::Struct(self.lazy(data), adt_def.repr)); record!(self.tables.visibility[def_id] <- ctor_vis); record!(self.tables.span[def_id] <- self.tcx.def_span(def_id)); self.encode_stability(def_id); self.encode_deprecation(def_id); self.encode_item_type(def_id); if variant.ctor_kind == CtorKind::Fn { record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id)); self.encode_variances_of(def_id); } self.encode_generics(def_id); self.encode_explicit_predicates(def_id); self.encode_inferred_outlives(def_id); self.encode_optimized_mir(def_id.expect_local()); self.encode_promoted_mir(def_id.expect_local()); } fn encode_generics(&mut self, def_id: DefId) { debug!("EncodeContext::encode_generics({:?})", def_id); record!(self.tables.generics[def_id] <- self.tcx.generics_of(def_id)); } fn encode_explicit_predicates(&mut self, def_id: DefId) { debug!("EncodeContext::encode_explicit_predicates({:?})", def_id); record!(self.tables.explicit_predicates[def_id] <- self.tcx.explicit_predicates_of(def_id)); } fn encode_inferred_outlives(&mut self, def_id: DefId) { debug!("EncodeContext::encode_inferred_outlives({:?})", def_id); let inferred_outlives = self.tcx.inferred_outlives_of(def_id); if !inferred_outlives.is_empty() { record!(self.tables.inferred_outlives[def_id] <- inferred_outlives); } } fn encode_super_predicates(&mut self, def_id: DefId) { debug!("EncodeContext::encode_super_predicates({:?})", def_id); record!(self.tables.super_predicates[def_id] <- self.tcx.super_predicates_of(def_id)); } fn encode_info_for_trait_item(&mut self, def_id: DefId) { debug!("EncodeContext::encode_info_for_trait_item({:?})", def_id); let tcx = self.tcx; let hir_id = tcx.hir().as_local_hir_id(def_id.expect_local()); let ast_item = tcx.hir().expect_trait_item(hir_id); let trait_item = tcx.associated_item(def_id); let container = match trait_item.defaultness { hir::Defaultness::Default { has_value: true } => AssocContainer::TraitWithDefault, hir::Defaultness::Default { has_value: false } => AssocContainer::TraitRequired, hir::Defaultness::Final => span_bug!(ast_item.span, "traits cannot have final items"), }; record!(self.tables.kind[def_id] <- match trait_item.kind { ty::AssocKind::Const => { let rendered = rustc_hir_pretty::to_string( &(&self.tcx.hir() as &dyn intravisit::Map<'_>), |s| s.print_trait_item(ast_item) ); let rendered_const = self.lazy(RenderedConst(rendered)); EntryKind::AssocConst( container, Default::default(), rendered_const, ) } ty::AssocKind::Fn => { let fn_data = if let hir::TraitItemKind::Fn(m_sig, m) = &ast_item.kind { let param_names = match *m { hir::TraitFn::Required(ref names) => { self.encode_fn_param_names(names) } hir::TraitFn::Provided(body) => { self.encode_fn_param_names_for_body(body) } }; FnData { asyncness: m_sig.header.asyncness, constness: hir::Constness::NotConst, param_names, } } else { bug!() }; EntryKind::AssocFn(self.lazy(AssocFnData { fn_data, container, has_self: trait_item.fn_has_self_parameter, })) } ty::AssocKind::Type => EntryKind::AssocType(container), }); record!(self.tables.visibility[def_id] <- trait_item.vis); record!(self.tables.span[def_id] <- ast_item.span); record!(self.tables.attributes[def_id] <- ast_item.attrs); self.encode_ident_span(def_id, ast_item.ident); self.encode_stability(def_id); self.encode_const_stability(def_id); self.encode_deprecation(def_id); match trait_item.kind { ty::AssocKind::Const | ty::AssocKind::Fn => { self.encode_item_type(def_id); } ty::AssocKind::Type => { if trait_item.defaultness.has_value() { self.encode_item_type(def_id); } } } if trait_item.kind == ty::AssocKind::Fn { record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id)); self.encode_variances_of(def_id); } self.encode_generics(def_id); self.encode_explicit_predicates(def_id); self.encode_inferred_outlives(def_id); // This should be kept in sync with `PrefetchVisitor.visit_trait_item`. self.encode_optimized_mir(def_id.expect_local()); self.encode_promoted_mir(def_id.expect_local()); } fn metadata_output_only(&self) -> bool { // MIR optimisation can be skipped when we're just interested in the metadata. !self.tcx.sess.opts.output_types.should_codegen() } fn encode_info_for_impl_item(&mut self, def_id: DefId) { debug!("EncodeContext::encode_info_for_impl_item({:?})", def_id); let tcx = self.tcx; let hir_id = self.tcx.hir().as_local_hir_id(def_id.expect_local()); let ast_item = self.tcx.hir().expect_impl_item(hir_id); let impl_item = self.tcx.associated_item(def_id); let container = match impl_item.defaultness { hir::Defaultness::Default { has_value: true } => AssocContainer::ImplDefault, hir::Defaultness::Final => AssocContainer::ImplFinal, hir::Defaultness::Default { has_value: false } => { span_bug!(ast_item.span, "impl items always have values (currently)") } }; record!(self.tables.kind[def_id] <- match impl_item.kind { ty::AssocKind::Const => { if let hir::ImplItemKind::Const(_, body_id) = ast_item.kind { let qualifs = self.tcx.at(ast_item.span).mir_const_qualif(def_id); EntryKind::AssocConst( container, qualifs, self.encode_rendered_const_for_body(body_id)) } else { bug!() } } ty::AssocKind::Fn => { let fn_data = if let hir::ImplItemKind::Fn(ref sig, body) = ast_item.kind { FnData { asyncness: sig.header.asyncness, constness: sig.header.constness, param_names: self.encode_fn_param_names_for_body(body), } } else { bug!() }; EntryKind::AssocFn(self.lazy(AssocFnData { fn_data, container, has_self: impl_item.fn_has_self_parameter, })) } ty::AssocKind::Type => EntryKind::AssocType(container) }); record!(self.tables.visibility[def_id] <- impl_item.vis); record!(self.tables.span[def_id] <- ast_item.span); record!(self.tables.attributes[def_id] <- ast_item.attrs); self.encode_ident_span(def_id, impl_item.ident); self.encode_stability(def_id); self.encode_const_stability(def_id); self.encode_deprecation(def_id); self.encode_item_type(def_id); if impl_item.kind == ty::AssocKind::Fn { record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id)); self.encode_variances_of(def_id); } self.encode_generics(def_id); self.encode_explicit_predicates(def_id); self.encode_inferred_outlives(def_id); // The following part should be kept in sync with `PrefetchVisitor.visit_impl_item`. let mir = match ast_item.kind { hir::ImplItemKind::Const(..) => true, hir::ImplItemKind::Fn(ref sig, _) => { let generics = self.tcx.generics_of(def_id); let needs_inline = (generics.requires_monomorphization(self.tcx) || tcx.codegen_fn_attrs(def_id).requests_inline()) && !self.metadata_output_only(); let is_const_fn = sig.header.constness == hir::Constness::Const; let always_encode_mir = self.tcx.sess.opts.debugging_opts.always_encode_mir; needs_inline || is_const_fn || always_encode_mir } hir::ImplItemKind::TyAlias(..) => false, }; if mir { self.encode_optimized_mir(def_id.expect_local()); self.encode_promoted_mir(def_id.expect_local()); } } fn encode_fn_param_names_for_body(&mut self, body_id: hir::BodyId) -> Lazy<[Symbol]> { self.tcx.dep_graph.with_ignore(|| { let body = self.tcx.hir().body(body_id); self.lazy(body.params.iter().map(|arg| match arg.pat.kind { hir::PatKind::Binding(_, _, ident, _) => ident.name, _ => kw::Invalid, })) }) } fn encode_fn_param_names(&mut self, param_names: &[Ident]) -> Lazy<[Symbol]> { self.lazy(param_names.iter().map(|ident| ident.name)) } fn encode_optimized_mir(&mut self, def_id: LocalDefId) { debug!("EntryBuilder::encode_mir({:?})", def_id); if self.tcx.mir_keys(LOCAL_CRATE).contains(&def_id) { record!(self.tables.mir[def_id.to_def_id()] <- self.tcx.optimized_mir(def_id)); } } fn encode_promoted_mir(&mut self, def_id: LocalDefId) { debug!("EncodeContext::encode_promoted_mir({:?})", def_id); if self.tcx.mir_keys(LOCAL_CRATE).contains(&def_id) { record!(self.tables.promoted_mir[def_id.to_def_id()] <- self.tcx.promoted_mir(def_id)); } } // Encodes the inherent implementations of a structure, enumeration, or trait. fn encode_inherent_implementations(&mut self, def_id: DefId) { debug!("EncodeContext::encode_inherent_implementations({:?})", def_id); let implementations = self.tcx.inherent_impls(def_id); if !implementations.is_empty() { record!(self.tables.inherent_impls[def_id] <- implementations.iter().map(|&def_id| { assert!(def_id.is_local()); def_id.index })); } } fn encode_stability(&mut self, def_id: DefId) { debug!("EncodeContext::encode_stability({:?})", def_id); if let Some(stab) = self.tcx.lookup_stability(def_id) { record!(self.tables.stability[def_id] <- stab) } } fn encode_const_stability(&mut self, def_id: DefId) { debug!("EncodeContext::encode_const_stability({:?})", def_id); if let Some(stab) = self.tcx.lookup_const_stability(def_id) { record!(self.tables.const_stability[def_id] <- stab) } } fn encode_deprecation(&mut self, def_id: DefId) { debug!("EncodeContext::encode_deprecation({:?})", def_id); if let Some(depr) = self.tcx.lookup_deprecation(def_id) { record!(self.tables.deprecation[def_id] <- depr); } } fn encode_rendered_const_for_body(&mut self, body_id: hir::BodyId) -> Lazy { let hir = self.tcx.hir(); let body = hir.body(body_id); let rendered = rustc_hir_pretty::to_string(&(&hir as &dyn intravisit::Map<'_>), |s| { s.print_expr(&body.value) }); let rendered_const = &RenderedConst(rendered); self.lazy(rendered_const) } fn encode_info_for_item(&mut self, def_id: DefId, item: &'tcx hir::Item<'tcx>) { let tcx = self.tcx; debug!("EncodeContext::encode_info_for_item({:?})", def_id); self.encode_ident_span(def_id, item.ident); record!(self.tables.kind[def_id] <- match item.kind { hir::ItemKind::Static(_, hir::Mutability::Mut, _) => EntryKind::MutStatic, hir::ItemKind::Static(_, hir::Mutability::Not, _) => EntryKind::ImmStatic, hir::ItemKind::Const(_, body_id) => { let qualifs = self.tcx.at(item.span).mir_const_qualif(def_id); EntryKind::Const( qualifs, self.encode_rendered_const_for_body(body_id) ) } hir::ItemKind::Fn(ref sig, .., body) => { let data = FnData { asyncness: sig.header.asyncness, constness: sig.header.constness, param_names: self.encode_fn_param_names_for_body(body), }; EntryKind::Fn(self.lazy(data)) } hir::ItemKind::Mod(ref m) => { return self.encode_info_for_mod(item.hir_id, m, &item.attrs, &item.vis); } hir::ItemKind::ForeignMod(_) => EntryKind::ForeignMod, hir::ItemKind::GlobalAsm(..) => EntryKind::GlobalAsm, hir::ItemKind::TyAlias(..) => EntryKind::Type, hir::ItemKind::OpaqueTy(..) => EntryKind::OpaqueTy, hir::ItemKind::Enum(..) => EntryKind::Enum(self.tcx.adt_def(def_id).repr), hir::ItemKind::Struct(ref struct_def, _) => { let adt_def = self.tcx.adt_def(def_id); let variant = adt_def.non_enum_variant(); // Encode def_ids for each field and method // for methods, write all the stuff get_trait_method // needs to know let ctor = struct_def.ctor_hir_id().map(|ctor_hir_id| { self.tcx.hir().local_def_id(ctor_hir_id).local_def_index }); EntryKind::Struct(self.lazy(VariantData { ctor_kind: variant.ctor_kind, discr: variant.discr, ctor, }), adt_def.repr) } hir::ItemKind::Union(..) => { let adt_def = self.tcx.adt_def(def_id); let variant = adt_def.non_enum_variant(); EntryKind::Union(self.lazy(VariantData { ctor_kind: variant.ctor_kind, discr: variant.discr, ctor: None, }), adt_def.repr) } hir::ItemKind::Impl { defaultness, .. } => { let trait_ref = self.tcx.impl_trait_ref(def_id); let polarity = self.tcx.impl_polarity(def_id); let parent = if let Some(trait_ref) = trait_ref { let trait_def = self.tcx.trait_def(trait_ref.def_id); trait_def.ancestors(self.tcx, def_id).ok() .and_then(|mut an| an.nth(1).and_then(|node| { match node { specialization_graph::Node::Impl(parent) => Some(parent), _ => None, } })) } else { None }; // if this is an impl of `CoerceUnsized`, create its // "unsized info", else just store None let coerce_unsized_info = trait_ref.and_then(|t| { if Some(t.def_id) == self.tcx.lang_items().coerce_unsized_trait() { Some(self.tcx.at(item.span).coerce_unsized_info(def_id)) } else { None } }); let data = ImplData { polarity, defaultness, parent_impl: parent, coerce_unsized_info, }; EntryKind::Impl(self.lazy(data)) } hir::ItemKind::Trait(..) => { let trait_def = self.tcx.trait_def(def_id); let data = TraitData { unsafety: trait_def.unsafety, paren_sugar: trait_def.paren_sugar, has_auto_impl: self.tcx.trait_is_auto(def_id), is_marker: trait_def.is_marker, specialization_kind: trait_def.specialization_kind, }; EntryKind::Trait(self.lazy(data)) } hir::ItemKind::TraitAlias(..) => EntryKind::TraitAlias, hir::ItemKind::ExternCrate(_) | hir::ItemKind::Use(..) => bug!("cannot encode info for item {:?}", item), }); record!(self.tables.visibility[def_id] <- ty::Visibility::from_hir(&item.vis, item.hir_id, tcx)); record!(self.tables.span[def_id] <- item.span); record!(self.tables.attributes[def_id] <- item.attrs); // FIXME(eddyb) there should be a nicer way to do this. match item.kind { hir::ItemKind::ForeignMod(ref fm) => record!(self.tables.children[def_id] <- fm.items .iter() .map(|foreign_item| tcx.hir().local_def_id( foreign_item.hir_id).local_def_index) ), hir::ItemKind::Enum(..) => record!(self.tables.children[def_id] <- self.tcx.adt_def(def_id).variants.iter().map(|v| { assert!(v.def_id.is_local()); v.def_id.index }) ), hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) => { record!(self.tables.children[def_id] <- self.tcx.adt_def(def_id).non_enum_variant().fields.iter().map(|f| { assert!(f.did.is_local()); f.did.index }) ) } hir::ItemKind::Impl { .. } | hir::ItemKind::Trait(..) => { let associated_item_def_ids = self.tcx.associated_item_def_ids(def_id); record!(self.tables.children[def_id] <- associated_item_def_ids.iter().map(|&def_id| { assert!(def_id.is_local()); def_id.index }) ); } _ => {} } self.encode_stability(def_id); self.encode_const_stability(def_id); self.encode_deprecation(def_id); match item.kind { hir::ItemKind::Static(..) | hir::ItemKind::Const(..) | hir::ItemKind::Fn(..) | hir::ItemKind::TyAlias(..) | hir::ItemKind::OpaqueTy(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Impl { .. } => self.encode_item_type(def_id), _ => {} } if let hir::ItemKind::Fn(..) = item.kind { record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id)); } if let hir::ItemKind::Impl { .. } = item.kind { if let Some(trait_ref) = self.tcx.impl_trait_ref(def_id) { record!(self.tables.impl_trait_ref[def_id] <- trait_ref); } } self.encode_inherent_implementations(def_id); match item.kind { hir::ItemKind::Enum(..) | hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Fn(..) => self.encode_variances_of(def_id), _ => {} } match item.kind { hir::ItemKind::Static(..) | hir::ItemKind::Const(..) | hir::ItemKind::Fn(..) | hir::ItemKind::TyAlias(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Impl { .. } | hir::ItemKind::OpaqueTy(..) | hir::ItemKind::Trait(..) | hir::ItemKind::TraitAlias(..) => { self.encode_generics(def_id); self.encode_explicit_predicates(def_id); self.encode_inferred_outlives(def_id); } _ => {} } match item.kind { hir::ItemKind::Trait(..) | hir::ItemKind::TraitAlias(..) => { self.encode_super_predicates(def_id); } _ => {} } // The following part should be kept in sync with `PrefetchVisitor.visit_item`. let mir = match item.kind { hir::ItemKind::Static(..) | hir::ItemKind::Const(..) => true, hir::ItemKind::Fn(ref sig, ..) => { let generics = tcx.generics_of(def_id); let needs_inline = (generics.requires_monomorphization(tcx) || tcx.codegen_fn_attrs(def_id).requests_inline()) && !self.metadata_output_only(); let always_encode_mir = self.tcx.sess.opts.debugging_opts.always_encode_mir; needs_inline || sig.header.constness == hir::Constness::Const || always_encode_mir } _ => false, }; if mir { self.encode_optimized_mir(def_id.expect_local()); self.encode_promoted_mir(def_id.expect_local()); } } /// Serialize the text of exported macros fn encode_info_for_macro_def(&mut self, macro_def: &hir::MacroDef<'_>) { let def_id = self.tcx.hir().local_def_id(macro_def.hir_id).to_def_id(); record!(self.tables.kind[def_id] <- EntryKind::MacroDef(self.lazy(macro_def.ast.clone()))); record!(self.tables.visibility[def_id] <- ty::Visibility::Public); record!(self.tables.span[def_id] <- macro_def.span); record!(self.tables.attributes[def_id] <- macro_def.attrs); self.encode_ident_span(def_id, macro_def.ident); self.encode_stability(def_id); self.encode_deprecation(def_id); } fn encode_info_for_generic_param(&mut self, def_id: DefId, kind: EntryKind, encode_type: bool) { record!(self.tables.kind[def_id] <- kind); record!(self.tables.visibility[def_id] <- ty::Visibility::Public); record!(self.tables.span[def_id] <- self.tcx.def_span(def_id)); if encode_type { self.encode_item_type(def_id); } } fn encode_info_for_closure(&mut self, def_id: LocalDefId) { debug!("EncodeContext::encode_info_for_closure({:?})", def_id); // NOTE(eddyb) `tcx.type_of(def_id)` isn't used because it's fully generic, // including on the signature, which is inferred in `typeck_tables_of. let hir_id = self.tcx.hir().as_local_hir_id(def_id); let ty = self.tcx.typeck_tables_of(def_id).node_type(hir_id); record!(self.tables.kind[def_id.to_def_id()] <- match ty.kind { ty::Generator(..) => { let data = self.tcx.generator_kind(def_id).unwrap(); EntryKind::Generator(data) } ty::Closure(..) => EntryKind::Closure, _ => bug!("closure that is neither generator nor closure"), }); record!(self.tables.visibility[def_id.to_def_id()] <- ty::Visibility::Public); record!(self.tables.span[def_id.to_def_id()] <- self.tcx.def_span(def_id)); record!(self.tables.attributes[def_id.to_def_id()] <- &self.tcx.get_attrs(def_id.to_def_id())[..]); self.encode_item_type(def_id.to_def_id()); if let ty::Closure(def_id, substs) = ty.kind { record!(self.tables.fn_sig[def_id] <- substs.as_closure().sig()); } self.encode_generics(def_id.to_def_id()); self.encode_optimized_mir(def_id); self.encode_promoted_mir(def_id); } fn encode_info_for_anon_const(&mut self, def_id: LocalDefId) { debug!("EncodeContext::encode_info_for_anon_const({:?})", def_id); let id = self.tcx.hir().as_local_hir_id(def_id); let body_id = self.tcx.hir().body_owned_by(id); let const_data = self.encode_rendered_const_for_body(body_id); let qualifs = self.tcx.mir_const_qualif(def_id); record!(self.tables.kind[def_id.to_def_id()] <- EntryKind::Const(qualifs, const_data)); record!(self.tables.visibility[def_id.to_def_id()] <- ty::Visibility::Public); record!(self.tables.span[def_id.to_def_id()] <- self.tcx.def_span(def_id)); self.encode_item_type(def_id.to_def_id()); self.encode_generics(def_id.to_def_id()); self.encode_explicit_predicates(def_id.to_def_id()); self.encode_inferred_outlives(def_id.to_def_id()); self.encode_optimized_mir(def_id); self.encode_promoted_mir(def_id); } fn encode_native_libraries(&mut self) -> Lazy<[NativeLib]> { let used_libraries = self.tcx.native_libraries(LOCAL_CRATE); self.lazy(used_libraries.iter().cloned()) } fn encode_foreign_modules(&mut self) -> Lazy<[ForeignModule]> { let foreign_modules = self.tcx.foreign_modules(LOCAL_CRATE); self.lazy(foreign_modules.iter().cloned()) } fn encode_proc_macros(&mut self) -> Option> { let is_proc_macro = self.tcx.sess.crate_types().contains(&CrateType::ProcMacro); if is_proc_macro { let tcx = self.tcx; Some(self.lazy(tcx.hir().krate().proc_macros.iter().map(|p| p.owner.local_def_index))) } else { None } } fn encode_crate_deps(&mut self) -> Lazy<[CrateDep]> { let crates = self.tcx.crates(); let mut deps = crates .iter() .map(|&cnum| { let dep = CrateDep { name: self.tcx.original_crate_name(cnum), hash: self.tcx.crate_hash(cnum), host_hash: self.tcx.crate_host_hash(cnum), kind: self.tcx.dep_kind(cnum), extra_filename: self.tcx.extra_filename(cnum), }; (cnum, dep) }) .collect::>(); deps.sort_by_key(|&(cnum, _)| cnum); { // Sanity-check the crate numbers let mut expected_cnum = 1; for &(n, _) in &deps { assert_eq!(n, CrateNum::new(expected_cnum)); expected_cnum += 1; } } // We're just going to write a list of crate 'name-hash-version's, with // the assumption that they are numbered 1 to n. // FIXME (#2166): This is not nearly enough to support correct versioning // but is enough to get transitive crate dependencies working. self.lazy(deps.iter().map(|&(_, ref dep)| dep)) } fn encode_lib_features(&mut self) -> Lazy<[(Symbol, Option)]> { let tcx = self.tcx; let lib_features = tcx.lib_features(); self.lazy(lib_features.to_vec()) } fn encode_diagnostic_items(&mut self) -> Lazy<[(Symbol, DefIndex)]> { let tcx = self.tcx; let diagnostic_items = tcx.diagnostic_items(LOCAL_CRATE); self.lazy(diagnostic_items.iter().map(|(&name, def_id)| (name, def_id.index))) } fn encode_lang_items(&mut self) -> Lazy<[(DefIndex, usize)]> { let tcx = self.tcx; let lang_items = tcx.lang_items(); let lang_items = lang_items.items().iter(); self.lazy(lang_items.enumerate().filter_map(|(i, &opt_def_id)| { if let Some(def_id) = opt_def_id { if def_id.is_local() { return Some((def_id.index, i)); } } None })) } fn encode_lang_items_missing(&mut self) -> Lazy<[lang_items::LangItem]> { let tcx = self.tcx; self.lazy(&tcx.lang_items().missing) } /// Encodes an index, mapping each trait to its (local) implementations. fn encode_impls(&mut self) -> Lazy<[TraitImpls]> { debug!("EncodeContext::encode_impls()"); let tcx = self.tcx; let mut visitor = ImplVisitor { tcx, impls: FxHashMap::default() }; tcx.hir().krate().visit_all_item_likes(&mut visitor); let mut all_impls: Vec<_> = visitor.impls.into_iter().collect(); // Bring everything into deterministic order for hashing all_impls.sort_by_cached_key(|&(trait_def_id, _)| tcx.def_path_hash(trait_def_id)); let all_impls: Vec<_> = all_impls .into_iter() .map(|(trait_def_id, mut impls)| { // Bring everything into deterministic order for hashing impls.sort_by_cached_key(|&index| { tcx.hir().definitions().def_path_hash(LocalDefId { local_def_index: index }) }); TraitImpls { trait_id: (trait_def_id.krate.as_u32(), trait_def_id.index), impls: self.lazy(&impls), } }) .collect(); self.lazy(&all_impls) } // Encodes all symbols exported from this crate into the metadata. // // This pass is seeded off the reachability list calculated in the // middle::reachable module but filters out items that either don't have a // symbol associated with them (they weren't translated) or if they're an FFI // definition (as that's not defined in this crate). fn encode_exported_symbols( &mut self, exported_symbols: &[(ExportedSymbol<'tcx>, SymbolExportLevel)], ) -> Lazy<[(ExportedSymbol<'tcx>, SymbolExportLevel)]> { // The metadata symbol name is special. It should not show up in // downstream crates. let metadata_symbol_name = SymbolName::new(&metadata_symbol_name(self.tcx)); self.lazy( exported_symbols .iter() .filter(|&&(ref exported_symbol, _)| match *exported_symbol { ExportedSymbol::NoDefId(symbol_name) => symbol_name != metadata_symbol_name, _ => true, }) .cloned(), ) } fn encode_dylib_dependency_formats(&mut self) -> Lazy<[Option]> { let formats = self.tcx.dependency_formats(LOCAL_CRATE); for (ty, arr) in formats.iter() { if *ty != CrateType::Dylib { continue; } return self.lazy(arr.iter().map(|slot| match *slot { Linkage::NotLinked | Linkage::IncludedFromDylib => None, Linkage::Dynamic => Some(LinkagePreference::RequireDynamic), Linkage::Static => Some(LinkagePreference::RequireStatic), })); } Lazy::empty() } fn encode_info_for_foreign_item(&mut self, def_id: DefId, nitem: &hir::ForeignItem<'_>) { let tcx = self.tcx; debug!("EncodeContext::encode_info_for_foreign_item({:?})", def_id); record!(self.tables.kind[def_id] <- match nitem.kind { hir::ForeignItemKind::Fn(_, ref names, _) => { let data = FnData { asyncness: hir::IsAsync::NotAsync, constness: if self.tcx.is_const_fn_raw(def_id) { hir::Constness::Const } else { hir::Constness::NotConst }, param_names: self.encode_fn_param_names(names), }; EntryKind::ForeignFn(self.lazy(data)) } hir::ForeignItemKind::Static(_, hir::Mutability::Mut) => EntryKind::ForeignMutStatic, hir::ForeignItemKind::Static(_, hir::Mutability::Not) => EntryKind::ForeignImmStatic, hir::ForeignItemKind::Type => EntryKind::ForeignType, }); record!(self.tables.visibility[def_id] <- ty::Visibility::from_hir(&nitem.vis, nitem.hir_id, self.tcx)); record!(self.tables.span[def_id] <- nitem.span); record!(self.tables.attributes[def_id] <- nitem.attrs); self.encode_ident_span(def_id, nitem.ident); self.encode_stability(def_id); self.encode_const_stability(def_id); self.encode_deprecation(def_id); self.encode_item_type(def_id); if let hir::ForeignItemKind::Fn(..) = nitem.kind { record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id)); self.encode_variances_of(def_id); } self.encode_generics(def_id); self.encode_explicit_predicates(def_id); self.encode_inferred_outlives(def_id); } } // FIXME(eddyb) make metadata encoding walk over all definitions, instead of HIR. impl Visitor<'tcx> for EncodeContext<'tcx> { type Map = Map<'tcx>; fn nested_visit_map(&mut self) -> NestedVisitorMap { NestedVisitorMap::OnlyBodies(self.tcx.hir()) } fn visit_expr(&mut self, ex: &'tcx hir::Expr<'tcx>) { intravisit::walk_expr(self, ex); self.encode_info_for_expr(ex); } fn visit_anon_const(&mut self, c: &'tcx AnonConst) { intravisit::walk_anon_const(self, c); let def_id = self.tcx.hir().local_def_id(c.hir_id); self.encode_info_for_anon_const(def_id); } fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) { intravisit::walk_item(self, item); let def_id = self.tcx.hir().local_def_id(item.hir_id); match item.kind { hir::ItemKind::ExternCrate(_) | hir::ItemKind::Use(..) => {} // ignore these _ => self.encode_info_for_item(def_id.to_def_id(), item), } self.encode_addl_info_for_item(item); } fn visit_foreign_item(&mut self, ni: &'tcx hir::ForeignItem<'tcx>) { intravisit::walk_foreign_item(self, ni); let def_id = self.tcx.hir().local_def_id(ni.hir_id); self.encode_info_for_foreign_item(def_id.to_def_id(), ni); } fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) { intravisit::walk_generics(self, generics); self.encode_info_for_generics(generics); } fn visit_macro_def(&mut self, macro_def: &'tcx hir::MacroDef<'tcx>) { self.encode_info_for_macro_def(macro_def); } } impl EncodeContext<'tcx> { fn encode_fields(&mut self, adt_def: &ty::AdtDef) { for (variant_index, variant) in adt_def.variants.iter_enumerated() { for (field_index, _field) in variant.fields.iter().enumerate() { self.encode_field(adt_def, variant_index, field_index); } } } fn encode_info_for_generics(&mut self, generics: &hir::Generics<'tcx>) { for param in generics.params { let def_id = self.tcx.hir().local_def_id(param.hir_id); match param.kind { GenericParamKind::Lifetime { .. } => continue, GenericParamKind::Type { ref default, .. } => { self.encode_info_for_generic_param( def_id.to_def_id(), EntryKind::TypeParam, default.is_some(), ); } GenericParamKind::Const { .. } => { self.encode_info_for_generic_param( def_id.to_def_id(), EntryKind::ConstParam, true, ); } } } } fn encode_info_for_expr(&mut self, expr: &hir::Expr<'_>) { if let hir::ExprKind::Closure(..) = expr.kind { let def_id = self.tcx.hir().local_def_id(expr.hir_id); self.encode_info_for_closure(def_id); } } fn encode_ident_span(&mut self, def_id: DefId, ident: Ident) { record!(self.tables.ident_span[def_id] <- ident.span); } /// In some cases, along with the item itself, we also /// encode some sub-items. Usually we want some info from the item /// so it's easier to do that here then to wait until we would encounter /// normally in the visitor walk. fn encode_addl_info_for_item(&mut self, item: &hir::Item<'_>) { let def_id = self.tcx.hir().local_def_id(item.hir_id); match item.kind { hir::ItemKind::Static(..) | hir::ItemKind::Const(..) | hir::ItemKind::Fn(..) | hir::ItemKind::Mod(..) | hir::ItemKind::ForeignMod(..) | hir::ItemKind::GlobalAsm(..) | hir::ItemKind::ExternCrate(..) | hir::ItemKind::Use(..) | hir::ItemKind::TyAlias(..) | hir::ItemKind::OpaqueTy(..) | hir::ItemKind::TraitAlias(..) => { // no sub-item recording needed in these cases } hir::ItemKind::Enum(..) => { let def = self.tcx.adt_def(def_id.to_def_id()); self.encode_fields(def); for (i, variant) in def.variants.iter_enumerated() { self.encode_enum_variant_info(def, i); if let Some(_ctor_def_id) = variant.ctor_def_id { self.encode_enum_variant_ctor(def, i); } } } hir::ItemKind::Struct(ref struct_def, _) => { let def = self.tcx.adt_def(def_id.to_def_id()); self.encode_fields(def); // If the struct has a constructor, encode it. if let Some(ctor_hir_id) = struct_def.ctor_hir_id() { let ctor_def_id = self.tcx.hir().local_def_id(ctor_hir_id); self.encode_struct_ctor(def, ctor_def_id.to_def_id()); } } hir::ItemKind::Union(..) => { let def = self.tcx.adt_def(def_id.to_def_id()); self.encode_fields(def); } hir::ItemKind::Impl { .. } => { for &trait_item_def_id in self.tcx.associated_item_def_ids(def_id.to_def_id()).iter() { self.encode_info_for_impl_item(trait_item_def_id); } } hir::ItemKind::Trait(..) => { for &item_def_id in self.tcx.associated_item_def_ids(def_id.to_def_id()).iter() { self.encode_info_for_trait_item(item_def_id); } } } } } struct ImplVisitor<'tcx> { tcx: TyCtxt<'tcx>, impls: FxHashMap>, } impl<'tcx, 'v> ItemLikeVisitor<'v> for ImplVisitor<'tcx> { fn visit_item(&mut self, item: &hir::Item<'_>) { if let hir::ItemKind::Impl { .. } = item.kind { let impl_id = self.tcx.hir().local_def_id(item.hir_id); if let Some(trait_ref) = self.tcx.impl_trait_ref(impl_id.to_def_id()) { self.impls.entry(trait_ref.def_id).or_default().push(impl_id.local_def_index); } } } fn visit_trait_item(&mut self, _trait_item: &'v hir::TraitItem<'v>) {} fn visit_impl_item(&mut self, _impl_item: &'v hir::ImplItem<'v>) { // handled in `visit_item` above } } /// Used to prefetch queries which will be needed later by metadata encoding. /// Only a subset of the queries are actually prefetched to keep this code smaller. struct PrefetchVisitor<'tcx> { tcx: TyCtxt<'tcx>, mir_keys: &'tcx FxHashSet, } impl<'tcx> PrefetchVisitor<'tcx> { fn prefetch_mir(&self, def_id: LocalDefId) { if self.mir_keys.contains(&def_id) { self.tcx.ensure().optimized_mir(def_id); self.tcx.ensure().promoted_mir(def_id); } } } impl<'tcx, 'v> ParItemLikeVisitor<'v> for PrefetchVisitor<'tcx> { fn visit_item(&self, item: &hir::Item<'_>) { // This should be kept in sync with `encode_info_for_item`. let tcx = self.tcx; match item.kind { hir::ItemKind::Static(..) | hir::ItemKind::Const(..) => { self.prefetch_mir(tcx.hir().local_def_id(item.hir_id)) } hir::ItemKind::Fn(ref sig, ..) => { let def_id = tcx.hir().local_def_id(item.hir_id); let generics = tcx.generics_of(def_id.to_def_id()); let needs_inline = generics.requires_monomorphization(tcx) || tcx.codegen_fn_attrs(def_id.to_def_id()).requests_inline(); if needs_inline || sig.header.constness == hir::Constness::Const { self.prefetch_mir(def_id) } } _ => (), } } fn visit_trait_item(&self, trait_item: &'v hir::TraitItem<'v>) { // This should be kept in sync with `encode_info_for_trait_item`. self.prefetch_mir(self.tcx.hir().local_def_id(trait_item.hir_id)); } fn visit_impl_item(&self, impl_item: &'v hir::ImplItem<'v>) { // This should be kept in sync with `encode_info_for_impl_item`. let tcx = self.tcx; match impl_item.kind { hir::ImplItemKind::Const(..) => { self.prefetch_mir(tcx.hir().local_def_id(impl_item.hir_id)) } hir::ImplItemKind::Fn(ref sig, _) => { let def_id = tcx.hir().local_def_id(impl_item.hir_id); let generics = tcx.generics_of(def_id.to_def_id()); let needs_inline = generics.requires_monomorphization(tcx) || tcx.codegen_fn_attrs(def_id.to_def_id()).requests_inline(); let is_const_fn = sig.header.constness == hir::Constness::Const; if needs_inline || is_const_fn { self.prefetch_mir(def_id) } } hir::ImplItemKind::TyAlias(..) => (), } } } // NOTE(eddyb) The following comment was preserved for posterity, even // though it's no longer relevant as EBML (which uses nested & tagged // "documents") was replaced with a scheme that can't go out of bounds. // // And here we run into yet another obscure archive bug: in which metadata // loaded from archives may have trailing garbage bytes. Awhile back one of // our tests was failing sporadically on the macOS 64-bit builders (both nopt // and opt) by having ebml generate an out-of-bounds panic when looking at // metadata. // // Upon investigation it turned out that the metadata file inside of an rlib // (and ar archive) was being corrupted. Some compilations would generate a // metadata file which would end in a few extra bytes, while other // compilations would not have these extra bytes appended to the end. These // extra bytes were interpreted by ebml as an extra tag, so they ended up // being interpreted causing the out-of-bounds. // // The root cause of why these extra bytes were appearing was never // discovered, and in the meantime the solution we're employing is to insert // the length of the metadata to the start of the metadata. Later on this // will allow us to slice the metadata to the precise length that we just // generated regardless of trailing bytes that end up in it. pub(super) fn encode_metadata(tcx: TyCtxt<'_>) -> EncodedMetadata { // Since encoding metadata is not in a query, and nothing is cached, // there's no need to do dep-graph tracking for any of it. tcx.dep_graph.assert_ignored(); join( || encode_metadata_impl(tcx), || { if tcx.sess.threads() == 1 { return; } // Prefetch some queries used by metadata encoding. // This is not necessary for correctness, but is only done for performance reasons. // It can be removed if it turns out to cause trouble or be detrimental to performance. join( || { if !tcx.sess.opts.output_types.should_codegen() { // We won't emit MIR, so don't prefetch it. return; } tcx.hir().krate().par_visit_all_item_likes(&PrefetchVisitor { tcx, mir_keys: tcx.mir_keys(LOCAL_CRATE), }); }, || tcx.exported_symbols(LOCAL_CRATE), ); }, ) .0 } fn encode_metadata_impl(tcx: TyCtxt<'_>) -> EncodedMetadata { let mut encoder = opaque::Encoder::new(vec![]); encoder.emit_raw_bytes(METADATA_HEADER); // Will be filled with the root position after encoding everything. encoder.emit_raw_bytes(&[0, 0, 0, 0]); let mut ecx = EncodeContext { opaque: encoder, tcx, tables: Default::default(), lazy_state: LazyState::NoNode, type_shorthands: Default::default(), predicate_shorthands: Default::default(), source_file_cache: tcx.sess.source_map().files()[0].clone(), interpret_allocs: Default::default(), interpret_allocs_inverse: Default::default(), }; // Encode the rustc version string in a predictable location. rustc_version().encode(&mut ecx).unwrap(); // Encode all the entries and extra information in the crate, // culminating in the `CrateRoot` which points to all of it. let root = ecx.encode_crate_root(); let mut result = ecx.opaque.into_inner(); // Encode the root position. let header = METADATA_HEADER.len(); let pos = root.position.get(); result[header + 0] = (pos >> 24) as u8; result[header + 1] = (pos >> 16) as u8; result[header + 2] = (pos >> 8) as u8; result[header + 3] = (pos >> 0) as u8; EncodedMetadata { raw_data: result } }