// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! This module contains the "cleaned" pieces of the AST, and the functions //! that clean them. pub use self::Type::*; pub use self::PrimitiveType::*; pub use self::TypeKind::*; pub use self::StructField::*; pub use self::VariantKind::*; pub use self::Mutability::*; pub use self::Import::*; pub use self::ItemEnum::*; pub use self::Attribute::*; pub use self::TyParamBound::*; pub use self::SelfTy::*; pub use self::FunctionRetTy::*; use syntax; use syntax::abi; use syntax::ast; use syntax::attr; use syntax::attr::{AttributeMethods, AttrMetaMethods}; use syntax::codemap; use syntax::codemap::{DUMMY_SP, Pos, Spanned}; use syntax::parse::token::{self, InternedString, special_idents}; use syntax::ptr::P; use rustc_trans::back::link; use rustc::metadata::cstore; use rustc::metadata::csearch; use rustc::metadata::decoder; use rustc::middle::def; use rustc::middle::def_id::{DefId, DefIndex}; use rustc::middle::subst::{self, ParamSpace, VecPerParamSpace}; use rustc::middle::ty; use rustc::middle::stability; use rustc_front::hir; use std::collections::HashMap; use std::path::PathBuf; use std::rc::Rc; use std::u32; use core::DocContext; use doctree; use visit_ast; /// A stable identifier to the particular version of JSON output. /// Increment this when the `Crate` and related structures change. pub const SCHEMA_VERSION: &'static str = "0.8.3"; mod inline; mod simplify; // extract the stability index for a node from tcx, if possible fn get_stability(cx: &DocContext, def_id: DefId) -> Option { cx.tcx_opt().and_then(|tcx| stability::lookup(tcx, def_id)).clean(cx) } pub trait Clean { fn clean(&self, cx: &DocContext) -> T; } impl, U> Clean> for [T] { fn clean(&self, cx: &DocContext) -> Vec { self.iter().map(|x| x.clean(cx)).collect() } } impl, U> Clean> for VecPerParamSpace { fn clean(&self, cx: &DocContext) -> VecPerParamSpace { self.map(|x| x.clean(cx)) } } impl, U> Clean for P { fn clean(&self, cx: &DocContext) -> U { (**self).clean(cx) } } impl, U> Clean for Rc { fn clean(&self, cx: &DocContext) -> U { (**self).clean(cx) } } impl, U> Clean> for Option { fn clean(&self, cx: &DocContext) -> Option { match self { &None => None, &Some(ref v) => Some(v.clean(cx)) } } } impl Clean for ty::Binder where T: Clean { fn clean(&self, cx: &DocContext) -> U { self.0.clean(cx) } } impl, U> Clean> for syntax::owned_slice::OwnedSlice { fn clean(&self, cx: &DocContext) -> Vec { self.iter().map(|x| x.clean(cx)).collect() } } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct Crate { pub name: String, pub src: PathBuf, pub module: Option, pub externs: Vec<(ast::CrateNum, ExternalCrate)>, pub primitives: Vec, pub external_traits: HashMap, } impl<'a, 'tcx> Clean for visit_ast::RustdocVisitor<'a, 'tcx> { fn clean(&self, cx: &DocContext) -> Crate { use rustc::session::config::Input; if let Some(t) = cx.tcx_opt() { cx.deref_trait_did.set(t.lang_items.deref_trait()); } let mut externs = Vec::new(); cx.sess().cstore.iter_crate_data(|n, meta| { externs.push((n, meta.clean(cx))); }); externs.sort_by(|&(a, _), &(b, _)| a.cmp(&b)); // Figure out the name of this crate let input = &cx.input; let name = link::find_crate_name(None, &self.attrs, input); // Clean the crate, translating the entire libsyntax AST to one that is // understood by rustdoc. let mut module = self.module.clean(cx); // Collect all inner modules which are tagged as implementations of // primitives. // // Note that this loop only searches the top-level items of the crate, // and this is intentional. If we were to search the entire crate for an // item tagged with `#[doc(primitive)]` then we would also have to // search the entirety of external modules for items tagged // `#[doc(primitive)]`, which is a pretty inefficient process (decoding // all that metadata unconditionally). // // In order to keep the metadata load under control, the // `#[doc(primitive)]` feature is explicitly designed to only allow the // primitive tags to show up as the top level items in a crate. // // Also note that this does not attempt to deal with modules tagged // duplicately for the same primitive. This is handled later on when // rendering by delegating everything to a hash map. let mut primitives = Vec::new(); { let m = match module.inner { ModuleItem(ref mut m) => m, _ => unreachable!(), }; let mut tmp = Vec::new(); for child in &mut m.items { match child.inner { ModuleItem(..) => {} _ => continue, } let prim = match PrimitiveType::find(&child.attrs) { Some(prim) => prim, None => continue, }; primitives.push(prim); tmp.push(Item { source: Span::empty(), name: Some(prim.to_url_str().to_string()), attrs: child.attrs.clone(), visibility: Some(hir::Public), stability: None, def_id: DefId::local(prim.to_def_index()), inner: PrimitiveItem(prim), }); } m.items.extend(tmp); } let src = match cx.input { Input::File(ref path) => path.clone(), Input::Str(_) => PathBuf::new() // FIXME: this is wrong }; Crate { name: name.to_string(), src: src, module: Some(module), externs: externs, primitives: primitives, external_traits: cx.external_traits.borrow_mut().take() .unwrap_or(HashMap::new()), } } } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct ExternalCrate { pub name: String, pub attrs: Vec, pub primitives: Vec, } impl Clean for cstore::crate_metadata { fn clean(&self, cx: &DocContext) -> ExternalCrate { let mut primitives = Vec::new(); cx.tcx_opt().map(|tcx| { csearch::each_top_level_item_of_crate(&tcx.sess.cstore, self.cnum, |def, _, _| { let did = match def { decoder::DlDef(def::DefMod(did)) => did, _ => return }; let attrs = inline::load_attrs(cx, tcx, did); PrimitiveType::find(&attrs).map(|prim| primitives.push(prim)); }) }); ExternalCrate { name: self.name.to_string(), attrs: decoder::get_crate_attributes(self.data()).clean(cx), primitives: primitives, } } } /// Anything with a source location and set of attributes and, optionally, a /// name. That is, anything that can be documented. This doesn't correspond /// directly to the AST's concept of an item; it's a strict superset. #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct Item { /// Stringified span pub source: Span, /// Not everything has a name. E.g., impls pub name: Option, pub attrs: Vec , pub inner: ItemEnum, pub visibility: Option, pub def_id: DefId, pub stability: Option, } impl Item { /// Finds the `doc` attribute as a List and returns the list of attributes /// nested inside. pub fn doc_list<'a>(&'a self) -> Option<&'a [Attribute]> { for attr in &self.attrs { match *attr { List(ref x, ref list) if "doc" == *x => { return Some(list); } _ => {} } } return None; } /// Finds the `doc` attribute as a NameValue and returns the corresponding /// value found. pub fn doc_value<'a>(&'a self) -> Option<&'a str> { for attr in &self.attrs { match *attr { NameValue(ref x, ref v) if "doc" == *x => { return Some(v); } _ => {} } } return None; } pub fn is_hidden_from_doc(&self) -> bool { match self.doc_list() { Some(l) => { for innerattr in l { match *innerattr { Word(ref s) if "hidden" == *s => { return true } _ => (), } } }, None => () } return false; } pub fn is_mod(&self) -> bool { match self.inner { ModuleItem(..) => true, _ => false } } pub fn is_trait(&self) -> bool { match self.inner { TraitItem(..) => true, _ => false } } pub fn is_struct(&self) -> bool { match self.inner { StructItem(..) => true, _ => false } } pub fn is_enum(&self) -> bool { match self.inner { EnumItem(..) => true, _ => false } } pub fn is_fn(&self) -> bool { match self.inner { FunctionItem(..) => true, _ => false } } pub fn stability_class(&self) -> String { match self.stability { Some(ref s) => { let mut base = match s.level { stability::Unstable => "unstable".to_string(), stability::Stable => String::new(), }; if !s.deprecated_since.is_empty() { base.push_str(" deprecated"); } base } _ => String::new(), } } } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub enum ItemEnum { ExternCrateItem(String, Option), ImportItem(Import), StructItem(Struct), EnumItem(Enum), FunctionItem(Function), ModuleItem(Module), TypedefItem(Typedef, bool /* is associated type */), StaticItem(Static), ConstantItem(Constant), TraitItem(Trait), ImplItem(Impl), /// A method signature only. Used for required methods in traits (ie, /// non-default-methods). TyMethodItem(TyMethod), /// A method with a body. MethodItem(Method), StructFieldItem(StructField), VariantItem(Variant), /// `fn`s from an extern block ForeignFunctionItem(Function), /// `static`s from an extern block ForeignStaticItem(Static), MacroItem(Macro), PrimitiveItem(PrimitiveType), AssociatedConstItem(Type, Option), AssociatedTypeItem(Vec, Option), DefaultImplItem(DefaultImpl), } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct Module { pub items: Vec, pub is_crate: bool, } impl Clean for doctree::Module { fn clean(&self, cx: &DocContext) -> Item { let name = if self.name.is_some() { self.name.unwrap().clean(cx) } else { "".to_string() }; let mut items: Vec = vec![]; items.extend(self.extern_crates.iter().map(|x| x.clean(cx))); items.extend(self.imports.iter().flat_map(|x| x.clean(cx))); items.extend(self.structs.iter().map(|x| x.clean(cx))); items.extend(self.enums.iter().map(|x| x.clean(cx))); items.extend(self.fns.iter().map(|x| x.clean(cx))); items.extend(self.foreigns.iter().flat_map(|x| x.clean(cx))); items.extend(self.mods.iter().map(|x| x.clean(cx))); items.extend(self.typedefs.iter().map(|x| x.clean(cx))); items.extend(self.statics.iter().map(|x| x.clean(cx))); items.extend(self.constants.iter().map(|x| x.clean(cx))); items.extend(self.traits.iter().map(|x| x.clean(cx))); items.extend(self.impls.iter().flat_map(|x| x.clean(cx))); items.extend(self.macros.iter().map(|x| x.clean(cx))); items.extend(self.def_traits.iter().map(|x| x.clean(cx))); // determine if we should display the inner contents or // the outer `mod` item for the source code. let whence = { let cm = cx.sess().codemap(); let outer = cm.lookup_char_pos(self.where_outer.lo); let inner = cm.lookup_char_pos(self.where_inner.lo); if outer.file.start_pos == inner.file.start_pos { // mod foo { ... } self.where_outer } else { // mod foo; (and a separate FileMap for the contents) self.where_inner } }; Item { name: Some(name), attrs: self.attrs.clean(cx), source: whence.clean(cx), visibility: self.vis.clean(cx), stability: self.stab.clean(cx), def_id: cx.map.local_def_id(self.id), inner: ModuleItem(Module { is_crate: self.is_crate, items: items }) } } } #[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)] pub enum Attribute { Word(String), List(String, Vec ), NameValue(String, String) } impl Clean for ast::MetaItem { fn clean(&self, cx: &DocContext) -> Attribute { match self.node { ast::MetaWord(ref s) => Word(s.to_string()), ast::MetaList(ref s, ref l) => { List(s.to_string(), l.clean(cx)) } ast::MetaNameValue(ref s, ref v) => { NameValue(s.to_string(), lit_to_string(v)) } } } } impl Clean for ast::Attribute { fn clean(&self, cx: &DocContext) -> Attribute { self.with_desugared_doc(|a| a.node.value.clean(cx)) } } // This is a rough approximation that gets us what we want. impl attr::AttrMetaMethods for Attribute { fn name(&self) -> InternedString { match *self { Word(ref n) | List(ref n, _) | NameValue(ref n, _) => { token::intern_and_get_ident(n) } } } fn value_str(&self) -> Option { match *self { NameValue(_, ref v) => { Some(token::intern_and_get_ident(v)) } _ => None, } } fn meta_item_list<'a>(&'a self) -> Option<&'a [P]> { None } fn span(&self) -> codemap::Span { unimplemented!() } } impl<'a> attr::AttrMetaMethods for &'a Attribute { fn name(&self) -> InternedString { (**self).name() } fn value_str(&self) -> Option { (**self).value_str() } fn meta_item_list(&self) -> Option<&[P]> { None } fn span(&self) -> codemap::Span { unimplemented!() } } #[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)] pub struct TyParam { pub name: String, pub did: DefId, pub bounds: Vec, pub default: Option, } impl Clean for hir::TyParam { fn clean(&self, cx: &DocContext) -> TyParam { TyParam { name: self.name.clean(cx), did: cx.map.local_def_id(self.id), bounds: self.bounds.clean(cx), default: self.default.clean(cx), } } } impl<'tcx> Clean for ty::TypeParameterDef<'tcx> { fn clean(&self, cx: &DocContext) -> TyParam { cx.external_typarams.borrow_mut().as_mut().unwrap() .insert(self.def_id, self.name.clean(cx)); TyParam { name: self.name.clean(cx), did: self.def_id, bounds: vec![], // these are filled in from the where-clauses default: self.default.clean(cx), } } } #[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)] pub enum TyParamBound { RegionBound(Lifetime), TraitBound(PolyTrait, hir::TraitBoundModifier) } impl TyParamBound { fn maybe_sized(cx: &DocContext) -> TyParamBound { use rustc_front::hir::TraitBoundModifier as TBM; let mut sized_bound = ty::BoundSized.clean(cx); if let TyParamBound::TraitBound(_, ref mut tbm) = sized_bound { *tbm = TBM::Maybe }; sized_bound } fn is_sized_bound(&self, cx: &DocContext) -> bool { use rustc_front::hir::TraitBoundModifier as TBM; if let Some(tcx) = cx.tcx_opt() { let sized_did = match tcx.lang_items.sized_trait() { Some(did) => did, None => return false }; if let TyParamBound::TraitBound(PolyTrait { trait_: Type::ResolvedPath { did, .. }, .. }, TBM::None) = *self { if did == sized_did { return true } } } false } } impl Clean for hir::TyParamBound { fn clean(&self, cx: &DocContext) -> TyParamBound { match *self { hir::RegionTyParamBound(lt) => RegionBound(lt.clean(cx)), hir::TraitTyParamBound(ref t, modifier) => TraitBound(t.clean(cx), modifier), } } } impl<'tcx> Clean<(Vec, Vec)> for ty::ExistentialBounds<'tcx> { fn clean(&self, cx: &DocContext) -> (Vec, Vec) { let mut tp_bounds = vec![]; self.region_bound.clean(cx).map(|b| tp_bounds.push(RegionBound(b))); for bb in &self.builtin_bounds { tp_bounds.push(bb.clean(cx)); } let mut bindings = vec![]; for &ty::Binder(ref pb) in &self.projection_bounds { bindings.push(TypeBinding { name: pb.projection_ty.item_name.clean(cx), ty: pb.ty.clean(cx) }); } (tp_bounds, bindings) } } fn external_path_params(cx: &DocContext, trait_did: Option, bindings: Vec, substs: &subst::Substs) -> PathParameters { let lifetimes = substs.regions().get_slice(subst::TypeSpace) .iter() .filter_map(|v| v.clean(cx)) .collect(); let types = substs.types.get_slice(subst::TypeSpace).to_vec(); match (trait_did, cx.tcx_opt()) { // Attempt to sugar an external path like Fn<(A, B,), C> to Fn(A, B) -> C (Some(did), Some(ref tcx)) if tcx.lang_items.fn_trait_kind(did).is_some() => { assert_eq!(types.len(), 1); let inputs = match types[0].sty { ty::TyTuple(ref tys) => tys.iter().map(|t| t.clean(cx)).collect(), _ => { return PathParameters::AngleBracketed { lifetimes: lifetimes, types: types.clean(cx), bindings: bindings } } }; let output = None; // FIXME(#20299) return type comes from a projection now // match types[1].sty { // ty::TyTuple(ref v) if v.is_empty() => None, // -> () // _ => Some(types[1].clean(cx)) // }; PathParameters::Parenthesized { inputs: inputs, output: output } }, (_, _) => { PathParameters::AngleBracketed { lifetimes: lifetimes, types: types.clean(cx), bindings: bindings } } } } // trait_did should be set to a trait's DefId if called on a TraitRef, in order to sugar // from Fn<(A, B,), C> to Fn(A, B) -> C fn external_path(cx: &DocContext, name: &str, trait_did: Option, bindings: Vec, substs: &subst::Substs) -> Path { Path { global: false, segments: vec![PathSegment { name: name.to_string(), params: external_path_params(cx, trait_did, bindings, substs) }], } } impl Clean for ty::BuiltinBound { fn clean(&self, cx: &DocContext) -> TyParamBound { let tcx = match cx.tcx_opt() { Some(tcx) => tcx, None => return RegionBound(Lifetime::statik()) }; let empty = subst::Substs::empty(); let (did, path) = match *self { ty::BoundSend => (tcx.lang_items.send_trait().unwrap(), external_path(cx, "Send", None, vec![], &empty)), ty::BoundSized => (tcx.lang_items.sized_trait().unwrap(), external_path(cx, "Sized", None, vec![], &empty)), ty::BoundCopy => (tcx.lang_items.copy_trait().unwrap(), external_path(cx, "Copy", None, vec![], &empty)), ty::BoundSync => (tcx.lang_items.sync_trait().unwrap(), external_path(cx, "Sync", None, vec![], &empty)), }; let fqn = csearch::get_item_path(tcx, did); let fqn = fqn.into_iter().map(|i| i.to_string()).collect(); cx.external_paths.borrow_mut().as_mut().unwrap().insert(did, (fqn, TypeTrait)); TraitBound(PolyTrait { trait_: ResolvedPath { path: path, typarams: None, did: did, is_generic: false, }, lifetimes: vec![] }, hir::TraitBoundModifier::None) } } impl<'tcx> Clean for ty::TraitRef<'tcx> { fn clean(&self, cx: &DocContext) -> TyParamBound { let tcx = match cx.tcx_opt() { Some(tcx) => tcx, None => return RegionBound(Lifetime::statik()) }; let fqn = csearch::get_item_path(tcx, self.def_id); let fqn = fqn.into_iter().map(|i| i.to_string()) .collect::>(); let path = external_path(cx, fqn.last().unwrap(), Some(self.def_id), vec![], self.substs); cx.external_paths.borrow_mut().as_mut().unwrap().insert(self.def_id, (fqn, TypeTrait)); debug!("ty::TraitRef\n substs.types(TypeSpace): {:?}\n", self.substs.types.get_slice(ParamSpace::TypeSpace)); // collect any late bound regions let mut late_bounds = vec![]; for &ty_s in self.substs.types.get_slice(ParamSpace::TypeSpace) { if let ty::TyTuple(ref ts) = ty_s.sty { for &ty_s in ts { if let ty::TyRef(ref reg, _) = ty_s.sty { if let &ty::Region::ReLateBound(_, _) = *reg { debug!(" hit an ReLateBound {:?}", reg); if let Some(lt) = reg.clean(cx) { late_bounds.push(lt) } } } } } } TraitBound(PolyTrait { trait_: ResolvedPath { path: path, typarams: None, did: self.def_id, is_generic: false, }, lifetimes: late_bounds }, hir::TraitBoundModifier::None) } } impl<'tcx> Clean>> for subst::Substs<'tcx> { fn clean(&self, cx: &DocContext) -> Option> { let mut v = Vec::new(); v.extend(self.regions().iter().filter_map(|r| r.clean(cx)).map(RegionBound)); v.extend(self.types.iter().map(|t| TraitBound(PolyTrait { trait_: t.clean(cx), lifetimes: vec![] }, hir::TraitBoundModifier::None))); if !v.is_empty() {Some(v)} else {None} } } #[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)] pub struct Lifetime(String); impl Lifetime { pub fn get_ref<'a>(&'a self) -> &'a str { let Lifetime(ref s) = *self; let s: &'a str = s; return s; } pub fn statik() -> Lifetime { Lifetime("'static".to_string()) } } impl Clean for hir::Lifetime { fn clean(&self, _: &DocContext) -> Lifetime { Lifetime(self.name.to_string()) } } impl Clean for hir::LifetimeDef { fn clean(&self, _: &DocContext) -> Lifetime { Lifetime(self.lifetime.name.to_string()) } } impl Clean for ty::RegionParameterDef { fn clean(&self, _: &DocContext) -> Lifetime { Lifetime(self.name.to_string()) } } impl Clean> for ty::Region { fn clean(&self, cx: &DocContext) -> Option { match *self { ty::ReStatic => Some(Lifetime::statik()), ty::ReLateBound(_, ty::BrNamed(_, name)) => Some(Lifetime(name.to_string())), ty::ReEarlyBound(ref data) => Some(Lifetime(data.name.clean(cx))), ty::ReLateBound(..) | ty::ReFree(..) | ty::ReScope(..) | ty::ReVar(..) | ty::ReSkolemized(..) | ty::ReEmpty(..) => None } } } #[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)] pub enum WherePredicate { BoundPredicate { ty: Type, bounds: Vec }, RegionPredicate { lifetime: Lifetime, bounds: Vec}, EqPredicate { lhs: Type, rhs: Type } } impl Clean for hir::WherePredicate { fn clean(&self, cx: &DocContext) -> WherePredicate { match *self { hir::WherePredicate::BoundPredicate(ref wbp) => { WherePredicate::BoundPredicate { ty: wbp.bounded_ty.clean(cx), bounds: wbp.bounds.clean(cx) } } hir::WherePredicate::RegionPredicate(ref wrp) => { WherePredicate::RegionPredicate { lifetime: wrp.lifetime.clean(cx), bounds: wrp.bounds.clean(cx) } } hir::WherePredicate::EqPredicate(_) => { unimplemented!() // FIXME(#20041) } } } } impl<'a> Clean for ty::Predicate<'a> { fn clean(&self, cx: &DocContext) -> WherePredicate { use rustc::middle::ty::Predicate; match *self { Predicate::Trait(ref pred) => pred.clean(cx), Predicate::Equate(ref pred) => pred.clean(cx), Predicate::RegionOutlives(ref pred) => pred.clean(cx), Predicate::TypeOutlives(ref pred) => pred.clean(cx), Predicate::Projection(ref pred) => pred.clean(cx), Predicate::WellFormed(_) => panic!("not user writable"), Predicate::ObjectSafe(_) => panic!("not user writable"), } } } impl<'a> Clean for ty::TraitPredicate<'a> { fn clean(&self, cx: &DocContext) -> WherePredicate { WherePredicate::BoundPredicate { ty: self.trait_ref.substs.self_ty().clean(cx).unwrap(), bounds: vec![self.trait_ref.clean(cx)] } } } impl<'tcx> Clean for ty::EquatePredicate<'tcx> { fn clean(&self, cx: &DocContext) -> WherePredicate { let ty::EquatePredicate(ref lhs, ref rhs) = *self; WherePredicate::EqPredicate { lhs: lhs.clean(cx), rhs: rhs.clean(cx) } } } impl Clean for ty::OutlivesPredicate { fn clean(&self, cx: &DocContext) -> WherePredicate { let ty::OutlivesPredicate(ref a, ref b) = *self; WherePredicate::RegionPredicate { lifetime: a.clean(cx).unwrap(), bounds: vec![b.clean(cx).unwrap()] } } } impl<'tcx> Clean for ty::OutlivesPredicate, ty::Region> { fn clean(&self, cx: &DocContext) -> WherePredicate { let ty::OutlivesPredicate(ref ty, ref lt) = *self; WherePredicate::BoundPredicate { ty: ty.clean(cx), bounds: vec![TyParamBound::RegionBound(lt.clean(cx).unwrap())] } } } impl<'tcx> Clean for ty::ProjectionPredicate<'tcx> { fn clean(&self, cx: &DocContext) -> WherePredicate { WherePredicate::EqPredicate { lhs: self.projection_ty.clean(cx), rhs: self.ty.clean(cx) } } } impl<'tcx> Clean for ty::ProjectionTy<'tcx> { fn clean(&self, cx: &DocContext) -> Type { let trait_ = match self.trait_ref.clean(cx) { TyParamBound::TraitBound(t, _) => t.trait_, TyParamBound::RegionBound(_) => { panic!("cleaning a trait got a region") } }; Type::QPath { name: self.item_name.clean(cx), self_type: box self.trait_ref.self_ty().clean(cx), trait_: box trait_ } } } // maybe use a Generic enum and use Vec? #[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)] pub struct Generics { pub lifetimes: Vec, pub type_params: Vec, pub where_predicates: Vec } impl Clean for hir::Generics { fn clean(&self, cx: &DocContext) -> Generics { Generics { lifetimes: self.lifetimes.clean(cx), type_params: self.ty_params.clean(cx), where_predicates: self.where_clause.predicates.clean(cx) } } } impl<'a, 'tcx> Clean for (&'a ty::Generics<'tcx>, &'a ty::GenericPredicates<'tcx>, subst::ParamSpace) { fn clean(&self, cx: &DocContext) -> Generics { use std::collections::HashSet; use self::WherePredicate as WP; let (gens, preds, space) = *self; // Bounds in the type_params and lifetimes fields are repeated in the // predicates field (see rustc_typeck::collect::ty_generics), so remove // them. let stripped_typarams = gens.types.get_slice(space).iter().map(|tp| { tp.clean(cx) }).collect::>(); let stripped_lifetimes = gens.regions.get_slice(space).iter().map(|rp| { let mut srp = rp.clone(); srp.bounds = Vec::new(); srp.clean(cx) }).collect::>(); let mut where_predicates = preds.predicates.get_slice(space) .to_vec().clean(cx); // Type parameters and have a Sized bound by default unless removed with // ?Sized. Scan through the predicates and mark any type parameter with // a Sized bound, removing the bounds as we find them. // // Note that associated types also have a sized bound by default, but we // don't actually know the set of associated types right here so that's // handled in cleaning associated types let mut sized_params = HashSet::new(); where_predicates.retain(|pred| { match *pred { WP::BoundPredicate { ty: Generic(ref g), ref bounds } => { if bounds.iter().any(|b| b.is_sized_bound(cx)) { sized_params.insert(g.clone()); false } else { true } } _ => true, } }); // Run through the type parameters again and insert a ?Sized // unbound for any we didn't find to be Sized. for tp in &stripped_typarams { if !sized_params.contains(&tp.name) { where_predicates.push(WP::BoundPredicate { ty: Type::Generic(tp.name.clone()), bounds: vec![TyParamBound::maybe_sized(cx)], }) } } // It would be nice to collect all of the bounds on a type and recombine // them if possible, to avoid e.g. `where T: Foo, T: Bar, T: Sized, T: 'a` // and instead see `where T: Foo + Bar + Sized + 'a` Generics { type_params: simplify::ty_params(stripped_typarams), lifetimes: stripped_lifetimes, where_predicates: simplify::where_clauses(cx, where_predicates), } } } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct Method { pub generics: Generics, pub self_: SelfTy, pub unsafety: hir::Unsafety, pub constness: hir::Constness, pub decl: FnDecl, pub abi: abi::Abi } impl Clean for hir::MethodSig { fn clean(&self, cx: &DocContext) -> Method { let all_inputs = &self.decl.inputs; let inputs = match self.explicit_self.node { hir::SelfStatic => &**all_inputs, _ => &all_inputs[1..] }; let decl = FnDecl { inputs: Arguments { values: inputs.clean(cx), }, output: self.decl.output.clean(cx), variadic: false, attrs: Vec::new() }; Method { generics: self.generics.clean(cx), self_: self.explicit_self.node.clean(cx), unsafety: self.unsafety, constness: self.constness, decl: decl, abi: self.abi } } } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct TyMethod { pub unsafety: hir::Unsafety, pub decl: FnDecl, pub generics: Generics, pub self_: SelfTy, pub abi: abi::Abi } impl Clean for hir::MethodSig { fn clean(&self, cx: &DocContext) -> TyMethod { let inputs = match self.explicit_self.node { hir::SelfStatic => &*self.decl.inputs, _ => &self.decl.inputs[1..] }; let decl = FnDecl { inputs: Arguments { values: inputs.clean(cx), }, output: self.decl.output.clean(cx), variadic: false, attrs: Vec::new() }; TyMethod { unsafety: self.unsafety.clone(), decl: decl, self_: self.explicit_self.node.clean(cx), generics: self.generics.clean(cx), abi: self.abi } } } #[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)] pub enum SelfTy { SelfStatic, SelfValue, SelfBorrowed(Option, Mutability), SelfExplicit(Type), } impl Clean for hir::ExplicitSelf_ { fn clean(&self, cx: &DocContext) -> SelfTy { match *self { hir::SelfStatic => SelfStatic, hir::SelfValue(_) => SelfValue, hir::SelfRegion(ref lt, ref mt, _) => { SelfBorrowed(lt.clean(cx), mt.clean(cx)) } hir::SelfExplicit(ref typ, _) => SelfExplicit(typ.clean(cx)), } } } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct Function { pub decl: FnDecl, pub generics: Generics, pub unsafety: hir::Unsafety, pub constness: hir::Constness, pub abi: abi::Abi, } impl Clean for doctree::Function { fn clean(&self, cx: &DocContext) -> Item { Item { name: Some(self.name.clean(cx)), attrs: self.attrs.clean(cx), source: self.whence.clean(cx), visibility: self.vis.clean(cx), stability: self.stab.clean(cx), def_id: cx.map.local_def_id(self.id), inner: FunctionItem(Function { decl: self.decl.clean(cx), generics: self.generics.clean(cx), unsafety: self.unsafety, constness: self.constness, abi: self.abi, }), } } } #[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)] pub struct FnDecl { pub inputs: Arguments, pub output: FunctionRetTy, pub variadic: bool, pub attrs: Vec, } #[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)] pub struct Arguments { pub values: Vec, } impl Clean for hir::FnDecl { fn clean(&self, cx: &DocContext) -> FnDecl { FnDecl { inputs: Arguments { values: self.inputs.clean(cx), }, output: self.output.clean(cx), variadic: self.variadic, attrs: Vec::new() } } } impl<'tcx> Clean for ty::FnOutput<'tcx> { fn clean(&self, cx: &DocContext) -> Type { match *self { ty::FnConverging(ty) => ty.clean(cx), ty::FnDiverging => Bottom } } } impl<'a, 'tcx> Clean for (DefId, &'a ty::PolyFnSig<'tcx>) { fn clean(&self, cx: &DocContext) -> FnDecl { let (did, sig) = *self; let mut names = if let Some(_) = cx.map.as_local_node_id(did) { vec![].into_iter() } else { csearch::get_method_arg_names(&cx.tcx().sess.cstore, did).into_iter() }.peekable(); if names.peek().map(|s| &**s) == Some("self") { let _ = names.next(); } FnDecl { output: Return(sig.0.output.clean(cx)), attrs: Vec::new(), variadic: sig.0.variadic, inputs: Arguments { values: sig.0.inputs.iter().map(|t| { Argument { type_: t.clean(cx), id: 0, name: names.next().unwrap_or("".to_string()), } }).collect(), }, } } } #[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)] pub struct Argument { pub type_: Type, pub name: String, pub id: ast::NodeId, } impl Clean for hir::Arg { fn clean(&self, cx: &DocContext) -> Argument { Argument { name: name_from_pat(&*self.pat), type_: (self.ty.clean(cx)), id: self.id } } } #[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)] pub enum FunctionRetTy { Return(Type), DefaultReturn, NoReturn } impl Clean for hir::FunctionRetTy { fn clean(&self, cx: &DocContext) -> FunctionRetTy { match *self { hir::Return(ref typ) => Return(typ.clean(cx)), hir::DefaultReturn(..) => DefaultReturn, hir::NoReturn(..) => NoReturn } } } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct Trait { pub unsafety: hir::Unsafety, pub items: Vec, pub generics: Generics, pub bounds: Vec, } impl Clean for doctree::Trait { fn clean(&self, cx: &DocContext) -> Item { Item { name: Some(self.name.clean(cx)), attrs: self.attrs.clean(cx), source: self.whence.clean(cx), def_id: cx.map.local_def_id(self.id), visibility: self.vis.clean(cx), stability: self.stab.clean(cx), inner: TraitItem(Trait { unsafety: self.unsafety, items: self.items.clean(cx), generics: self.generics.clean(cx), bounds: self.bounds.clean(cx), }), } } } impl Clean for hir::TraitRef { fn clean(&self, cx: &DocContext) -> Type { resolve_type(cx, self.path.clean(cx), self.ref_id) } } impl Clean for hir::PolyTraitRef { fn clean(&self, cx: &DocContext) -> PolyTrait { PolyTrait { trait_: self.trait_ref.clean(cx), lifetimes: self.bound_lifetimes.clean(cx) } } } impl Clean for hir::TraitItem { fn clean(&self, cx: &DocContext) -> Item { let inner = match self.node { hir::ConstTraitItem(ref ty, ref default) => { AssociatedConstItem(ty.clean(cx), default.as_ref().map(|expr| expr.span.to_src(cx))) } hir::MethodTraitItem(ref sig, Some(_)) => { MethodItem(sig.clean(cx)) } hir::MethodTraitItem(ref sig, None) => { TyMethodItem(sig.clean(cx)) } hir::TypeTraitItem(ref bounds, ref default) => { AssociatedTypeItem(bounds.clean(cx), default.clean(cx)) } }; Item { name: Some(self.name.clean(cx)), attrs: self.attrs.clean(cx), source: self.span.clean(cx), def_id: cx.map.local_def_id(self.id), visibility: None, stability: get_stability(cx, cx.map.local_def_id(self.id)), inner: inner } } } impl Clean for hir::ImplItem { fn clean(&self, cx: &DocContext) -> Item { let inner = match self.node { hir::ImplItem_::Const(ref ty, ref expr) => { ConstantItem(Constant{ type_: ty.clean(cx), expr: expr.span.to_src(cx), }) } hir::ImplItem_::Method(ref sig, _) => { MethodItem(sig.clean(cx)) } hir::ImplItem_::Type(ref ty) => TypedefItem(Typedef { type_: ty.clean(cx), generics: Generics { lifetimes: Vec::new(), type_params: Vec::new(), where_predicates: Vec::new() }, }, true), }; Item { name: Some(self.name.clean(cx)), source: self.span.clean(cx), attrs: self.attrs.clean(cx), def_id: cx.map.local_def_id(self.id), visibility: self.vis.clean(cx), stability: get_stability(cx, cx.map.local_def_id(self.id)), inner: inner } } } impl<'tcx> Clean for ty::Method<'tcx> { fn clean(&self, cx: &DocContext) -> Item { let (self_, sig) = match self.explicit_self { ty::StaticExplicitSelfCategory => (hir::SelfStatic.clean(cx), self.fty.sig.clone()), s => { let sig = ty::Binder(ty::FnSig { inputs: self.fty.sig.0.inputs[1..].to_vec(), ..self.fty.sig.0.clone() }); let s = match s { ty::ByValueExplicitSelfCategory => SelfValue, ty::ByReferenceExplicitSelfCategory(..) => { match self.fty.sig.0.inputs[0].sty { ty::TyRef(r, mt) => { SelfBorrowed(r.clean(cx), mt.mutbl.clean(cx)) } _ => unreachable!(), } } ty::ByBoxExplicitSelfCategory => { SelfExplicit(self.fty.sig.0.inputs[0].clean(cx)) } ty::StaticExplicitSelfCategory => unreachable!(), }; (s, sig) } }; let generics = (&self.generics, &self.predicates, subst::FnSpace).clean(cx); let decl = (self.def_id, &sig).clean(cx); let provided = match self.container { ty::ImplContainer(..) => false, ty::TraitContainer(did) => { cx.tcx().provided_trait_methods(did).iter().any(|m| { m.def_id == self.def_id }) } }; let inner = if provided { MethodItem(Method { unsafety: self.fty.unsafety, generics: generics, self_: self_, decl: decl, abi: self.fty.abi, // trait methods canot (currently, at least) be const constness: hir::Constness::NotConst, }) } else { TyMethodItem(TyMethod { unsafety: self.fty.unsafety, generics: generics, self_: self_, decl: decl, abi: self.fty.abi, }) }; Item { name: Some(self.name.clean(cx)), visibility: Some(hir::Inherited), stability: get_stability(cx, self.def_id), def_id: self.def_id, attrs: inline::load_attrs(cx, cx.tcx(), self.def_id), source: Span::empty(), inner: inner, } } } impl<'tcx> Clean for ty::ImplOrTraitItem<'tcx> { fn clean(&self, cx: &DocContext) -> Item { match *self { ty::ConstTraitItem(ref cti) => cti.clean(cx), ty::MethodTraitItem(ref mti) => mti.clean(cx), ty::TypeTraitItem(ref tti) => tti.clean(cx), } } } /// A trait reference, which may have higher ranked lifetimes. #[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)] pub struct PolyTrait { pub trait_: Type, pub lifetimes: Vec } /// A representation of a Type suitable for hyperlinking purposes. Ideally one can get the original /// type out of the AST/ty::ctxt given one of these, if more information is needed. Most importantly /// it does not preserve mutability or boxes. #[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)] pub enum Type { /// structs/enums/traits (most that'd be an hir::TyPath) ResolvedPath { path: Path, typarams: Option>, did: DefId, /// true if is a `T::Name` path for associated types is_generic: bool, }, /// For parameterized types, so the consumer of the JSON don't go /// looking for types which don't exist anywhere. Generic(String), /// Primitives are the fixed-size numeric types (plus int/usize/float), char, /// arrays, slices, and tuples. Primitive(PrimitiveType), /// extern "ABI" fn BareFunction(Box), Tuple(Vec), Vector(Box), FixedVector(Box, String), /// aka TyBot Bottom, Unique(Box), RawPointer(Mutability, Box), BorrowedRef { lifetime: Option, mutability: Mutability, type_: Box, }, // ::Name QPath { name: String, self_type: Box, trait_: Box }, // _ Infer, // for<'a> Foo(&'a) PolyTraitRef(Vec), } #[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Eq, Hash, Copy, Debug)] pub enum PrimitiveType { Isize, I8, I16, I32, I64, Usize, U8, U16, U32, U64, F32, F64, Char, Bool, Str, Slice, Array, PrimitiveTuple, PrimitiveRawPointer, } #[derive(Clone, RustcEncodable, RustcDecodable, Copy, Debug)] pub enum TypeKind { TypeEnum, TypeFunction, TypeModule, TypeConst, TypeStatic, TypeStruct, TypeTrait, TypeVariant, TypeTypedef, } impl Type { pub fn primitive_type(&self) -> Option { match *self { Primitive(p) | BorrowedRef { type_: box Primitive(p), ..} => Some(p), Vector(..) | BorrowedRef{ type_: box Vector(..), .. } => Some(Slice), FixedVector(..) | BorrowedRef { type_: box FixedVector(..), .. } => { Some(Array) } Tuple(..) => Some(PrimitiveTuple), RawPointer(..) => Some(PrimitiveRawPointer), _ => None, } } } impl PrimitiveType { fn from_str(s: &str) -> Option { match s { "isize" => Some(Isize), "i8" => Some(I8), "i16" => Some(I16), "i32" => Some(I32), "i64" => Some(I64), "usize" => Some(Usize), "u8" => Some(U8), "u16" => Some(U16), "u32" => Some(U32), "u64" => Some(U64), "bool" => Some(Bool), "char" => Some(Char), "str" => Some(Str), "f32" => Some(F32), "f64" => Some(F64), "array" => Some(Array), "slice" => Some(Slice), "tuple" => Some(PrimitiveTuple), "pointer" => Some(PrimitiveRawPointer), _ => None, } } fn find(attrs: &[Attribute]) -> Option { for attr in attrs { let list = match *attr { List(ref k, ref l) if *k == "doc" => l, _ => continue, }; for sub_attr in list { let value = match *sub_attr { NameValue(ref k, ref v) if *k == "primitive" => v, _ => continue, }; match PrimitiveType::from_str(value) { Some(p) => return Some(p), None => {} } } } return None } pub fn to_string(&self) -> &'static str { match *self { Isize => "isize", I8 => "i8", I16 => "i16", I32 => "i32", I64 => "i64", Usize => "usize", U8 => "u8", U16 => "u16", U32 => "u32", U64 => "u64", F32 => "f32", F64 => "f64", Str => "str", Bool => "bool", Char => "char", Array => "array", Slice => "slice", PrimitiveTuple => "tuple", PrimitiveRawPointer => "pointer", } } pub fn to_url_str(&self) -> &'static str { self.to_string() } /// Creates a rustdoc-specific node id for primitive types. /// /// These node ids are generally never used by the AST itself. pub fn to_def_index(&self) -> DefIndex { let x = u32::MAX - 1 - (*self as u32); DefIndex::new(x as usize) } } impl Clean for hir::Ty { fn clean(&self, cx: &DocContext) -> Type { use rustc_front::hir::*; match self.node { TyPtr(ref m) => RawPointer(m.mutbl.clean(cx), box m.ty.clean(cx)), TyRptr(ref l, ref m) => BorrowedRef {lifetime: l.clean(cx), mutability: m.mutbl.clean(cx), type_: box m.ty.clean(cx)}, TyVec(ref ty) => Vector(box ty.clean(cx)), TyFixedLengthVec(ref ty, ref e) => FixedVector(box ty.clean(cx), e.span.to_src(cx)), TyTup(ref tys) => Tuple(tys.clean(cx)), TyPath(None, ref p) => { resolve_type(cx, p.clean(cx), self.id) } TyPath(Some(ref qself), ref p) => { let mut trait_path = p.clone(); trait_path.segments.pop(); Type::QPath { name: p.segments.last().unwrap().identifier.name.clean(cx), self_type: box qself.ty.clean(cx), trait_: box resolve_type(cx, trait_path.clean(cx), self.id) } } TyObjectSum(ref lhs, ref bounds) => { let lhs_ty = lhs.clean(cx); match lhs_ty { ResolvedPath { path, typarams: None, did, is_generic } => { ResolvedPath { path: path, typarams: Some(bounds.clean(cx)), did: did, is_generic: is_generic, } } _ => { lhs_ty // shouldn't happen } } } TyBareFn(ref barefn) => BareFunction(box barefn.clean(cx)), TyParen(ref ty) => ty.clean(cx), TyPolyTraitRef(ref bounds) => { PolyTraitRef(bounds.clean(cx)) }, TyInfer(..) => { Infer }, TyTypeof(..) => { panic!("Unimplemented type {:?}", self.node) }, } } } impl<'tcx> Clean for ty::Ty<'tcx> { fn clean(&self, cx: &DocContext) -> Type { match self.sty { ty::TyBool => Primitive(Bool), ty::TyChar => Primitive(Char), ty::TyInt(ast::TyIs) => Primitive(Isize), ty::TyInt(ast::TyI8) => Primitive(I8), ty::TyInt(ast::TyI16) => Primitive(I16), ty::TyInt(ast::TyI32) => Primitive(I32), ty::TyInt(ast::TyI64) => Primitive(I64), ty::TyUint(ast::TyUs) => Primitive(Usize), ty::TyUint(ast::TyU8) => Primitive(U8), ty::TyUint(ast::TyU16) => Primitive(U16), ty::TyUint(ast::TyU32) => Primitive(U32), ty::TyUint(ast::TyU64) => Primitive(U64), ty::TyFloat(ast::TyF32) => Primitive(F32), ty::TyFloat(ast::TyF64) => Primitive(F64), ty::TyStr => Primitive(Str), ty::TyBox(t) => { let box_did = cx.tcx_opt().and_then(|tcx| { tcx.lang_items.owned_box() }); lang_struct(cx, box_did, t, "Box", Unique) } ty::TySlice(ty) => Vector(box ty.clean(cx)), ty::TyArray(ty, i) => FixedVector(box ty.clean(cx), format!("{}", i)), ty::TyRawPtr(mt) => RawPointer(mt.mutbl.clean(cx), box mt.ty.clean(cx)), ty::TyRef(r, mt) => BorrowedRef { lifetime: r.clean(cx), mutability: mt.mutbl.clean(cx), type_: box mt.ty.clean(cx), }, ty::TyBareFn(_, ref fty) => BareFunction(box BareFunctionDecl { unsafety: fty.unsafety, generics: Generics { lifetimes: Vec::new(), type_params: Vec::new(), where_predicates: Vec::new() }, decl: (cx.map.local_def_id(0), &fty.sig).clean(cx), abi: fty.abi.to_string(), }), ty::TyStruct(def, substs) | ty::TyEnum(def, substs) => { let did = def.did; let fqn = csearch::get_item_path(cx.tcx(), did); let fqn: Vec<_> = fqn.into_iter().map(|i| i.to_string()).collect(); let kind = match self.sty { ty::TyStruct(..) => TypeStruct, _ => TypeEnum, }; let path = external_path(cx, &fqn.last().unwrap().to_string(), None, vec![], substs); cx.external_paths.borrow_mut().as_mut().unwrap().insert(did, (fqn, kind)); ResolvedPath { path: path, typarams: None, did: did, is_generic: false, } } ty::TyTrait(box ty::TraitTy { ref principal, ref bounds }) => { let did = principal.def_id(); let fqn = csearch::get_item_path(cx.tcx(), did); let fqn: Vec<_> = fqn.into_iter().map(|i| i.to_string()).collect(); let (typarams, bindings) = bounds.clean(cx); let path = external_path(cx, &fqn.last().unwrap().to_string(), Some(did), bindings, principal.substs()); cx.external_paths.borrow_mut().as_mut().unwrap().insert(did, (fqn, TypeTrait)); ResolvedPath { path: path, typarams: Some(typarams), did: did, is_generic: false, } } ty::TyTuple(ref t) => Tuple(t.clean(cx)), ty::TyProjection(ref data) => data.clean(cx), ty::TyParam(ref p) => Generic(p.name.to_string()), ty::TyClosure(..) => Tuple(vec![]), // FIXME(pcwalton) ty::TyInfer(..) => panic!("TyInfer"), ty::TyError => panic!("TyError"), } } } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub enum StructField { HiddenStructField, // inserted later by strip passes TypedStructField(Type), } impl Clean for hir::StructField { fn clean(&self, cx: &DocContext) -> Item { let (name, vis) = match self.node.kind { hir::NamedField(id, vis) => (Some(id), vis), hir::UnnamedField(vis) => (None, vis) }; Item { name: name.clean(cx), attrs: self.node.attrs.clean(cx), source: self.span.clean(cx), visibility: Some(vis), stability: get_stability(cx, cx.map.local_def_id(self.node.id)), def_id: cx.map.local_def_id(self.node.id), inner: StructFieldItem(TypedStructField(self.node.ty.clean(cx))), } } } impl<'tcx> Clean for ty::FieldDefData<'tcx, 'static> { fn clean(&self, cx: &DocContext) -> Item { use syntax::parse::token::special_idents::unnamed_field; use rustc::metadata::csearch; let attr_map = csearch::get_struct_field_attrs(&cx.tcx().sess.cstore, self.did); let (name, attrs) = if self.name == unnamed_field.name { (None, None) } else { (Some(self.name), Some(attr_map.get(&self.did).unwrap())) }; Item { name: name.clean(cx), attrs: attrs.unwrap_or(&Vec::new()).clean(cx), source: Span::empty(), visibility: Some(self.vis), stability: get_stability(cx, self.did), def_id: self.did, inner: StructFieldItem(TypedStructField(self.unsubst_ty().clean(cx))), } } } pub type Visibility = hir::Visibility; impl Clean> for hir::Visibility { fn clean(&self, _: &DocContext) -> Option { Some(*self) } } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct Struct { pub struct_type: doctree::StructType, pub generics: Generics, pub fields: Vec, pub fields_stripped: bool, } impl Clean for doctree::Struct { fn clean(&self, cx: &DocContext) -> Item { Item { name: Some(self.name.clean(cx)), attrs: self.attrs.clean(cx), source: self.whence.clean(cx), def_id: cx.map.local_def_id(self.id), visibility: self.vis.clean(cx), stability: self.stab.clean(cx), inner: StructItem(Struct { struct_type: self.struct_type, generics: self.generics.clean(cx), fields: self.fields.clean(cx), fields_stripped: false, }), } } } /// This is a more limited form of the standard Struct, different in that /// it lacks the things most items have (name, id, parameterization). Found /// only as a variant in an enum. #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct VariantStruct { pub struct_type: doctree::StructType, pub fields: Vec, pub fields_stripped: bool, } impl Clean for ::rustc_front::hir::VariantData { fn clean(&self, cx: &DocContext) -> VariantStruct { VariantStruct { struct_type: doctree::struct_type_from_def(self), fields: self.fields().iter().map(|x| x.clean(cx)).collect(), fields_stripped: false, } } } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct Enum { pub variants: Vec, pub generics: Generics, pub variants_stripped: bool, } impl Clean for doctree::Enum { fn clean(&self, cx: &DocContext) -> Item { Item { name: Some(self.name.clean(cx)), attrs: self.attrs.clean(cx), source: self.whence.clean(cx), def_id: cx.map.local_def_id(self.id), visibility: self.vis.clean(cx), stability: self.stab.clean(cx), inner: EnumItem(Enum { variants: self.variants.clean(cx), generics: self.generics.clean(cx), variants_stripped: false, }), } } } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct Variant { pub kind: VariantKind, } impl Clean for doctree::Variant { fn clean(&self, cx: &DocContext) -> Item { Item { name: Some(self.name.clean(cx)), attrs: self.attrs.clean(cx), source: self.whence.clean(cx), visibility: None, stability: self.stab.clean(cx), def_id: cx.map.local_def_id(self.def.id()), inner: VariantItem(Variant { kind: struct_def_to_variant_kind(&self.def, cx), }), } } } impl<'tcx> Clean for ty::VariantDefData<'tcx, 'static> { fn clean(&self, cx: &DocContext) -> Item { // use syntax::parse::token::special_idents::unnamed_field; let kind = match self.kind() { ty::VariantKind::Unit => CLikeVariant, ty::VariantKind::Tuple => { TupleVariant( self.fields.iter().map(|f| f.unsubst_ty().clean(cx)).collect() ) } ty::VariantKind::Struct => { StructVariant(VariantStruct { struct_type: doctree::Plain, fields_stripped: false, fields: self.fields.iter().map(|field| { Item { source: Span::empty(), name: Some(field.name.clean(cx)), attrs: Vec::new(), visibility: Some(hir::Public), // FIXME: this is not accurate, we need an id for // the specific field but we're using the id // for the whole variant. Thus we read the // stability from the whole variant as well. // Struct variants are experimental and need // more infrastructure work before we can get // at the needed information here. def_id: self.did, stability: get_stability(cx, self.did), inner: StructFieldItem( TypedStructField(field.unsubst_ty().clean(cx)) ) } }).collect() }) } }; Item { name: Some(self.name.clean(cx)), attrs: inline::load_attrs(cx, cx.tcx(), self.did), source: Span::empty(), visibility: Some(hir::Public), def_id: self.did, inner: VariantItem(Variant { kind: kind }), stability: get_stability(cx, self.did), } } } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub enum VariantKind { CLikeVariant, TupleVariant(Vec), StructVariant(VariantStruct), } fn struct_def_to_variant_kind(struct_def: &hir::VariantData, cx: &DocContext) -> VariantKind { if struct_def.is_struct() { StructVariant(struct_def.clean(cx)) } else if struct_def.is_unit() { CLikeVariant } else { TupleVariant(struct_def.fields().iter().map(|x| x.node.ty.clean(cx)).collect()) } } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct Span { pub filename: String, pub loline: usize, pub locol: usize, pub hiline: usize, pub hicol: usize, } impl Span { fn empty() -> Span { Span { filename: "".to_string(), loline: 0, locol: 0, hiline: 0, hicol: 0, } } } impl Clean for syntax::codemap::Span { fn clean(&self, cx: &DocContext) -> Span { if *self == DUMMY_SP { return Span::empty(); } let cm = cx.sess().codemap(); let filename = cm.span_to_filename(*self); let lo = cm.lookup_char_pos(self.lo); let hi = cm.lookup_char_pos(self.hi); Span { filename: filename.to_string(), loline: lo.line, locol: lo.col.to_usize(), hiline: hi.line, hicol: hi.col.to_usize(), } } } #[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)] pub struct Path { pub global: bool, pub segments: Vec, } impl Path { pub fn singleton(name: String) -> Path { Path { global: false, segments: vec![PathSegment { name: name, params: PathParameters::AngleBracketed { lifetimes: Vec::new(), types: Vec::new(), bindings: Vec::new() } }] } } } impl Clean for hir::Path { fn clean(&self, cx: &DocContext) -> Path { Path { global: self.global, segments: self.segments.clean(cx), } } } #[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)] pub enum PathParameters { AngleBracketed { lifetimes: Vec, types: Vec, bindings: Vec }, Parenthesized { inputs: Vec, output: Option } } impl Clean for hir::PathParameters { fn clean(&self, cx: &DocContext) -> PathParameters { match *self { hir::AngleBracketedParameters(ref data) => { PathParameters::AngleBracketed { lifetimes: data.lifetimes.clean(cx), types: data.types.clean(cx), bindings: data.bindings.clean(cx) } } hir::ParenthesizedParameters(ref data) => { PathParameters::Parenthesized { inputs: data.inputs.clean(cx), output: data.output.clean(cx) } } } } } #[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)] pub struct PathSegment { pub name: String, pub params: PathParameters } impl Clean for hir::PathSegment { fn clean(&self, cx: &DocContext) -> PathSegment { PathSegment { name: self.identifier.name.clean(cx), params: self.parameters.clean(cx) } } } fn path_to_string(p: &hir::Path) -> String { let mut s = String::new(); let mut first = true; for i in p.segments.iter().map(|x| x.identifier.name.as_str()) { if !first || p.global { s.push_str("::"); } else { first = false; } s.push_str(&i); } s } impl Clean for ast::Name { fn clean(&self, _: &DocContext) -> String { self.to_string() } } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct Typedef { pub type_: Type, pub generics: Generics, } impl Clean for doctree::Typedef { fn clean(&self, cx: &DocContext) -> Item { Item { name: Some(self.name.clean(cx)), attrs: self.attrs.clean(cx), source: self.whence.clean(cx), def_id: cx.map.local_def_id(self.id.clone()), visibility: self.vis.clean(cx), stability: self.stab.clean(cx), inner: TypedefItem(Typedef { type_: self.ty.clean(cx), generics: self.gen.clean(cx), }, false), } } } #[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)] pub struct BareFunctionDecl { pub unsafety: hir::Unsafety, pub generics: Generics, pub decl: FnDecl, pub abi: String, } impl Clean for hir::BareFnTy { fn clean(&self, cx: &DocContext) -> BareFunctionDecl { BareFunctionDecl { unsafety: self.unsafety, generics: Generics { lifetimes: self.lifetimes.clean(cx), type_params: Vec::new(), where_predicates: Vec::new() }, decl: self.decl.clean(cx), abi: self.abi.to_string(), } } } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct Static { pub type_: Type, pub mutability: Mutability, /// It's useful to have the value of a static documented, but I have no /// desire to represent expressions (that'd basically be all of the AST, /// which is huge!). So, have a string. pub expr: String, } impl Clean for doctree::Static { fn clean(&self, cx: &DocContext) -> Item { debug!("cleaning static {}: {:?}", self.name.clean(cx), self); Item { name: Some(self.name.clean(cx)), attrs: self.attrs.clean(cx), source: self.whence.clean(cx), def_id: cx.map.local_def_id(self.id), visibility: self.vis.clean(cx), stability: self.stab.clean(cx), inner: StaticItem(Static { type_: self.type_.clean(cx), mutability: self.mutability.clean(cx), expr: self.expr.span.to_src(cx), }), } } } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct Constant { pub type_: Type, pub expr: String, } impl Clean for doctree::Constant { fn clean(&self, cx: &DocContext) -> Item { Item { name: Some(self.name.clean(cx)), attrs: self.attrs.clean(cx), source: self.whence.clean(cx), def_id: cx.map.local_def_id(self.id), visibility: self.vis.clean(cx), stability: self.stab.clean(cx), inner: ConstantItem(Constant { type_: self.type_.clean(cx), expr: self.expr.span.to_src(cx), }), } } } #[derive(Debug, Clone, RustcEncodable, RustcDecodable, PartialEq, Copy)] pub enum Mutability { Mutable, Immutable, } impl Clean for hir::Mutability { fn clean(&self, _: &DocContext) -> Mutability { match self { &hir::MutMutable => Mutable, &hir::MutImmutable => Immutable, } } } #[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Copy, Debug)] pub enum ImplPolarity { Positive, Negative, } impl Clean for hir::ImplPolarity { fn clean(&self, _: &DocContext) -> ImplPolarity { match self { &hir::ImplPolarity::Positive => ImplPolarity::Positive, &hir::ImplPolarity::Negative => ImplPolarity::Negative, } } } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct Impl { pub unsafety: hir::Unsafety, pub generics: Generics, pub trait_: Option, pub for_: Type, pub items: Vec, pub derived: bool, pub polarity: Option, } fn detect_derived(attrs: &[M]) -> bool { attr::contains_name(attrs, "automatically_derived") } impl Clean> for doctree::Impl { fn clean(&self, cx: &DocContext) -> Vec { let mut ret = Vec::new(); let trait_ = self.trait_.clean(cx); let items = self.items.clean(cx); // If this impl block is an implementation of the Deref trait, then we // need to try inlining the target's inherent impl blocks as well. if let Some(ResolvedPath { did, .. }) = trait_ { if Some(did) == cx.deref_trait_did.get() { build_deref_target_impls(cx, &items, &mut ret); } } ret.push(Item { name: None, attrs: self.attrs.clean(cx), source: self.whence.clean(cx), def_id: cx.map.local_def_id(self.id), visibility: self.vis.clean(cx), stability: self.stab.clean(cx), inner: ImplItem(Impl { unsafety: self.unsafety, generics: self.generics.clean(cx), trait_: trait_, for_: self.for_.clean(cx), items: items, derived: detect_derived(&self.attrs), polarity: Some(self.polarity.clean(cx)), }), }); return ret; } } fn build_deref_target_impls(cx: &DocContext, items: &[Item], ret: &mut Vec) { let tcx = match cx.tcx_opt() { Some(t) => t, None => return, }; for item in items { let target = match item.inner { TypedefItem(ref t, true) => &t.type_, _ => continue, }; let primitive = match *target { ResolvedPath { did, .. } if did.is_local() => continue, ResolvedPath { did, .. } => { ret.extend(inline::build_impls(cx, tcx, did)); continue } _ => match target.primitive_type() { Some(prim) => prim, None => continue, } }; let did = match primitive { Isize => tcx.lang_items.isize_impl(), I8 => tcx.lang_items.i8_impl(), I16 => tcx.lang_items.i16_impl(), I32 => tcx.lang_items.i32_impl(), I64 => tcx.lang_items.i64_impl(), Usize => tcx.lang_items.usize_impl(), U8 => tcx.lang_items.u8_impl(), U16 => tcx.lang_items.u16_impl(), U32 => tcx.lang_items.u32_impl(), U64 => tcx.lang_items.u64_impl(), F32 => tcx.lang_items.f32_impl(), F64 => tcx.lang_items.f64_impl(), Char => tcx.lang_items.char_impl(), Bool => None, Str => tcx.lang_items.str_impl(), Slice => tcx.lang_items.slice_impl(), Array => tcx.lang_items.slice_impl(), PrimitiveTuple => None, PrimitiveRawPointer => tcx.lang_items.const_ptr_impl(), }; if let Some(did) = did { if !did.is_local() { inline::build_impl(cx, tcx, did, ret); } } } } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct DefaultImpl { pub unsafety: hir::Unsafety, pub trait_: Type, } impl Clean for doctree::DefaultImpl { fn clean(&self, cx: &DocContext) -> Item { Item { name: None, attrs: self.attrs.clean(cx), source: self.whence.clean(cx), def_id: cx.map.local_def_id(self.id), visibility: Some(hir::Public), stability: None, inner: DefaultImplItem(DefaultImpl { unsafety: self.unsafety, trait_: self.trait_.clean(cx), }), } } } impl Clean for doctree::ExternCrate { fn clean(&self, cx: &DocContext) -> Item { Item { name: None, attrs: self.attrs.clean(cx), source: self.whence.clean(cx), def_id: cx.map.local_def_id(0), visibility: self.vis.clean(cx), stability: None, inner: ExternCrateItem(self.name.clean(cx), self.path.clone()) } } } impl Clean> for doctree::Import { fn clean(&self, cx: &DocContext) -> Vec { // We consider inlining the documentation of `pub use` statements, but we // forcefully don't inline if this is not public or if the // #[doc(no_inline)] attribute is present. let denied = self.vis != hir::Public || self.attrs.iter().any(|a| { &a.name()[..] == "doc" && match a.meta_item_list() { Some(l) => attr::contains_name(l, "no_inline"), None => false, } }); let (mut ret, inner) = match self.node { hir::ViewPathGlob(ref p) => { (vec![], GlobImport(resolve_use_source(cx, p.clean(cx), self.id))) } hir::ViewPathList(ref p, ref list) => { // Attempt to inline all reexported items, but be sure // to keep any non-inlineable reexports so they can be // listed in the documentation. let mut ret = vec![]; let remaining = if !denied { let mut remaining = vec![]; for path in list { match inline::try_inline(cx, path.node.id(), path.node.rename()) { Some(items) => { ret.extend(items); } None => { remaining.push(path.clean(cx)); } } } remaining } else { list.clean(cx) }; if remaining.is_empty() { return ret; } (ret, ImportList(resolve_use_source(cx, p.clean(cx), self.id), remaining)) } hir::ViewPathSimple(name, ref p) => { if !denied { match inline::try_inline(cx, self.id, Some(name)) { Some(items) => return items, None => {} } } (vec![], SimpleImport(name.clean(cx), resolve_use_source(cx, p.clean(cx), self.id))) } }; ret.push(Item { name: None, attrs: self.attrs.clean(cx), source: self.whence.clean(cx), def_id: cx.map.local_def_id(0), visibility: self.vis.clean(cx), stability: None, inner: ImportItem(inner) }); ret } } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub enum Import { // use source as str; SimpleImport(String, ImportSource), // use source::*; GlobImport(ImportSource), // use source::{a, b, c}; ImportList(ImportSource, Vec), } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct ImportSource { pub path: Path, pub did: Option, } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct ViewListIdent { pub name: String, pub rename: Option, pub source: Option, } impl Clean for hir::PathListItem { fn clean(&self, cx: &DocContext) -> ViewListIdent { match self.node { hir::PathListIdent { id, name, rename } => ViewListIdent { name: name.clean(cx), rename: rename.map(|r| r.clean(cx)), source: resolve_def(cx, id) }, hir::PathListMod { id, rename } => ViewListIdent { name: "self".to_string(), rename: rename.map(|r| r.clean(cx)), source: resolve_def(cx, id) } } } } impl Clean> for hir::ForeignMod { fn clean(&self, cx: &DocContext) -> Vec { let mut items = self.items.clean(cx); for item in &mut items { match item.inner { ForeignFunctionItem(ref mut f) => f.abi = self.abi, _ => {} } } items } } impl Clean for hir::ForeignItem { fn clean(&self, cx: &DocContext) -> Item { let inner = match self.node { hir::ForeignItemFn(ref decl, ref generics) => { ForeignFunctionItem(Function { decl: decl.clean(cx), generics: generics.clean(cx), unsafety: hir::Unsafety::Unsafe, abi: abi::Rust, constness: hir::Constness::NotConst, }) } hir::ForeignItemStatic(ref ty, mutbl) => { ForeignStaticItem(Static { type_: ty.clean(cx), mutability: if mutbl {Mutable} else {Immutable}, expr: "".to_string(), }) } }; Item { name: Some(self.name.clean(cx)), attrs: self.attrs.clean(cx), source: self.span.clean(cx), def_id: cx.map.local_def_id(self.id), visibility: self.vis.clean(cx), stability: get_stability(cx, cx.map.local_def_id(self.id)), inner: inner, } } } // Utilities trait ToSource { fn to_src(&self, cx: &DocContext) -> String; } impl ToSource for syntax::codemap::Span { fn to_src(&self, cx: &DocContext) -> String { debug!("converting span {:?} to snippet", self.clean(cx)); let sn = match cx.sess().codemap().span_to_snippet(*self) { Ok(x) => x.to_string(), Err(_) => "".to_string() }; debug!("got snippet {}", sn); sn } } fn lit_to_string(lit: &ast::Lit) -> String { match lit.node { ast::LitStr(ref st, _) => st.to_string(), ast::LitByteStr(ref data) => format!("{:?}", data), ast::LitByte(b) => { let mut res = String::from("b'"); for c in (b as char).escape_default() { res.push(c); } res.push('\''); res }, ast::LitChar(c) => format!("'{}'", c), ast::LitInt(i, _t) => i.to_string(), ast::LitFloat(ref f, _t) => f.to_string(), ast::LitFloatUnsuffixed(ref f) => f.to_string(), ast::LitBool(b) => b.to_string(), } } fn name_from_pat(p: &hir::Pat) -> String { use rustc_front::hir::*; debug!("Trying to get a name from pattern: {:?}", p); match p.node { PatWild => "_".to_string(), PatIdent(_, ref p, _) => p.node.to_string(), PatEnum(ref p, _) => path_to_string(p), PatQPath(..) => panic!("tried to get argument name from PatQPath, \ which is not allowed in function arguments"), PatStruct(ref name, ref fields, etc) => { format!("{} {{ {}{} }}", path_to_string(name), fields.iter().map(|&Spanned { node: ref fp, .. }| format!("{}: {}", fp.name, name_from_pat(&*fp.pat))) .collect::>().join(", "), if etc { ", ..." } else { "" } ) }, PatTup(ref elts) => format!("({})", elts.iter().map(|p| name_from_pat(&**p)) .collect::>().join(", ")), PatBox(ref p) => name_from_pat(&**p), PatRegion(ref p, _) => name_from_pat(&**p), PatLit(..) => { warn!("tried to get argument name from PatLit, \ which is silly in function arguments"); "()".to_string() }, PatRange(..) => panic!("tried to get argument name from PatRange, \ which is not allowed in function arguments"), PatVec(ref begin, ref mid, ref end) => { let begin = begin.iter().map(|p| name_from_pat(&**p)); let mid = mid.as_ref().map(|p| format!("..{}", name_from_pat(&**p))).into_iter(); let end = end.iter().map(|p| name_from_pat(&**p)); format!("[{}]", begin.chain(mid).chain(end).collect::>().join(", ")) }, } } /// Given a Type, resolve it using the def_map fn resolve_type(cx: &DocContext, path: Path, id: ast::NodeId) -> Type { debug!("resolve_type({:?},{:?})", path, id); let tcx = match cx.tcx_opt() { Some(tcx) => tcx, // If we're extracting tests, this return value's accuracy is not // important, all we want is a string representation to help people // figure out what doctests are failing. None => { let did = DefId::local(DefIndex::from_u32(0)); return ResolvedPath { path: path, typarams: None, did: did, is_generic: false }; } }; let def = match tcx.def_map.borrow().get(&id) { Some(k) => k.full_def(), None => panic!("unresolved id not in defmap") }; debug!("resolve_type: def={:?}", def); let is_generic = match def { def::DefPrimTy(p) => match p { hir::TyStr => return Primitive(Str), hir::TyBool => return Primitive(Bool), hir::TyChar => return Primitive(Char), hir::TyInt(ast::TyIs) => return Primitive(Isize), hir::TyInt(ast::TyI8) => return Primitive(I8), hir::TyInt(ast::TyI16) => return Primitive(I16), hir::TyInt(ast::TyI32) => return Primitive(I32), hir::TyInt(ast::TyI64) => return Primitive(I64), hir::TyUint(ast::TyUs) => return Primitive(Usize), hir::TyUint(ast::TyU8) => return Primitive(U8), hir::TyUint(ast::TyU16) => return Primitive(U16), hir::TyUint(ast::TyU32) => return Primitive(U32), hir::TyUint(ast::TyU64) => return Primitive(U64), hir::TyFloat(ast::TyF32) => return Primitive(F32), hir::TyFloat(ast::TyF64) => return Primitive(F64), }, def::DefSelfTy(..) if path.segments.len() == 1 => { return Generic(special_idents::type_self.name.to_string()); } def::DefSelfTy(..) | def::DefTyParam(..) => true, _ => false, }; let did = register_def(&*cx, def); ResolvedPath { path: path, typarams: None, did: did, is_generic: is_generic } } fn register_def(cx: &DocContext, def: def::Def) -> DefId { debug!("register_def({:?})", def); let (did, kind) = match def { def::DefFn(i, _) => (i, TypeFunction), def::DefTy(i, false) => (i, TypeTypedef), def::DefTy(i, true) => (i, TypeEnum), def::DefTrait(i) => (i, TypeTrait), def::DefStruct(i) => (i, TypeStruct), def::DefMod(i) => (i, TypeModule), def::DefStatic(i, _) => (i, TypeStatic), def::DefVariant(i, _, _) => (i, TypeEnum), def::DefSelfTy(Some(def_id), _) => (def_id, TypeTrait), def::DefSelfTy(_, Some((impl_id, _))) => return cx.map.local_def_id(impl_id), _ => return def.def_id() }; if did.is_local() { return did } let tcx = match cx.tcx_opt() { Some(tcx) => tcx, None => return did }; inline::record_extern_fqn(cx, did, kind); if let TypeTrait = kind { let t = inline::build_external_trait(cx, tcx, did); cx.external_traits.borrow_mut().as_mut().unwrap().insert(did, t); } return did; } fn resolve_use_source(cx: &DocContext, path: Path, id: ast::NodeId) -> ImportSource { ImportSource { path: path, did: resolve_def(cx, id), } } fn resolve_def(cx: &DocContext, id: ast::NodeId) -> Option { cx.tcx_opt().and_then(|tcx| { tcx.def_map.borrow().get(&id).map(|d| register_def(cx, d.full_def())) }) } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct Macro { pub source: String, pub imported_from: Option, } impl Clean for doctree::Macro { fn clean(&self, cx: &DocContext) -> Item { Item { name: Some(format!("{}!", self.name.clean(cx))), attrs: self.attrs.clean(cx), source: self.whence.clean(cx), visibility: hir::Public.clean(cx), stability: self.stab.clean(cx), def_id: cx.map.local_def_id(self.id), inner: MacroItem(Macro { source: self.whence.to_src(cx), imported_from: self.imported_from.clean(cx), }), } } } #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct Stability { pub level: stability::StabilityLevel, pub feature: String, pub since: String, pub deprecated_since: String, pub reason: String, pub issue: Option } impl Clean for attr::Stability { fn clean(&self, _: &DocContext) -> Stability { Stability { level: stability::StabilityLevel::from_attr_level(&self.level), feature: self.feature.to_string(), since: match self.level { attr::Stable {ref since} => since.to_string(), _ => "".to_string(), }, deprecated_since: match self.depr { Some(attr::Deprecation {ref since, ..}) => since.to_string(), _=> "".to_string(), }, reason: { if let Some(ref depr) = self.depr { depr.reason.to_string() } else if let attr::Unstable {reason: Some(ref reason), ..} = self.level { reason.to_string() } else { "".to_string() } }, issue: match self.level { attr::Unstable {issue, ..} => Some(issue), _ => None, } } } } impl<'a> Clean for &'a attr::Stability { fn clean(&self, dc: &DocContext) -> Stability { (**self).clean(dc) } } impl<'tcx> Clean for ty::AssociatedConst<'tcx> { fn clean(&self, cx: &DocContext) -> Item { Item { source: DUMMY_SP.clean(cx), name: Some(self.name.clean(cx)), attrs: Vec::new(), inner: AssociatedConstItem(self.ty.clean(cx), None), visibility: None, def_id: self.def_id, stability: None, } } } impl<'tcx> Clean for ty::AssociatedType<'tcx> { fn clean(&self, cx: &DocContext) -> Item { let my_name = self.name.clean(cx); let mut bounds = if let ty::TraitContainer(did) = self.container { // When loading a cross-crate associated type, the bounds for this type // are actually located on the trait/impl itself, so we need to load // all of the generics from there and then look for bounds that are // applied to this associated type in question. let def = cx.tcx().lookup_trait_def(did); let predicates = cx.tcx().lookup_predicates(did); let generics = (&def.generics, &predicates, subst::TypeSpace).clean(cx); generics.where_predicates.iter().filter_map(|pred| { let (name, self_type, trait_, bounds) = match *pred { WherePredicate::BoundPredicate { ty: QPath { ref name, ref self_type, ref trait_ }, ref bounds } => (name, self_type, trait_, bounds), _ => return None, }; if *name != my_name { return None } match **trait_ { ResolvedPath { did, .. } if did == self.container.id() => {} _ => return None, } match **self_type { Generic(ref s) if *s == "Self" => {} _ => return None, } Some(bounds) }).flat_map(|i| i.iter().cloned()).collect::>() } else { vec![] }; // Our Sized/?Sized bound didn't get handled when creating the generics // because we didn't actually get our whole set of bounds until just now // (some of them may have come from the trait). If we do have a sized // bound, we remove it, and if we don't then we add the `?Sized` bound // at the end. match bounds.iter().position(|b| b.is_sized_bound(cx)) { Some(i) => { bounds.remove(i); } None => bounds.push(TyParamBound::maybe_sized(cx)), } Item { source: DUMMY_SP.clean(cx), name: Some(self.name.clean(cx)), attrs: inline::load_attrs(cx, cx.tcx(), self.def_id), inner: AssociatedTypeItem(bounds, self.ty.clean(cx)), visibility: self.vis.clean(cx), def_id: self.def_id, stability: stability::lookup(cx.tcx(), self.def_id).clean(cx), } } } impl<'a> Clean for (ty::TypeScheme<'a>, ty::GenericPredicates<'a>, ParamSpace) { fn clean(&self, cx: &DocContext) -> Typedef { let (ref ty_scheme, ref predicates, ps) = *self; Typedef { type_: ty_scheme.ty.clean(cx), generics: (&ty_scheme.generics, predicates, ps).clean(cx) } } } fn lang_struct(cx: &DocContext, did: Option, t: ty::Ty, name: &str, fallback: fn(Box) -> Type) -> Type { let did = match did { Some(did) => did, None => return fallback(box t.clean(cx)), }; let fqn = csearch::get_item_path(cx.tcx(), did); let fqn: Vec = fqn.into_iter().map(|i| { i.to_string() }).collect(); cx.external_paths.borrow_mut().as_mut().unwrap().insert(did, (fqn, TypeStruct)); ResolvedPath { typarams: None, did: did, path: Path { global: false, segments: vec![PathSegment { name: name.to_string(), params: PathParameters::AngleBracketed { lifetimes: vec![], types: vec![t.clean(cx)], bindings: vec![] } }], }, is_generic: false, } } /// An equality constraint on an associated type, e.g. `A=Bar` in `Foo` #[derive(Clone, PartialEq, RustcDecodable, RustcEncodable, Debug)] pub struct TypeBinding { pub name: String, pub ty: Type } impl Clean for hir::TypeBinding { fn clean(&self, cx: &DocContext) -> TypeBinding { TypeBinding { name: self.name.clean(cx), ty: self.ty.clean(cx) } } }