// Each of these queries corresponds to a function pointer field in the // `Providers` struct for requesting a value of that type, and a method // on `tcx: TyCtxt` (and `tcx.at(span)`) for doing that request in a way // which memoizes and does dep-graph tracking, wrapping around the actual // `Providers` that the driver creates (using several `rustc_*` crates). // // The result type of each query must implement `Clone`, and additionally // `ty::query::values::Value`, which produces an appropriate placeholder // (error) value if the query resulted in a query cycle. // Queries marked with `fatal_cycle` do not need the latter implementation, // as they will raise an fatal error on query cycles instead. rustc_queries! { query trigger_delay_span_bug(key: DefId) -> () { desc { "trigger a delay span bug" } } /// Represents crate as a whole (as distinct from the top-level crate module). /// If you call `hir_crate` (e.g., indirectly by calling `tcx.hir().krate()`), /// we will have to assume that any change means that you need to be recompiled. /// This is because the `hir_crate` query gives you access to all other items. /// To avoid this fate, do not call `tcx.hir().krate()`; instead, /// prefer wrappers like `tcx.visit_all_items_in_krate()`. query hir_crate(key: CrateNum) -> &'tcx Crate<'tcx> { eval_always no_hash desc { "get the crate HIR" } } /// The indexed HIR. This can be conveniently accessed by `tcx.hir()`. /// Avoid calling this query directly. query index_hir(_: CrateNum) -> &'tcx crate::hir::IndexedHir<'tcx> { eval_always no_hash desc { "index HIR" } } /// The items in a module. /// /// This can be conveniently accessed by `tcx.hir().visit_item_likes_in_module`. /// Avoid calling this query directly. query hir_module_items(key: LocalDefId) -> &'tcx hir::ModuleItems { eval_always desc { |tcx| "HIR module items in `{}`", tcx.def_path_str(key.to_def_id()) } } /// Gives access to the HIR node for the HIR owner `key`. /// /// This can be conveniently accessed by methods on `tcx.hir()`. /// Avoid calling this query directly. query hir_owner(key: LocalDefId) -> Option<&'tcx crate::hir::Owner<'tcx>> { eval_always desc { |tcx| "HIR owner of `{}`", tcx.def_path_str(key.to_def_id()) } } /// Gives access to the HIR node's parent for the HIR owner `key`. /// /// This can be conveniently accessed by methods on `tcx.hir()`. /// Avoid calling this query directly. query hir_owner_parent(key: LocalDefId) -> hir::HirId { eval_always desc { |tcx| "HIR parent of `{}`", tcx.def_path_str(key.to_def_id()) } } /// Gives access to the HIR nodes and bodies inside the HIR owner `key`. /// /// This can be conveniently accessed by methods on `tcx.hir()`. /// Avoid calling this query directly. query hir_owner_nodes(key: LocalDefId) -> Option<&'tcx crate::hir::OwnerNodes<'tcx>> { eval_always desc { |tcx| "HIR owner items in `{}`", tcx.def_path_str(key.to_def_id()) } } /// Gives access to the HIR attributes inside the HIR owner `key`. /// /// This can be conveniently accessed by methods on `tcx.hir()`. /// Avoid calling this query directly. query hir_attrs(key: LocalDefId) -> rustc_middle::hir::AttributeMap<'tcx> { eval_always desc { |tcx| "HIR owner attributes in `{}`", tcx.def_path_str(key.to_def_id()) } } /// Computes the `DefId` of the corresponding const parameter in case the `key` is a /// const argument and returns `None` otherwise. /// /// ```ignore (incomplete) /// let a = foo::<7>(); /// // ^ Calling `opt_const_param_of` for this argument, /// /// fn foo() /// // ^ returns this `DefId`. /// /// fn bar() { /// // ^ While calling `opt_const_param_of` for other bodies returns `None`. /// } /// ``` // It looks like caching this query on disk actually slightly // worsened performance in #74376. // // Once const generics are more prevalently used, we might want to // consider only caching calls returning `Some`. query opt_const_param_of(key: LocalDefId) -> Option { desc { |tcx| "computing the optional const parameter of `{}`", tcx.def_path_str(key.to_def_id()) } } /// Given the def_id of a const-generic parameter, computes the associated default const /// parameter. e.g. `fn example` called on `N` would return `3`. query const_param_default(param: DefId) -> &'tcx ty::Const<'tcx> { desc { |tcx| "compute const default for a given parameter `{}`", tcx.def_path_str(param) } } /// Records the type of every item. query type_of(key: DefId) -> Ty<'tcx> { desc { |tcx| "computing type of `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } } query analysis(key: CrateNum) -> Result<(), ErrorReported> { eval_always desc { "running analysis passes on this crate" } } /// Maps from the `DefId` of an item (trait/struct/enum/fn) to its /// associated generics. query generics_of(key: DefId) -> ty::Generics { desc { |tcx| "computing generics of `{}`", tcx.def_path_str(key) } storage(ArenaCacheSelector<'tcx>) cache_on_disk_if { key.is_local() } } /// Maps from the `DefId` of an item (trait/struct/enum/fn) to the /// predicates (where-clauses) that must be proven true in order /// to reference it. This is almost always the "predicates query" /// that you want. /// /// `predicates_of` builds on `predicates_defined_on` -- in fact, /// it is almost always the same as that query, except for the /// case of traits. For traits, `predicates_of` contains /// an additional `Self: Trait<...>` predicate that users don't /// actually write. This reflects the fact that to invoke the /// trait (e.g., via `Default::default`) you must supply types /// that actually implement the trait. (However, this extra /// predicate gets in the way of some checks, which are intended /// to operate over only the actual where-clauses written by the /// user.) query predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> { desc { |tcx| "computing predicates of `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } } /// Returns the list of bounds that can be used for /// `SelectionCandidate::ProjectionCandidate(_)` and /// `ProjectionTyCandidate::TraitDef`. /// Specifically this is the bounds written on the trait's type /// definition, or those after the `impl` keyword /// /// ```ignore (incomplete) /// type X: Bound + 'lt /// // ^^^^^^^^^^^ /// impl Debug + Display /// // ^^^^^^^^^^^^^^^ /// ``` /// /// `key` is the `DefId` of the associated type or opaque type. /// /// Bounds from the parent (e.g. with nested impl trait) are not included. query explicit_item_bounds(key: DefId) -> &'tcx [(ty::Predicate<'tcx>, Span)] { desc { |tcx| "finding item bounds for `{}`", tcx.def_path_str(key) } } /// Elaborated version of the predicates from `explicit_item_bounds`. /// /// For example: /// /// ``` /// trait MyTrait { /// type MyAType: Eq + ?Sized; /// } /// ``` /// /// `explicit_item_bounds` returns `[::MyAType: Eq]`, /// and `item_bounds` returns /// ```text /// [ /// ::MyAType: Eq, /// ::MyAType: PartialEq<::MyAType> /// ] /// ``` /// /// Bounds from the parent (e.g. with nested impl trait) are not included. query item_bounds(key: DefId) -> &'tcx ty::List> { desc { |tcx| "elaborating item bounds for `{}`", tcx.def_path_str(key) } } query projection_ty_from_predicates(key: (DefId, DefId)) -> Option> { desc { |tcx| "finding projection type inside predicates of `{}`", tcx.def_path_str(key.0) } } query native_libraries(_: CrateNum) -> Lrc> { desc { "looking up the native libraries of a linked crate" } } query lint_levels(_: CrateNum) -> LintLevelMap { storage(ArenaCacheSelector<'tcx>) eval_always desc { "computing the lint levels for items in this crate" } } query parent_module_from_def_id(key: LocalDefId) -> LocalDefId { eval_always desc { |tcx| "parent module of `{}`", tcx.def_path_str(key.to_def_id()) } } /// Internal helper query. Use `tcx.expansion_that_defined` instead query expn_that_defined(key: DefId) -> rustc_span::ExpnId { desc { |tcx| "expansion that defined `{}`", tcx.def_path_str(key) } } query is_panic_runtime(_: CrateNum) -> bool { fatal_cycle desc { "checking if the crate is_panic_runtime" } } /// Set of all the `DefId`s in this crate that have MIR associated with /// them. This includes all the body owners, but also things like struct /// constructors. query mir_keys(_: CrateNum) -> FxHashSet { storage(ArenaCacheSelector<'tcx>) desc { "getting a list of all mir_keys" } } /// Maps DefId's that have an associated `mir::Body` to the result /// of the MIR const-checking pass. This is the set of qualifs in /// the final value of a `const`. query mir_const_qualif(key: DefId) -> mir::ConstQualifs { desc { |tcx| "const checking `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } } query mir_const_qualif_const_arg( key: (LocalDefId, DefId) ) -> mir::ConstQualifs { desc { |tcx| "const checking the const argument `{}`", tcx.def_path_str(key.0.to_def_id()) } } /// Fetch the MIR for a given `DefId` right after it's built - this includes /// unreachable code. query mir_built(key: ty::WithOptConstParam) -> &'tcx Steal> { desc { |tcx| "building MIR for `{}`", tcx.def_path_str(key.did.to_def_id()) } } /// Fetch the MIR for a given `DefId` up till the point where it is /// ready for const qualification. /// /// See the README for the `mir` module for details. query mir_const(key: ty::WithOptConstParam) -> &'tcx Steal> { desc { |tcx| "processing MIR for {}`{}`", if key.const_param_did.is_some() { "the const argument " } else { "" }, tcx.def_path_str(key.did.to_def_id()), } no_hash } /// Try to build an abstract representation of the given constant. query mir_abstract_const( key: DefId ) -> Result]>, ErrorReported> { desc { |tcx| "building an abstract representation for {}", tcx.def_path_str(key), } } /// Try to build an abstract representation of the given constant. query mir_abstract_const_of_const_arg( key: (LocalDefId, DefId) ) -> Result]>, ErrorReported> { desc { |tcx| "building an abstract representation for the const argument {}", tcx.def_path_str(key.0.to_def_id()), } } query try_unify_abstract_consts(key: ( (ty::WithOptConstParam, SubstsRef<'tcx>), (ty::WithOptConstParam, SubstsRef<'tcx>) )) -> bool { desc { |tcx| "trying to unify the generic constants {} and {}", tcx.def_path_str(key.0.0.did), tcx.def_path_str(key.1.0.did) } } query mir_drops_elaborated_and_const_checked( key: ty::WithOptConstParam ) -> &'tcx Steal> { no_hash desc { |tcx| "elaborating drops for `{}`", tcx.def_path_str(key.did.to_def_id()) } } query mir_for_ctfe( key: DefId ) -> &'tcx mir::Body<'tcx> { desc { |tcx| "caching mir of `{}` for CTFE", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } } query mir_for_ctfe_of_const_arg(key: (LocalDefId, DefId)) -> &'tcx mir::Body<'tcx> { desc { |tcx| "MIR for CTFE of the const argument `{}`", tcx.def_path_str(key.0.to_def_id()) } } query mir_promoted(key: ty::WithOptConstParam) -> ( &'tcx Steal>, &'tcx Steal>> ) { no_hash desc { |tcx| "processing {}`{}`", if key.const_param_did.is_some() { "the const argument " } else { "" }, tcx.def_path_str(key.did.to_def_id()), } } /// MIR after our optimization passes have run. This is MIR that is ready /// for codegen. This is also the only query that can fetch non-local MIR, at present. query optimized_mir(key: DefId) -> &'tcx mir::Body<'tcx> { desc { |tcx| "optimizing MIR for `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } } /// Returns coverage summary info for a function, after executing the `InstrumentCoverage` /// MIR pass (assuming the -Zinstrument-coverage option is enabled). query coverageinfo(key: DefId) -> mir::CoverageInfo { desc { |tcx| "retrieving coverage info from MIR for `{}`", tcx.def_path_str(key) } storage(ArenaCacheSelector<'tcx>) cache_on_disk_if { key.is_local() } } /// Returns the name of the file that contains the function body, if instrumented for coverage. query covered_file_name(key: DefId) -> Option { desc { |tcx| "retrieving the covered file name, if instrumented, for `{}`", tcx.def_path_str(key) } storage(ArenaCacheSelector<'tcx>) cache_on_disk_if { key.is_local() } } /// Returns the `CodeRegions` for a function that has instrumented coverage, in case the /// function was optimized out before codegen, and before being added to the Coverage Map. query covered_code_regions(key: DefId) -> Vec<&'tcx mir::coverage::CodeRegion> { desc { |tcx| "retrieving the covered `CodeRegion`s, if instrumented, for `{}`", tcx.def_path_str(key) } storage(ArenaCacheSelector<'tcx>) cache_on_disk_if { key.is_local() } } /// The `DefId` is the `DefId` of the containing MIR body. Promoteds do not have their own /// `DefId`. This function returns all promoteds in the specified body. The body references /// promoteds by the `DefId` and the `mir::Promoted` index. This is necessary, because /// after inlining a body may refer to promoteds from other bodies. In that case you still /// need to use the `DefId` of the original body. query promoted_mir(key: DefId) -> &'tcx IndexVec> { desc { |tcx| "optimizing promoted MIR for `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } } query promoted_mir_of_const_arg( key: (LocalDefId, DefId) ) -> &'tcx IndexVec> { desc { |tcx| "optimizing promoted MIR for the const argument `{}`", tcx.def_path_str(key.0.to_def_id()), } } /// Erases regions from `ty` to yield a new type. /// Normally you would just use `tcx.erase_regions(value)`, /// however, which uses this query as a kind of cache. query erase_regions_ty(ty: Ty<'tcx>) -> Ty<'tcx> { // This query is not expected to have input -- as a result, it // is not a good candidates for "replay" because it is essentially a // pure function of its input (and hence the expectation is that // no caller would be green **apart** from just these // queries). Making it anonymous avoids hashing the result, which // may save a bit of time. anon desc { "erasing regions from `{:?}`", ty } } query wasm_import_module_map(_: CrateNum) -> FxHashMap { storage(ArenaCacheSelector<'tcx>) desc { "wasm import module map" } } /// Maps from the `DefId` of an item (trait/struct/enum/fn) to the /// predicates (where-clauses) directly defined on it. This is /// equal to the `explicit_predicates_of` predicates plus the /// `inferred_outlives_of` predicates. query predicates_defined_on(key: DefId) -> ty::GenericPredicates<'tcx> { desc { |tcx| "computing predicates of `{}`", tcx.def_path_str(key) } } /// Returns everything that looks like a predicate written explicitly /// by the user on a trait item. /// /// Traits are unusual, because predicates on associated types are /// converted into bounds on that type for backwards compatibility: /// /// trait X where Self::U: Copy { type U; } /// /// becomes /// /// trait X { type U: Copy; } /// /// `explicit_predicates_of` and `explicit_item_bounds` will then take /// the appropriate subsets of the predicates here. query trait_explicit_predicates_and_bounds(key: LocalDefId) -> ty::GenericPredicates<'tcx> { desc { |tcx| "computing explicit predicates of trait `{}`", tcx.def_path_str(key.to_def_id()) } } /// Returns the predicates written explicitly by the user. query explicit_predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> { desc { |tcx| "computing explicit predicates of `{}`", tcx.def_path_str(key) } } /// Returns the inferred outlives predicates (e.g., for `struct /// Foo<'a, T> { x: &'a T }`, this would return `T: 'a`). query inferred_outlives_of(key: DefId) -> &'tcx [(ty::Predicate<'tcx>, Span)] { desc { |tcx| "computing inferred outlives predicates of `{}`", tcx.def_path_str(key) } } /// Maps from the `DefId` of a trait to the list of /// super-predicates. This is a subset of the full list of /// predicates. We store these in a separate map because we must /// evaluate them even during type conversion, often before the /// full predicates are available (note that supertraits have /// additional acyclicity requirements). query super_predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> { desc { |tcx| "computing the super predicates of `{}`", tcx.def_path_str(key) } } /// The `Option` is the name of an associated type. If it is `None`, then this query /// returns the full set of predicates. If `Some`, then the query returns only the /// subset of super-predicates that reference traits that define the given associated type. /// This is used to avoid cycles in resolving types like `T::Item`. query super_predicates_that_define_assoc_type(key: (DefId, Option)) -> ty::GenericPredicates<'tcx> { desc { |tcx| "computing the super traits of `{}`{}", tcx.def_path_str(key.0), if let Some(assoc_name) = key.1 { format!(" with associated type name `{}`", assoc_name) } else { "".to_string() }, } } /// To avoid cycles within the predicates of a single item we compute /// per-type-parameter predicates for resolving `T::AssocTy`. query type_param_predicates(key: (DefId, LocalDefId, rustc_span::symbol::Ident)) -> ty::GenericPredicates<'tcx> { desc { |tcx| "computing the bounds for type parameter `{}`", { let id = tcx.hir().local_def_id_to_hir_id(key.1); tcx.hir().ty_param_name(id) }} } query trait_def(key: DefId) -> ty::TraitDef { desc { |tcx| "computing trait definition for `{}`", tcx.def_path_str(key) } storage(ArenaCacheSelector<'tcx>) } query adt_def(key: DefId) -> &'tcx ty::AdtDef { desc { |tcx| "computing ADT definition for `{}`", tcx.def_path_str(key) } } query adt_destructor(key: DefId) -> Option { desc { |tcx| "computing `Drop` impl for `{}`", tcx.def_path_str(key) } } // The cycle error here should be reported as an error by `check_representable`. // We consider the type as Sized in the meanwhile to avoid // further errors (done in impl Value for AdtSizedConstraint). // Use `cycle_delay_bug` to delay the cycle error here to be emitted later // in case we accidentally otherwise don't emit an error. query adt_sized_constraint( key: DefId ) -> AdtSizedConstraint<'tcx> { desc { |tcx| "computing `Sized` constraints for `{}`", tcx.def_path_str(key) } cycle_delay_bug } query adt_dtorck_constraint( key: DefId ) -> Result, NoSolution> { desc { |tcx| "computing drop-check constraints for `{}`", tcx.def_path_str(key) } } /// Returns `true` if this is a const fn, use the `is_const_fn` to know whether your crate /// actually sees it as const fn (e.g., the const-fn-ness might be unstable and you might /// not have the feature gate active). /// /// **Do not call this function manually.** It is only meant to cache the base data for the /// `is_const_fn` function. query is_const_fn_raw(key: DefId) -> bool { desc { |tcx| "checking if item is const fn: `{}`", tcx.def_path_str(key) } } /// Returns `true` if this is a const `impl`. **Do not call this function manually.** /// /// This query caches the base data for the `is_const_impl` helper function, which also /// takes into account stability attributes (e.g., `#[rustc_const_unstable]`). query is_const_impl_raw(key: DefId) -> bool { desc { |tcx| "checking if item is const impl: `{}`", tcx.def_path_str(key) } } query asyncness(key: DefId) -> hir::IsAsync { desc { |tcx| "checking if the function is async: `{}`", tcx.def_path_str(key) } } /// Returns `true` if calls to the function may be promoted. /// /// This is either because the function is e.g., a tuple-struct or tuple-variant /// constructor, or because it has the `#[rustc_promotable]` attribute. The attribute should /// be removed in the future in favour of some form of check which figures out whether the /// function does not inspect the bits of any of its arguments (so is essentially just a /// constructor function). query is_promotable_const_fn(key: DefId) -> bool { desc { |tcx| "checking if item is promotable: `{}`", tcx.def_path_str(key) } } /// Returns `true` if this is a foreign item (i.e., linked via `extern { ... }`). query is_foreign_item(key: DefId) -> bool { desc { |tcx| "checking if `{}` is a foreign item", tcx.def_path_str(key) } } /// Returns `Some(mutability)` if the node pointed to by `def_id` is a static item. query static_mutability(def_id: DefId) -> Option { desc { |tcx| "looking up static mutability of `{}`", tcx.def_path_str(def_id) } } /// Returns `Some(generator_kind)` if the node pointed to by `def_id` is a generator. query generator_kind(def_id: DefId) -> Option { desc { |tcx| "looking up generator kind of `{}`", tcx.def_path_str(def_id) } } /// Gets a map with the variance of every item; use `item_variance` instead. query crate_variances(_: CrateNum) -> ty::CrateVariancesMap<'tcx> { storage(ArenaCacheSelector<'tcx>) desc { "computing the variances for items in this crate" } } /// Maps from the `DefId` of a type or region parameter to its (inferred) variance. query variances_of(def_id: DefId) -> &'tcx [ty::Variance] { desc { |tcx| "computing the variances of `{}`", tcx.def_path_str(def_id) } } /// Maps from thee `DefId` of a type to its (inferred) outlives. query inferred_outlives_crate(_: CrateNum) -> ty::CratePredicatesMap<'tcx> { storage(ArenaCacheSelector<'tcx>) desc { "computing the inferred outlives predicates for items in this crate" } } /// Maps from an impl/trait `DefId to a list of the `DefId`s of its items. query associated_item_def_ids(key: DefId) -> &'tcx [DefId] { desc { |tcx| "collecting associated items of `{}`", tcx.def_path_str(key) } } /// Maps from a trait item to the trait item "descriptor". query associated_item(key: DefId) -> ty::AssocItem { desc { |tcx| "computing associated item data for `{}`", tcx.def_path_str(key) } storage(ArenaCacheSelector<'tcx>) } /// Collects the associated items defined on a trait or impl. query associated_items(key: DefId) -> ty::AssocItems<'tcx> { storage(ArenaCacheSelector<'tcx>) desc { |tcx| "collecting associated items of {}", tcx.def_path_str(key) } } /// Given an `impl_id`, return the trait it implements. /// Return `None` if this is an inherent impl. query impl_trait_ref(impl_id: DefId) -> Option> { desc { |tcx| "computing trait implemented by `{}`", tcx.def_path_str(impl_id) } } query impl_polarity(impl_id: DefId) -> ty::ImplPolarity { desc { |tcx| "computing implementation polarity of `{}`", tcx.def_path_str(impl_id) } } query issue33140_self_ty(key: DefId) -> Option> { desc { |tcx| "computing Self type wrt issue #33140 `{}`", tcx.def_path_str(key) } } /// Maps a `DefId` of a type to a list of its inherent impls. /// Contains implementations of methods that are inherent to a type. /// Methods in these implementations don't need to be exported. query inherent_impls(key: DefId) -> &'tcx [DefId] { desc { |tcx| "collecting inherent impls for `{}`", tcx.def_path_str(key) } eval_always } /// The result of unsafety-checking this `LocalDefId`. query unsafety_check_result(key: LocalDefId) -> &'tcx mir::UnsafetyCheckResult { desc { |tcx| "unsafety-checking `{}`", tcx.def_path_str(key.to_def_id()) } cache_on_disk_if { true } } query unsafety_check_result_for_const_arg(key: (LocalDefId, DefId)) -> &'tcx mir::UnsafetyCheckResult { desc { |tcx| "unsafety-checking the const argument `{}`", tcx.def_path_str(key.0.to_def_id()) } } /// HACK: when evaluated, this reports a "unsafe derive on repr(packed)" error. /// /// Unsafety checking is executed for each method separately, but we only want /// to emit this error once per derive. As there are some impls with multiple /// methods, we use a query for deduplication. query unsafe_derive_on_repr_packed(key: LocalDefId) -> () { desc { |tcx| "processing `{}`", tcx.def_path_str(key.to_def_id()) } } /// The signature of functions. query fn_sig(key: DefId) -> ty::PolyFnSig<'tcx> { desc { |tcx| "computing function signature of `{}`", tcx.def_path_str(key) } } query lint_mod(key: LocalDefId) -> () { desc { |tcx| "linting {}", describe_as_module(key, tcx) } } /// Checks the attributes in the module. query check_mod_attrs(key: LocalDefId) -> () { desc { |tcx| "checking attributes in {}", describe_as_module(key, tcx) } } query check_mod_unstable_api_usage(key: LocalDefId) -> () { desc { |tcx| "checking for unstable API usage in {}", describe_as_module(key, tcx) } } /// Checks the const bodies in the module for illegal operations (e.g. `if` or `loop`). query check_mod_const_bodies(key: LocalDefId) -> () { desc { |tcx| "checking consts in {}", describe_as_module(key, tcx) } } /// Checks the loops in the module. query check_mod_loops(key: LocalDefId) -> () { desc { |tcx| "checking loops in {}", describe_as_module(key, tcx) } } query check_mod_naked_functions(key: LocalDefId) -> () { desc { |tcx| "checking naked functions in {}", describe_as_module(key, tcx) } } query check_mod_item_types(key: LocalDefId) -> () { desc { |tcx| "checking item types in {}", describe_as_module(key, tcx) } } query check_mod_privacy(key: LocalDefId) -> () { desc { |tcx| "checking privacy in {}", describe_as_module(key, tcx) } } query check_mod_intrinsics(key: LocalDefId) -> () { desc { |tcx| "checking intrinsics in {}", describe_as_module(key, tcx) } } query check_mod_liveness(key: LocalDefId) -> () { desc { |tcx| "checking liveness of variables in {}", describe_as_module(key, tcx) } } query check_mod_impl_wf(key: LocalDefId) -> () { desc { |tcx| "checking that impls are well-formed in {}", describe_as_module(key, tcx) } } query collect_mod_item_types(key: LocalDefId) -> () { desc { |tcx| "collecting item types in {}", describe_as_module(key, tcx) } } /// Caches `CoerceUnsized` kinds for impls on custom types. query coerce_unsized_info(key: DefId) -> ty::adjustment::CoerceUnsizedInfo { desc { |tcx| "computing CoerceUnsized info for `{}`", tcx.def_path_str(key) } } query typeck_item_bodies(_: CrateNum) -> () { desc { "type-checking all item bodies" } } query typeck(key: LocalDefId) -> &'tcx ty::TypeckResults<'tcx> { desc { |tcx| "type-checking `{}`", tcx.def_path_str(key.to_def_id()) } cache_on_disk_if { true } } query typeck_const_arg( key: (LocalDefId, DefId) ) -> &'tcx ty::TypeckResults<'tcx> { desc { |tcx| "type-checking the const argument `{}`", tcx.def_path_str(key.0.to_def_id()), } } query diagnostic_only_typeck(key: LocalDefId) -> &'tcx ty::TypeckResults<'tcx> { desc { |tcx| "type-checking `{}`", tcx.def_path_str(key.to_def_id()) } cache_on_disk_if { true } load_cached(tcx, id) { let typeck_results: Option> = tcx .on_disk_cache.as_ref() .and_then(|c| c.try_load_query_result(*tcx, id)); typeck_results.map(|x| &*tcx.arena.alloc(x)) } } query used_trait_imports(key: LocalDefId) -> &'tcx FxHashSet { desc { |tcx| "used_trait_imports `{}`", tcx.def_path_str(key.to_def_id()) } cache_on_disk_if { true } } query has_typeck_results(def_id: DefId) -> bool { desc { |tcx| "checking whether `{}` has a body", tcx.def_path_str(def_id) } } query coherent_trait(def_id: DefId) -> () { desc { |tcx| "coherence checking all impls of trait `{}`", tcx.def_path_str(def_id) } } /// Borrow-checks the function body. If this is a closure, returns /// additional requirements that the closure's creator must verify. query mir_borrowck(key: LocalDefId) -> &'tcx mir::BorrowCheckResult<'tcx> { desc { |tcx| "borrow-checking `{}`", tcx.def_path_str(key.to_def_id()) } cache_on_disk_if(tcx, opt_result) { tcx.is_closure(key.to_def_id()) || opt_result.map_or(false, |r| !r.concrete_opaque_types.is_empty()) } } query mir_borrowck_const_arg(key: (LocalDefId, DefId)) -> &'tcx mir::BorrowCheckResult<'tcx> { desc { |tcx| "borrow-checking the const argument`{}`", tcx.def_path_str(key.0.to_def_id()) } } /// Gets a complete map from all types to their inherent impls. /// Not meant to be used directly outside of coherence. /// (Defined only for `LOCAL_CRATE`.) query crate_inherent_impls(k: CrateNum) -> CrateInherentImpls { storage(ArenaCacheSelector<'tcx>) eval_always desc { "all inherent impls defined in crate `{:?}`", k } } /// Checks all types in the crate for overlap in their inherent impls. Reports errors. /// Not meant to be used directly outside of coherence. /// (Defined only for `LOCAL_CRATE`.) query crate_inherent_impls_overlap_check(_: CrateNum) -> () { eval_always desc { "check for overlap between inherent impls defined in this crate" } } /// Check whether the function has any recursion that could cause the inliner to trigger /// a cycle. Returns the call stack causing the cycle. The call stack does not contain the /// current function, just all intermediate functions. query mir_callgraph_reachable(key: (ty::Instance<'tcx>, LocalDefId)) -> bool { fatal_cycle desc { |tcx| "computing if `{}` (transitively) calls `{}`", key.0, tcx.def_path_str(key.1.to_def_id()), } } /// Obtain all the calls into other local functions query mir_inliner_callees(key: ty::InstanceDef<'tcx>) -> &'tcx [(DefId, SubstsRef<'tcx>)] { fatal_cycle desc { |tcx| "computing all local function calls in `{}`", tcx.def_path_str(key.def_id()), } } /// Evaluates a constant and returns the computed allocation. /// /// **Do not use this** directly, use the `tcx.eval_static_initializer` wrapper. query eval_to_allocation_raw(key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>) -> EvalToAllocationRawResult<'tcx> { desc { |tcx| "const-evaluating + checking `{}`", key.value.display(tcx) } cache_on_disk_if { true } } /// Evaluates const items or anonymous constants /// (such as enum variant explicit discriminants or array lengths) /// into a representation suitable for the type system and const generics. /// /// **Do not use this** directly, use one of the following wrappers: `tcx.const_eval_poly`, /// `tcx.const_eval_resolve`, `tcx.const_eval_instance`, or `tcx.const_eval_global_id`. query eval_to_const_value_raw(key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>) -> EvalToConstValueResult<'tcx> { desc { |tcx| "simplifying constant for the type system `{}`", key.value.display(tcx) } cache_on_disk_if { true } } /// Convert an evaluated constant to a type level constant or /// return `None` if that is not possible. query const_to_valtree( key: ty::ParamEnvAnd<'tcx, ConstAlloc<'tcx>> ) -> Option> { desc { "destructure constant" } } /// Destructure a constant ADT or array into its variant index and its /// field values. query destructure_const( key: ty::ParamEnvAnd<'tcx, &'tcx ty::Const<'tcx>> ) -> mir::DestructuredConst<'tcx> { desc { "destructure constant" } } /// Dereference a constant reference or raw pointer and turn the result into a constant /// again. query deref_const( key: ty::ParamEnvAnd<'tcx, &'tcx ty::Const<'tcx>> ) -> &'tcx ty::Const<'tcx> { desc { "deref constant" } } query const_caller_location(key: (rustc_span::Symbol, u32, u32)) -> ConstValue<'tcx> { desc { "get a &core::panic::Location referring to a span" } } query lit_to_const( key: LitToConstInput<'tcx> ) -> Result<&'tcx ty::Const<'tcx>, LitToConstError> { desc { "converting literal to const" } } query check_match(key: DefId) { desc { |tcx| "match-checking `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } } /// Performs part of the privacy check and computes "access levels". query privacy_access_levels(_: CrateNum) -> &'tcx AccessLevels { eval_always desc { "privacy access levels" } } query check_private_in_public(_: CrateNum) -> () { eval_always desc { "checking for private elements in public interfaces" } } query reachable_set(_: CrateNum) -> FxHashSet { storage(ArenaCacheSelector<'tcx>) desc { "reachability" } } /// Per-body `region::ScopeTree`. The `DefId` should be the owner `DefId` for the body; /// in the case of closures, this will be redirected to the enclosing function. query region_scope_tree(def_id: DefId) -> &'tcx region::ScopeTree { desc { |tcx| "computing drop scopes for `{}`", tcx.def_path_str(def_id) } } query mir_shims(key: ty::InstanceDef<'tcx>) -> mir::Body<'tcx> { storage(ArenaCacheSelector<'tcx>) desc { |tcx| "generating MIR shim for `{}`", tcx.def_path_str(key.def_id()) } } /// The `symbol_name` query provides the symbol name for calling a /// given instance from the local crate. In particular, it will also /// look up the correct symbol name of instances from upstream crates. query symbol_name(key: ty::Instance<'tcx>) -> ty::SymbolName<'tcx> { desc { "computing the symbol for `{}`", key } cache_on_disk_if { true } } query opt_def_kind(def_id: DefId) -> Option { desc { |tcx| "looking up definition kind of `{}`", tcx.def_path_str(def_id) } } query def_span(def_id: DefId) -> Span { desc { |tcx| "looking up span for `{}`", tcx.def_path_str(def_id) } // FIXME(mw): DefSpans are not really inputs since they are derived from // HIR. But at the moment HIR hashing still contains some hacks that allow // to make type debuginfo to be source location independent. Declaring // DefSpan an input makes sure that changes to these are always detected // regardless of HIR hashing. eval_always } query def_ident_span(def_id: DefId) -> Option { desc { |tcx| "looking up span for `{}`'s identifier", tcx.def_path_str(def_id) } } query lookup_stability(def_id: DefId) -> Option<&'tcx attr::Stability> { desc { |tcx| "looking up stability of `{}`", tcx.def_path_str(def_id) } } query lookup_const_stability(def_id: DefId) -> Option<&'tcx attr::ConstStability> { desc { |tcx| "looking up const stability of `{}`", tcx.def_path_str(def_id) } } query lookup_deprecation_entry(def_id: DefId) -> Option { desc { |tcx| "checking whether `{}` is deprecated", tcx.def_path_str(def_id) } } query item_attrs(def_id: DefId) -> &'tcx [ast::Attribute] { desc { |tcx| "collecting attributes of `{}`", tcx.def_path_str(def_id) } } query codegen_fn_attrs(def_id: DefId) -> CodegenFnAttrs { desc { |tcx| "computing codegen attributes of `{}`", tcx.def_path_str(def_id) } storage(ArenaCacheSelector<'tcx>) cache_on_disk_if { true } } query fn_arg_names(def_id: DefId) -> &'tcx [rustc_span::symbol::Ident] { desc { |tcx| "looking up function parameter names for `{}`", tcx.def_path_str(def_id) } } /// Gets the rendered value of the specified constant or associated constant. /// Used by rustdoc. query rendered_const(def_id: DefId) -> String { desc { |tcx| "rendering constant intializer of `{}`", tcx.def_path_str(def_id) } } query impl_parent(def_id: DefId) -> Option { desc { |tcx| "computing specialization parent impl of `{}`", tcx.def_path_str(def_id) } } /// Given an `associated_item`, find the trait it belongs to. /// Return `None` if the `DefId` is not an associated item. query trait_of_item(associated_item: DefId) -> Option { desc { |tcx| "finding trait defining `{}`", tcx.def_path_str(associated_item) } } query is_ctfe_mir_available(key: DefId) -> bool { desc { |tcx| "checking if item has ctfe mir available: `{}`", tcx.def_path_str(key) } } query is_mir_available(key: DefId) -> bool { desc { |tcx| "checking if item has mir available: `{}`", tcx.def_path_str(key) } } query vtable_methods(key: ty::PolyTraitRef<'tcx>) -> &'tcx [Option<(DefId, SubstsRef<'tcx>)>] { desc { |tcx| "finding all methods for trait {}", tcx.def_path_str(key.def_id()) } } query codegen_fulfill_obligation( key: (ty::ParamEnv<'tcx>, ty::PolyTraitRef<'tcx>) ) -> Result, ErrorReported> { cache_on_disk_if { true } desc { |tcx| "checking if `{}` fulfills its obligations", tcx.def_path_str(key.1.def_id()) } } /// Return all `impl` blocks in the current crate. /// /// To allow caching this between crates, you must pass in [`LOCAL_CRATE`] as the crate number. /// Passing in any other crate will cause an ICE. /// /// [`LOCAL_CRATE`]: rustc_hir::def_id::LOCAL_CRATE query all_local_trait_impls(local_crate: CrateNum) -> &'tcx BTreeMap> { desc { "local trait impls" } } /// Given a trait `trait_id`, return all known `impl` blocks. query trait_impls_of(trait_id: DefId) -> ty::trait_def::TraitImpls { storage(ArenaCacheSelector<'tcx>) desc { |tcx| "trait impls of `{}`", tcx.def_path_str(trait_id) } } query specialization_graph_of(trait_id: DefId) -> specialization_graph::Graph { storage(ArenaCacheSelector<'tcx>) desc { |tcx| "building specialization graph of trait `{}`", tcx.def_path_str(trait_id) } cache_on_disk_if { true } } query object_safety_violations(trait_id: DefId) -> &'tcx [traits::ObjectSafetyViolation] { desc { |tcx| "determine object safety of trait `{}`", tcx.def_path_str(trait_id) } } /// Gets the ParameterEnvironment for a given item; this environment /// will be in "user-facing" mode, meaning that it is suitable for /// type-checking etc, and it does not normalize specializable /// associated types. This is almost always what you want, /// unless you are doing MIR optimizations, in which case you /// might want to use `reveal_all()` method to change modes. query param_env(def_id: DefId) -> ty::ParamEnv<'tcx> { desc { |tcx| "computing normalized predicates of `{}`", tcx.def_path_str(def_id) } } /// Like `param_env`, but returns the `ParamEnv` in `Reveal::All` mode. /// Prefer this over `tcx.param_env(def_id).with_reveal_all_normalized(tcx)`, /// as this method is more efficient. query param_env_reveal_all_normalized(def_id: DefId) -> ty::ParamEnv<'tcx> { desc { |tcx| "computing revealed normalized predicates of `{}`", tcx.def_path_str(def_id) } } /// Trait selection queries. These are best used by invoking `ty.is_copy_modulo_regions()`, /// `ty.is_copy()`, etc, since that will prune the environment where possible. query is_copy_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { desc { "computing whether `{}` is `Copy`", env.value } } /// Query backing `TyS::is_sized`. query is_sized_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { desc { "computing whether `{}` is `Sized`", env.value } } /// Query backing `TyS::is_freeze`. query is_freeze_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { desc { "computing whether `{}` is freeze", env.value } } /// Query backing `TyS::is_unpin`. query is_unpin_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { desc { "computing whether `{}` is `Unpin`", env.value } } /// Query backing `TyS::needs_drop`. query needs_drop_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { desc { "computing whether `{}` needs drop", env.value } } /// Query backing `TyS::is_structural_eq_shallow`. /// /// This is only correct for ADTs. Call `is_structural_eq_shallow` to handle all types /// correctly. query has_structural_eq_impls(ty: Ty<'tcx>) -> bool { desc { "computing whether `{:?}` implements `PartialStructuralEq` and `StructuralEq`", ty } } /// A list of types where the ADT requires drop if and only if any of /// those types require drop. If the ADT is known to always need drop /// then `Err(AlwaysRequiresDrop)` is returned. query adt_drop_tys(def_id: DefId) -> Result<&'tcx ty::List>, AlwaysRequiresDrop> { desc { |tcx| "computing when `{}` needs drop", tcx.def_path_str(def_id) } cache_on_disk_if { true } } query layout_raw( env: ty::ParamEnvAnd<'tcx, Ty<'tcx>> ) -> Result<&'tcx rustc_target::abi::Layout, ty::layout::LayoutError<'tcx>> { desc { "computing layout of `{}`", env.value } } query dylib_dependency_formats(_: CrateNum) -> &'tcx [(CrateNum, LinkagePreference)] { desc { "dylib dependency formats of crate" } } query dependency_formats(_: CrateNum) -> Lrc { desc { "get the linkage format of all dependencies" } } query is_compiler_builtins(_: CrateNum) -> bool { fatal_cycle desc { "checking if the crate is_compiler_builtins" } } query has_global_allocator(_: CrateNum) -> bool { // This query depends on untracked global state in CStore eval_always fatal_cycle desc { "checking if the crate has_global_allocator" } } query has_panic_handler(_: CrateNum) -> bool { fatal_cycle desc { "checking if the crate has_panic_handler" } } query is_profiler_runtime(_: CrateNum) -> bool { fatal_cycle desc { "query a crate is `#![profiler_runtime]`" } } query panic_strategy(_: CrateNum) -> PanicStrategy { fatal_cycle desc { "query a crate's configured panic strategy" } } query is_no_builtins(_: CrateNum) -> bool { fatal_cycle desc { "test whether a crate has `#![no_builtins]`" } } query symbol_mangling_version(_: CrateNum) -> SymbolManglingVersion { fatal_cycle desc { "query a crate's symbol mangling version" } } query extern_crate(def_id: DefId) -> Option<&'tcx ExternCrate> { eval_always desc { "getting crate's ExternCrateData" } } query specializes(_: (DefId, DefId)) -> bool { desc { "computing whether impls specialize one another" } } query in_scope_traits_map(_: LocalDefId) -> Option<&'tcx FxHashMap>> { eval_always desc { "traits in scope at a block" } } query module_exports(def_id: LocalDefId) -> Option<&'tcx [Export]> { desc { |tcx| "looking up items exported by `{}`", tcx.def_path_str(def_id.to_def_id()) } eval_always } query impl_defaultness(def_id: DefId) -> hir::Defaultness { desc { |tcx| "looking up whether `{}` is a default impl", tcx.def_path_str(def_id) } } query check_item_well_formed(key: LocalDefId) -> () { desc { |tcx| "checking that `{}` is well-formed", tcx.def_path_str(key.to_def_id()) } } query check_trait_item_well_formed(key: LocalDefId) -> () { desc { |tcx| "checking that `{}` is well-formed", tcx.def_path_str(key.to_def_id()) } } query check_impl_item_well_formed(key: LocalDefId) -> () { desc { |tcx| "checking that `{}` is well-formed", tcx.def_path_str(key.to_def_id()) } } // The `DefId`s of all non-generic functions and statics in the given crate // that can be reached from outside the crate. // // We expect this items to be available for being linked to. // // This query can also be called for `LOCAL_CRATE`. In this case it will // compute which items will be reachable to other crates, taking into account // the kind of crate that is currently compiled. Crates with only a // C interface have fewer reachable things. // // Does not include external symbols that don't have a corresponding DefId, // like the compiler-generated `main` function and so on. query reachable_non_generics(_: CrateNum) -> DefIdMap { storage(ArenaCacheSelector<'tcx>) desc { "looking up the exported symbols of a crate" } } query is_reachable_non_generic(def_id: DefId) -> bool { desc { |tcx| "checking whether `{}` is an exported symbol", tcx.def_path_str(def_id) } } query is_unreachable_local_definition(def_id: DefId) -> bool { desc { |tcx| "checking whether `{}` is reachable from outside the crate", tcx.def_path_str(def_id), } } /// The entire set of monomorphizations the local crate can safely link /// to because they are exported from upstream crates. Do not depend on /// this directly, as its value changes anytime a monomorphization gets /// added or removed in any upstream crate. Instead use the narrower /// `upstream_monomorphizations_for`, `upstream_drop_glue_for`, or, even /// better, `Instance::upstream_monomorphization()`. query upstream_monomorphizations( k: CrateNum ) -> DefIdMap, CrateNum>> { storage(ArenaCacheSelector<'tcx>) desc { "collecting available upstream monomorphizations `{:?}`", k } } /// Returns the set of upstream monomorphizations available for the /// generic function identified by the given `def_id`. The query makes /// sure to make a stable selection if the same monomorphization is /// available in multiple upstream crates. /// /// You likely want to call `Instance::upstream_monomorphization()` /// instead of invoking this query directly. query upstream_monomorphizations_for(def_id: DefId) -> Option<&'tcx FxHashMap, CrateNum>> { desc { |tcx| "collecting available upstream monomorphizations for `{}`", tcx.def_path_str(def_id), } } /// Returns the upstream crate that exports drop-glue for the given /// type (`substs` is expected to be a single-item list containing the /// type one wants drop-glue for). /// /// This is a subset of `upstream_monomorphizations_for` in order to /// increase dep-tracking granularity. Otherwise adding or removing any /// type with drop-glue in any upstream crate would invalidate all /// functions calling drop-glue of an upstream type. /// /// You likely want to call `Instance::upstream_monomorphization()` /// instead of invoking this query directly. /// /// NOTE: This query could easily be extended to also support other /// common functions that have are large set of monomorphizations /// (like `Clone::clone` for example). query upstream_drop_glue_for(substs: SubstsRef<'tcx>) -> Option { desc { "available upstream drop-glue for `{:?}`", substs } } query foreign_modules(_: CrateNum) -> Lrc> { desc { "looking up the foreign modules of a linked crate" } } /// Identifies the entry-point (e.g., the `main` function) for a given /// crate, returning `None` if there is no entry point (such as for library crates). query entry_fn(_: CrateNum) -> Option<(DefId, EntryFnType)> { desc { "looking up the entry function of a crate" } } query plugin_registrar_fn(_: CrateNum) -> Option { desc { "looking up the plugin registrar for a crate" } } query proc_macro_decls_static(_: CrateNum) -> Option { desc { "looking up the derive registrar for a crate" } } query crate_disambiguator(_: CrateNum) -> CrateDisambiguator { eval_always desc { "looking up the disambiguator a crate" } } // The macro which defines `rustc_metadata::provide_extern` depends on this query's name. // Changing the name should cause a compiler error, but in case that changes, be aware. query crate_hash(_: CrateNum) -> Svh { eval_always desc { "looking up the hash a crate" } } query crate_host_hash(_: CrateNum) -> Option { eval_always desc { "looking up the hash of a host version of a crate" } } query original_crate_name(_: CrateNum) -> Symbol { eval_always desc { "looking up the original name a crate" } } query extra_filename(_: CrateNum) -> String { eval_always desc { "looking up the extra filename for a crate" } } query crate_extern_paths(_: CrateNum) -> Vec { eval_always desc { "looking up the paths for extern crates" } } /// Given a crate and a trait, look up all impls of that trait in the crate. /// Return `(impl_id, self_ty)`. query implementations_of_trait(_: (CrateNum, DefId)) -> &'tcx [(DefId, Option)] { desc { "looking up implementations of a trait in a crate" } } /// Given a crate, look up all trait impls in that crate. /// Return `(impl_id, self_ty)`. query all_trait_implementations(_: CrateNum) -> &'tcx [(DefId, Option)] { desc { "looking up all (?) trait implementations" } } query is_dllimport_foreign_item(def_id: DefId) -> bool { desc { |tcx| "is_dllimport_foreign_item({})", tcx.def_path_str(def_id) } } query is_statically_included_foreign_item(def_id: DefId) -> bool { desc { |tcx| "is_statically_included_foreign_item({})", tcx.def_path_str(def_id) } } query native_library_kind(def_id: DefId) -> Option { desc { |tcx| "native_library_kind({})", tcx.def_path_str(def_id) } } /// Does lifetime resolution, but does not descend into trait items. This /// should only be used for resolving lifetimes of on trait definitions, /// and is used to avoid cycles. Importantly, `resolve_lifetimes` still visits /// the same lifetimes and is responsible for diagnostics. /// See `rustc_resolve::late::lifetimes for details. query resolve_lifetimes_trait_definition(_: LocalDefId) -> ResolveLifetimes { storage(ArenaCacheSelector<'tcx>) desc { "resolving lifetimes for a trait definition" } } /// Does lifetime resolution on items. Importantly, we can't resolve /// lifetimes directly on things like trait methods, because of trait params. /// See `rustc_resolve::late::lifetimes for details. query resolve_lifetimes(_: LocalDefId) -> ResolveLifetimes { storage(ArenaCacheSelector<'tcx>) desc { "resolving lifetimes" } } query named_region_map(_: LocalDefId) -> Option<&'tcx FxHashMap> { desc { "looking up a named region" } } query is_late_bound_map(_: LocalDefId) -> Option<(LocalDefId, &'tcx FxHashSet)> { desc { "testing if a region is late bound" } } /// For a given item (like a struct), gets the default lifetimes to be used /// for each parameter if a trait object were to be passed for that parameter. /// For example, for `struct Foo<'a, T, U>`, this would be `['static, 'static]`. /// For `struct Foo<'a, T: 'a, U>`, this would instead be `['a, 'static]`. query object_lifetime_defaults_map(_: LocalDefId) -> Option> { desc { "looking up lifetime defaults for a region on an item" } } query late_bound_vars_map(_: LocalDefId) -> Option<&'tcx FxHashMap>> { desc { "looking up late bound vars" } } query lifetime_scope_map(_: LocalDefId) -> Option> { desc { "finds the lifetime scope for an HirId of a PathSegment" } } query visibility(def_id: DefId) -> ty::Visibility { eval_always desc { |tcx| "computing visibility of `{}`", tcx.def_path_str(def_id) } } /// Computes the set of modules from which this type is visibly uninhabited. /// To check whether a type is uninhabited at all (not just from a given module), you could /// check whether the forest is empty. query type_uninhabited_from( key: ty::ParamEnvAnd<'tcx, Ty<'tcx>> ) -> ty::inhabitedness::DefIdForest { desc { "computing the inhabitedness of `{:?}`", key } } query dep_kind(_: CrateNum) -> CrateDepKind { eval_always desc { "fetching what a dependency looks like" } } query crate_name(_: CrateNum) -> Symbol { eval_always desc { "fetching what a crate is named" } } query item_children(def_id: DefId) -> &'tcx [Export] { desc { |tcx| "collecting child items of `{}`", tcx.def_path_str(def_id) } } query extern_mod_stmt_cnum(def_id: LocalDefId) -> Option { // This depends on untracked global state (`tcx.extern_crate_map`) eval_always desc { |tcx| "computing crate imported by `{}`", tcx.def_path_str(def_id.to_def_id()) } } query get_lib_features(_: CrateNum) -> LibFeatures { storage(ArenaCacheSelector<'tcx>) eval_always desc { "calculating the lib features map" } } query defined_lib_features(_: CrateNum) -> &'tcx [(Symbol, Option)] { desc { "calculating the lib features defined in a crate" } } /// Returns the lang items defined in another crate by loading it from metadata. // FIXME: It is illegal to pass a `CrateNum` other than `LOCAL_CRATE` here, just get rid // of that argument? query get_lang_items(_: CrateNum) -> LanguageItems { storage(ArenaCacheSelector<'tcx>) eval_always desc { "calculating the lang items map" } } /// Returns all diagnostic items defined in all crates. query all_diagnostic_items(_: CrateNum) -> FxHashMap { storage(ArenaCacheSelector<'tcx>) eval_always desc { "calculating the diagnostic items map" } } /// Returns the lang items defined in another crate by loading it from metadata. query defined_lang_items(_: CrateNum) -> &'tcx [(DefId, usize)] { desc { "calculating the lang items defined in a crate" } } /// Returns the diagnostic items defined in a crate. query diagnostic_items(_: CrateNum) -> FxHashMap { storage(ArenaCacheSelector<'tcx>) desc { "calculating the diagnostic items map in a crate" } } query missing_lang_items(_: CrateNum) -> &'tcx [LangItem] { desc { "calculating the missing lang items in a crate" } } query visible_parent_map(_: CrateNum) -> DefIdMap { storage(ArenaCacheSelector<'tcx>) desc { "calculating the visible parent map" } } query trimmed_def_paths(_: CrateNum) -> FxHashMap { storage(ArenaCacheSelector<'tcx>) desc { "calculating trimmed def paths" } } query missing_extern_crate_item(_: CrateNum) -> bool { eval_always desc { "seeing if we're missing an `extern crate` item for this crate" } } query used_crate_source(_: CrateNum) -> Lrc { eval_always desc { "looking at the source for a crate" } } query postorder_cnums(_: CrateNum) -> &'tcx [CrateNum] { eval_always desc { "generating a postorder list of CrateNums" } } query upvars_mentioned(def_id: DefId) -> Option<&'tcx FxIndexMap> { desc { |tcx| "collecting upvars mentioned in `{}`", tcx.def_path_str(def_id) } eval_always } query maybe_unused_trait_import(def_id: LocalDefId) -> bool { eval_always desc { |tcx| "maybe_unused_trait_import for `{}`", tcx.def_path_str(def_id.to_def_id()) } } query maybe_unused_extern_crates(_: CrateNum) -> &'tcx [(LocalDefId, Span)] { eval_always desc { "looking up all possibly unused extern crates" } } query names_imported_by_glob_use(def_id: LocalDefId) -> &'tcx FxHashSet { eval_always desc { |tcx| "names_imported_by_glob_use for `{}`", tcx.def_path_str(def_id.to_def_id()) } } query stability_index(_: CrateNum) -> stability::Index<'tcx> { storage(ArenaCacheSelector<'tcx>) eval_always desc { "calculating the stability index for the local crate" } } query all_crate_nums(_: CrateNum) -> &'tcx [CrateNum] { eval_always desc { "fetching all foreign CrateNum instances" } } /// A vector of every trait accessible in the whole crate /// (i.e., including those from subcrates). This is used only for /// error reporting. query all_traits(_: CrateNum) -> &'tcx [DefId] { desc { "fetching all foreign and local traits" } } /// The list of symbols exported from the given crate. /// /// - All names contained in `exported_symbols(cnum)` are guaranteed to /// correspond to a publicly visible symbol in `cnum` machine code. /// - The `exported_symbols` sets of different crates do not intersect. query exported_symbols(_: CrateNum) -> &'tcx [(ExportedSymbol<'tcx>, SymbolExportLevel)] { desc { "exported_symbols" } } query collect_and_partition_mono_items(_: CrateNum) -> (&'tcx DefIdSet, &'tcx [CodegenUnit<'tcx>]) { eval_always desc { "collect_and_partition_mono_items" } } query is_codegened_item(def_id: DefId) -> bool { desc { |tcx| "determining whether `{}` needs codegen", tcx.def_path_str(def_id) } } /// All items participating in code generation together with items inlined into them. query codegened_and_inlined_items(_: CrateNum) -> &'tcx DefIdSet { eval_always desc { "codegened_and_inlined_items" } } query codegen_unit(_: Symbol) -> &'tcx CodegenUnit<'tcx> { desc { "codegen_unit" } } query unused_generic_params(key: DefId) -> FiniteBitSet { cache_on_disk_if { key.is_local() } desc { |tcx| "determining which generic parameters are unused by `{}`", tcx.def_path_str(key) } } query backend_optimization_level(_: CrateNum) -> OptLevel { desc { "optimization level used by backend" } } query output_filenames(_: CrateNum) -> Arc { eval_always desc { "output_filenames" } } /// Do not call this query directly: invoke `normalize` instead. query normalize_projection_ty( goal: CanonicalProjectionGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, NormalizationResult<'tcx>>>, NoSolution, > { desc { "normalizing `{:?}`", goal } } /// Do not call this query directly: invoke `normalize_erasing_regions` instead. query normalize_generic_arg_after_erasing_regions( goal: ParamEnvAnd<'tcx, GenericArg<'tcx>> ) -> GenericArg<'tcx> { desc { "normalizing `{}`", goal.value } } /// Do not call this query directly: invoke `normalize_erasing_regions` instead. query normalize_mir_const_after_erasing_regions( goal: ParamEnvAnd<'tcx, mir::ConstantKind<'tcx>> ) -> mir::ConstantKind<'tcx> { desc { "normalizing `{}`", goal.value } } query implied_outlives_bounds( goal: CanonicalTyGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Vec>>>, NoSolution, > { desc { "computing implied outlives bounds for `{:?}`", goal } } /// Do not call this query directly: invoke `infcx.at().dropck_outlives()` instead. query dropck_outlives( goal: CanonicalTyGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, DropckOutlivesResult<'tcx>>>, NoSolution, > { desc { "computing dropck types for `{:?}`", goal } } /// Do not call this query directly: invoke `infcx.predicate_may_hold()` or /// `infcx.predicate_must_hold()` instead. query evaluate_obligation( goal: CanonicalPredicateGoal<'tcx> ) -> Result { desc { "evaluating trait selection obligation `{}`", goal.value.value } } query evaluate_goal( goal: traits::CanonicalChalkEnvironmentAndGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, NoSolution > { desc { "evaluating trait selection obligation `{}`", goal.value } } query type_implements_trait( key: (DefId, Ty<'tcx>, SubstsRef<'tcx>, ty::ParamEnv<'tcx>, ) ) -> bool { desc { "evaluating `type_implements_trait` `{:?}`", key } } /// Do not call this query directly: part of the `Eq` type-op query type_op_ascribe_user_type( goal: CanonicalTypeOpAscribeUserTypeGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, NoSolution, > { desc { "evaluating `type_op_ascribe_user_type` `{:?}`", goal } } /// Do not call this query directly: part of the `Eq` type-op query type_op_eq( goal: CanonicalTypeOpEqGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, NoSolution, > { desc { "evaluating `type_op_eq` `{:?}`", goal } } /// Do not call this query directly: part of the `Subtype` type-op query type_op_subtype( goal: CanonicalTypeOpSubtypeGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, NoSolution, > { desc { "evaluating `type_op_subtype` `{:?}`", goal } } /// Do not call this query directly: part of the `ProvePredicate` type-op query type_op_prove_predicate( goal: CanonicalTypeOpProvePredicateGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, NoSolution, > { desc { "evaluating `type_op_prove_predicate` `{:?}`", goal } } /// Do not call this query directly: part of the `Normalize` type-op query type_op_normalize_ty( goal: CanonicalTypeOpNormalizeGoal<'tcx, Ty<'tcx>> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Ty<'tcx>>>, NoSolution, > { desc { "normalizing `{:?}`", goal } } /// Do not call this query directly: part of the `Normalize` type-op query type_op_normalize_predicate( goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::Predicate<'tcx>> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::Predicate<'tcx>>>, NoSolution, > { desc { "normalizing `{:?}`", goal } } /// Do not call this query directly: part of the `Normalize` type-op query type_op_normalize_poly_fn_sig( goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::PolyFnSig<'tcx>> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::PolyFnSig<'tcx>>>, NoSolution, > { desc { "normalizing `{:?}`", goal } } /// Do not call this query directly: part of the `Normalize` type-op query type_op_normalize_fn_sig( goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::FnSig<'tcx>> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::FnSig<'tcx>>>, NoSolution, > { desc { "normalizing `{:?}`", goal } } query subst_and_check_impossible_predicates(key: (DefId, SubstsRef<'tcx>)) -> bool { desc { |tcx| "impossible substituted predicates:`{}`", tcx.def_path_str(key.0) } } query method_autoderef_steps( goal: CanonicalTyGoal<'tcx> ) -> MethodAutoderefStepsResult<'tcx> { desc { "computing autoderef types for `{:?}`", goal } } query supported_target_features(_: CrateNum) -> FxHashMap> { storage(ArenaCacheSelector<'tcx>) eval_always desc { "looking up supported target features" } } /// Get an estimate of the size of an InstanceDef based on its MIR for CGU partitioning. query instance_def_size_estimate(def: ty::InstanceDef<'tcx>) -> usize { desc { |tcx| "estimating size for `{}`", tcx.def_path_str(def.def_id()) } } query features_query(_: CrateNum) -> &'tcx rustc_feature::Features { eval_always desc { "looking up enabled feature gates" } } /// Attempt to resolve the given `DefId` to an `Instance`, for the /// given generics args (`SubstsRef`), returning one of: /// * `Ok(Some(instance))` on success /// * `Ok(None)` when the `SubstsRef` are still too generic, /// and therefore don't allow finding the final `Instance` /// * `Err(ErrorReported)` when the `Instance` resolution process /// couldn't complete due to errors elsewhere - this is distinct /// from `Ok(None)` to avoid misleading diagnostics when an error /// has already been/will be emitted, for the original cause query resolve_instance( key: ty::ParamEnvAnd<'tcx, (DefId, SubstsRef<'tcx>)> ) -> Result>, ErrorReported> { desc { "resolving instance `{}`", ty::Instance::new(key.value.0, key.value.1) } } query resolve_instance_of_const_arg( key: ty::ParamEnvAnd<'tcx, (LocalDefId, DefId, SubstsRef<'tcx>)> ) -> Result>, ErrorReported> { desc { "resolving instance of the const argument `{}`", ty::Instance::new(key.value.0.to_def_id(), key.value.2), } } query normalize_opaque_types(key: &'tcx ty::List>) -> &'tcx ty::List> { desc { "normalizing opaque types in {:?}", key } } /// Checks whether a type is definitely uninhabited. This is /// conservative: for some types that are uninhabited we return `false`, /// but we only return `true` for types that are definitely uninhabited. /// `ty.conservative_is_privately_uninhabited` implies that any value of type `ty` /// will be `Abi::Uninhabited`. (Note that uninhabited types may have nonzero /// size, to account for partial initialisation. See #49298 for details.) query conservative_is_privately_uninhabited(key: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { desc { "conservatively checking if {:?} is privately uninhabited", key } } }