import std._str; import std._vec; import std._str.rustrt.sbuf; import std._vec.rustrt.vbuf; import std.map.hashmap; import std.util.option; import std.util.some; import std.util.none; import front.ast; import driver.session; import back.x86; import back.abi; import util.common; import util.common.istr; import util.common.new_def_hash; import util.common.new_str_hash; import lib.llvm.llvm; import lib.llvm.builder; import lib.llvm.llvm.ModuleRef; import lib.llvm.llvm.ValueRef; import lib.llvm.llvm.TypeRef; import lib.llvm.llvm.BuilderRef; import lib.llvm.llvm.BasicBlockRef; import lib.llvm.False; import lib.llvm.True; state obj namegen(mutable int i) { fn next(str prefix) -> str { i += 1; ret prefix + istr(i); } } type glue_fns = rec(ValueRef activate_glue, ValueRef yield_glue, ValueRef exit_task_glue, vec[ValueRef] upcall_glues); state type trans_ctxt = rec(session.session sess, ModuleRef llmod, hashmap[str, ValueRef] upcalls, hashmap[str, ValueRef] fn_names, hashmap[ast.def_id, ValueRef] fn_ids, hashmap[ast.def_id, @ast.item] items, @glue_fns glues, namegen names, str path); state type fn_ctxt = rec(ValueRef llfn, ValueRef lloutptr, ValueRef lltaskptr, hashmap[ast.def_id, ValueRef] llargs, hashmap[ast.def_id, ValueRef] lllocals, @trans_ctxt tcx); type terminator = fn(@fn_ctxt cx, builder build); tag cleanup { clean(fn(@block_ctxt cx) -> result); } state type block_ctxt = rec(BasicBlockRef llbb, builder build, terminator term, mutable vec[cleanup] cleanups, @fn_ctxt fcx); state type result = rec(mutable @block_ctxt bcx, mutable ValueRef val); fn res(@block_ctxt bcx, ValueRef val) -> result { ret rec(mutable bcx = bcx, mutable val = val); } fn ty_str(TypeRef t) -> str { ret lib.llvm.type_to_str(t); } fn val_ty(ValueRef v) -> TypeRef { ret llvm.LLVMTypeOf(v); } fn val_str(ValueRef v) -> str { ret ty_str(val_ty(v)); } // LLVM type constructors. fn T_void() -> TypeRef { // Note: For the time being llvm is kinda busted here, it has the notion // of a 'void' type that can only occur as part of the signature of a // function, but no general unit type of 0-sized value. This is, afaict, // vestigial from its C heritage, and we'll be attempting to submit a // patch upstream to fix it. In the mean time we only model function // outputs (Rust functions and C functions) using T_void, and model the // Rust general purpose nil type you can construct as 1-bit (always // zero). This makes the result incorrect for now -- things like a tuple // of 10 nil values will have 10-bit size -- but it doesn't seem like we // have any other options until it's fixed upstream. ret llvm.LLVMVoidType(); } fn T_nil() -> TypeRef { // NB: See above in T_void(). ret llvm.LLVMInt1Type(); } fn T_i1() -> TypeRef { ret llvm.LLVMInt1Type(); } fn T_i8() -> TypeRef { ret llvm.LLVMInt8Type(); } fn T_i16() -> TypeRef { ret llvm.LLVMInt16Type(); } fn T_i32() -> TypeRef { ret llvm.LLVMInt32Type(); } fn T_i64() -> TypeRef { ret llvm.LLVMInt64Type(); } fn T_f32() -> TypeRef { ret llvm.LLVMFloatType(); } fn T_f64() -> TypeRef { ret llvm.LLVMDoubleType(); } fn T_bool() -> TypeRef { ret T_i1(); } fn T_int() -> TypeRef { // FIXME: switch on target type. ret T_i32(); } fn T_char() -> TypeRef { ret T_i32(); } fn T_fn(vec[TypeRef] inputs, TypeRef output) -> TypeRef { ret llvm.LLVMFunctionType(output, _vec.buf[TypeRef](inputs), _vec.len[TypeRef](inputs), False); } fn T_ptr(TypeRef t) -> TypeRef { ret llvm.LLVMPointerType(t, 0u); } fn T_struct(vec[TypeRef] elts) -> TypeRef { ret llvm.LLVMStructType(_vec.buf[TypeRef](elts), _vec.len[TypeRef](elts), False); } fn T_opaque() -> TypeRef { ret llvm.LLVMOpaqueType(); } fn T_task() -> TypeRef { ret T_struct(vec(T_int(), // Refcount T_int(), // Delegate pointer T_int(), // Stack segment pointer T_int(), // Runtime SP T_int(), // Rust SP T_int(), // GC chain T_int(), // Domain pointer T_int() // Crate cache pointer )); } fn T_array(TypeRef t, uint n) -> TypeRef { ret llvm.LLVMArrayType(t, n); } fn T_vec(TypeRef t, uint n) -> TypeRef { ret T_struct(vec(T_int(), // Refcount T_int(), // Alloc T_int(), // Fill T_array(t, n) // Body elements )); } fn T_str(uint n) -> TypeRef { ret T_vec(T_i8(), n); } fn T_box(TypeRef t) -> TypeRef { ret T_struct(vec(T_int(), t)); } fn T_crate() -> TypeRef { ret T_struct(vec(T_int(), // ptrdiff_t image_base_off T_int(), // uintptr_t self_addr T_int(), // ptrdiff_t debug_abbrev_off T_int(), // size_t debug_abbrev_sz T_int(), // ptrdiff_t debug_info_off T_int(), // size_t debug_info_sz T_int(), // size_t activate_glue_off T_int(), // size_t yield_glue_off T_int(), // size_t unwind_glue_off T_int(), // size_t gc_glue_off T_int(), // size_t main_exit_task_glue_off T_int(), // int n_rust_syms T_int(), // int n_c_syms T_int() // int n_libs )); } fn T_double() -> TypeRef { ret llvm.LLVMDoubleType(); } fn T_taskptr() -> TypeRef { ret T_ptr(T_task()); } fn type_of(@trans_ctxt cx, @ast.ty t) -> TypeRef { alt (t.node) { case (ast.ty_nil) { ret T_nil(); } case (ast.ty_bool) { ret T_bool(); } case (ast.ty_int) { ret T_int(); } case (ast.ty_uint) { ret T_int(); } case (ast.ty_machine(?tm)) { alt (tm) { case (common.ty_i8) { ret T_i8(); } case (common.ty_u8) { ret T_i8(); } case (common.ty_i16) { ret T_i16(); } case (common.ty_u16) { ret T_i16(); } case (common.ty_i32) { ret T_i32(); } case (common.ty_u32) { ret T_i32(); } case (common.ty_i64) { ret T_i64(); } case (common.ty_u64) { ret T_i64(); } case (common.ty_f32) { ret T_f32(); } case (common.ty_f64) { ret T_f64(); } } } case (ast.ty_char) { ret T_char(); } case (ast.ty_str) { ret T_str(0u); } case (ast.ty_box(?t)) { ret T_ptr(T_box(type_of(cx, t))); } case (ast.ty_vec(?t)) { ret T_ptr(T_vec(type_of(cx, t), 0u)); } case (ast.ty_tup(?elts)) { let vec[TypeRef] tys = vec(); for (tup(bool, @ast.ty) elt in elts) { tys += type_of(cx, elt._1); } ret T_struct(tys); } case (ast.ty_path(?pth, ?def)) { // FIXME: implement. cx.sess.unimpl("ty_path in trans.type_of"); } } fail; } // LLVM constant constructors. fn C_null(TypeRef t) -> ValueRef { ret llvm.LLVMConstNull(t); } fn C_integral(int i, TypeRef t) -> ValueRef { // FIXME. We can't use LLVM.ULongLong with our existing minimal native // API, which only knows word-sized args. Lucky for us LLVM has a "take a // string encoding" version. Hilarious. Please fix to handle: // // ret llvm.LLVMConstInt(T_int(), t as LLVM.ULongLong, False); // ret llvm.LLVMConstIntOfString(t, _str.buf(istr(i)), 10); } fn C_nil() -> ValueRef { // NB: See comment above in T_void(). ret C_integral(0, T_i1()); } fn C_bool(bool b) -> ValueRef { if (b) { ret C_integral(1, T_bool()); } else { ret C_integral(0, T_bool()); } } fn C_int(int i) -> ValueRef { ret C_integral(i, T_int()); } fn C_str(@trans_ctxt cx, str s) -> ValueRef { auto sc = llvm.LLVMConstString(_str.buf(s), _str.byte_len(s), False); auto g = llvm.LLVMAddGlobal(cx.llmod, val_ty(sc), _str.buf(cx.names.next("str"))); llvm.LLVMSetInitializer(g, sc); ret g; } fn C_struct(vec[ValueRef] elts) -> ValueRef { ret llvm.LLVMConstStruct(_vec.buf[ValueRef](elts), _vec.len[ValueRef](elts), False); } fn decl_cdecl_fn(ModuleRef llmod, str name, vec[TypeRef] inputs, TypeRef output) -> ValueRef { let TypeRef llty = T_fn(inputs, output); let ValueRef llfn = llvm.LLVMAddFunction(llmod, _str.buf(name), llty); llvm.LLVMSetFunctionCallConv(llfn, lib.llvm.LLVMCCallConv); ret llfn; } fn decl_glue(ModuleRef llmod, str s) -> ValueRef { ret decl_cdecl_fn(llmod, s, vec(T_taskptr()), T_void()); } fn decl_upcall(ModuleRef llmod, uint _n) -> ValueRef { // It doesn't actually matter what type we come up with here, at the // moment, as we cast the upcall function pointers to int before passing // them to the indirect upcall-invocation glue. But eventually we'd like // to call them directly, once we have a calling convention worked out. let int n = _n as int; let str s = abi.upcall_glue_name(n); let vec[TypeRef] args = vec(T_taskptr(), // taskptr T_int()) // callee + _vec.init_elt[TypeRef](T_int(), n as uint); ret decl_cdecl_fn(llmod, s, args, T_int()); } fn get_upcall(@trans_ctxt cx, str name, int n_args) -> ValueRef { if (cx.upcalls.contains_key(name)) { ret cx.upcalls.get(name); } auto inputs = vec(T_taskptr()); inputs += _vec.init_elt[TypeRef](T_int(), n_args as uint); auto output = T_int(); auto f = decl_cdecl_fn(cx.llmod, name, inputs, output); cx.upcalls.insert(name, f); ret f; } fn trans_upcall(@block_ctxt cx, str name, vec[ValueRef] args) -> result { let int n = _vec.len[ValueRef](args) as int; let ValueRef llupcall = get_upcall(cx.fcx.tcx, name, n); llupcall = llvm.LLVMConstPointerCast(llupcall, T_int()); let ValueRef llglue = cx.fcx.tcx.glues.upcall_glues.(n); let vec[ValueRef] call_args = vec(cx.fcx.lltaskptr, llupcall); for (ValueRef a in args) { call_args += cx.build.ZExtOrBitCast(a, T_int()); } ret res(cx, cx.build.Call(llglue, call_args)); } fn trans_non_gc_free(@block_ctxt cx, ValueRef v) -> result { ret trans_upcall(cx, "upcall_free", vec(cx.build.PtrToInt(v, T_int()), C_int(0))); } fn decr_refcnt_and_if_zero(@block_ctxt cx, ValueRef box_ptr, fn(@block_ctxt cx) -> result inner, TypeRef t_else, ValueRef v_else) -> result { auto rc_ptr = cx.build.GEP(box_ptr, vec(C_int(0), C_int(abi.box_rc_field_refcnt))); auto rc = cx.build.Load(rc_ptr); rc = cx.build.Sub(rc, C_int(1)); cx.build.Store(rc, rc_ptr); auto test = cx.build.ICmp(lib.llvm.LLVMIntEQ, C_int(0), rc); auto next_cx = new_extension_block_ctxt(cx); auto then_cx = new_empty_block_ctxt(cx.fcx); auto then_res = inner(then_cx); then_res.bcx.build.Br(next_cx.llbb); cx.build.CondBr(test, then_res.bcx.llbb, next_cx.llbb); auto phi = next_cx.build.Phi(t_else, vec(v_else, then_res.val), vec(cx.llbb, then_res.bcx.llbb)); ret res(next_cx, phi); } fn trans_drop_str(@block_ctxt cx, ValueRef v) -> result { ret decr_refcnt_and_if_zero(cx, v, bind trans_non_gc_free(_, v), T_int(), C_int(0)); } fn trans_lit(@block_ctxt cx, &ast.lit lit) -> result { alt (lit.node) { case (ast.lit_int(?i)) { ret res(cx, C_int(i)); } case (ast.lit_uint(?u)) { ret res(cx, C_int(u as int)); } case (ast.lit_char(?c)) { ret res(cx, C_integral(c as int, T_char())); } case (ast.lit_bool(?b)) { ret res(cx, C_bool(b)); } case (ast.lit_nil) { ret res(cx, C_nil()); } case (ast.lit_str(?s)) { auto len = (_str.byte_len(s) as int) + 1; auto sub = trans_upcall(cx, "upcall_new_str", vec(p2i(C_str(cx.fcx.tcx, s)), C_int(len))); sub.val = sub.bcx.build.IntToPtr(sub.val, T_ptr(T_str(len as uint))); cx.cleanups += vec(clean(bind trans_drop_str(_, sub.val))); ret sub; } } } fn trans_unary(@block_ctxt cx, ast.unop op, &ast.expr e) -> result { auto sub = trans_expr(cx, e); alt (op) { case (ast.bitnot) { sub.val = cx.build.Not(sub.val); ret sub; } case (ast.not) { sub.val = cx.build.Not(sub.val); ret sub; } case (ast.neg) { // FIXME: switch by signedness. sub.val = cx.build.Neg(sub.val); ret sub; } } cx.fcx.tcx.sess.unimpl("expr variant in trans_unary"); fail; } fn trans_binary(@block_ctxt cx, ast.binop op, &ast.expr a, &ast.expr b) -> result { // First couple cases are lazy: alt (op) { case (ast.and) { // Lazy-eval and auto lhs_res = trans_expr(cx, a); auto rhs_cx = new_empty_block_ctxt(cx.fcx); auto rhs_res = trans_expr(rhs_cx, b); auto next_cx = new_extension_block_ctxt(cx); rhs_res.bcx.build.Br(next_cx.llbb); lhs_res.bcx.build.CondBr(lhs_res.val, rhs_cx.llbb, next_cx.llbb); auto phi = next_cx.build.Phi(T_bool(), vec(lhs_res.val, rhs_res.val), vec(lhs_res.bcx.llbb, rhs_res.bcx.llbb)); ret res(next_cx, phi); } case (ast.or) { // Lazy-eval or auto lhs_res = trans_expr(cx, a); auto rhs_cx = new_empty_block_ctxt(cx.fcx); auto rhs_res = trans_expr(rhs_cx, b); auto next_cx = new_extension_block_ctxt(cx); rhs_res.bcx.build.Br(next_cx.llbb); lhs_res.bcx.build.CondBr(lhs_res.val, next_cx.llbb, rhs_cx.llbb); auto phi = next_cx.build.Phi(T_bool(), vec(lhs_res.val, rhs_res.val), vec(lhs_res.bcx.llbb, rhs_res.bcx.llbb)); ret res(next_cx, phi); } } // Remaining cases are eager: auto lhs = trans_expr(cx, a); auto sub = trans_expr(lhs.bcx, b); alt (op) { case (ast.add) { sub.val = cx.build.Add(lhs.val, sub.val); ret sub; } case (ast.sub) { sub.val = cx.build.Sub(lhs.val, sub.val); ret sub; } case (ast.mul) { // FIXME: switch by signedness. sub.val = cx.build.Mul(lhs.val, sub.val); ret sub; } case (ast.div) { // FIXME: switch by signedness. sub.val = cx.build.SDiv(lhs.val, sub.val); ret sub; } case (ast.rem) { // FIXME: switch by signedness. sub.val = cx.build.SRem(lhs.val, sub.val); ret sub; } case (ast.bitor) { sub.val = cx.build.Or(lhs.val, sub.val); ret sub; } case (ast.bitand) { sub.val = cx.build.And(lhs.val, sub.val); ret sub; } case (ast.bitxor) { sub.val = cx.build.Xor(lhs.val, sub.val); ret sub; } case (ast.lsl) { sub.val = cx.build.Shl(lhs.val, sub.val); ret sub; } case (ast.lsr) { sub.val = cx.build.LShr(lhs.val, sub.val); ret sub; } case (ast.asr) { sub.val = cx.build.AShr(lhs.val, sub.val); ret sub; } case (ast.eq) { sub.val = cx.build.ICmp(lib.llvm.LLVMIntEQ, lhs.val, sub.val); ret sub; } case (ast.ne) { sub.val = cx.build.ICmp(lib.llvm.LLVMIntNE, lhs.val, sub.val); ret sub; } case (ast.lt) { // FIXME: switch by signedness. sub.val = cx.build.ICmp(lib.llvm.LLVMIntSLT, lhs.val, sub.val); ret sub; } case (ast.le) { // FIXME: switch by signedness. sub.val = cx.build.ICmp(lib.llvm.LLVMIntSLE, lhs.val, sub.val); ret sub; } case (ast.ge) { // FIXME: switch by signedness. sub.val = cx.build.ICmp(lib.llvm.LLVMIntSGE, lhs.val, sub.val); ret sub; } case (ast.gt) { // FIXME: switch by signedness. sub.val = cx.build.ICmp(lib.llvm.LLVMIntSGT, lhs.val, sub.val); ret sub; } } cx.fcx.tcx.sess.unimpl("expr variant in trans_binary"); fail; } fn trans_if(@block_ctxt cx, &ast.expr cond, &ast.block thn, &option[ast.block] els) -> result { auto cond_res = trans_expr(cx, cond); auto then_cx = new_empty_block_ctxt(cx.fcx); auto then_res = trans_block(then_cx, thn); auto next_cx = new_extension_block_ctxt(cx); then_res.bcx.build.Br(next_cx.llbb); auto phi; alt (els) { case (some[ast.block](?eblk)) { auto else_cx = new_empty_block_ctxt(cx.fcx); auto else_res = trans_block(else_cx, eblk); cond_res.bcx.build.CondBr(cond_res.val, then_cx.llbb, else_cx.llbb); else_res.bcx.build.Br(next_cx.llbb); phi = next_cx.build.Phi(T_nil(), vec(then_res.val, else_res.val), vec(then_res.bcx.llbb, else_res.bcx.llbb)); } case (_) { cond_res.bcx.build.CondBr(cond_res.val, then_cx.llbb, next_cx.llbb); phi = next_cx.build.Phi(T_nil(), vec(then_res.val, C_nil()), vec(then_res.bcx.llbb, cond_res.bcx.llbb)); } } ret res(next_cx, phi); } // The additional bool returned indicates whether it's a local // (that is represented as an alloca, hence needs a 'load' to be // used as an rval). fn trans_lval(@block_ctxt cx, &ast.expr e) -> tup(result, bool, ast.def_id) { alt (e.node) { case (ast.expr_name(?n, ?dopt, _)) { alt (dopt) { case (some[ast.def](?def)) { alt (def) { case (ast.def_arg(?did)) { ret tup(res(cx, cx.fcx.llargs.get(did)), false, did); } case (ast.def_local(?did)) { ret tup(res(cx, cx.fcx.lllocals.get(did)), true, did); } case (ast.def_fn(?did)) { ret tup(res(cx, cx.fcx.tcx.fn_ids.get(did)), false, did); } case (_) { cx.fcx.tcx.sess.unimpl("def variant in trans"); } } } case (none[ast.def]) { cx.fcx.tcx.sess.err("unresolved expr_name in trans"); } } } } cx.fcx.tcx.sess.unimpl("expr variant in trans_lval"); fail; } fn trans_exprs(@block_ctxt cx, &vec[@ast.expr] es) -> tup(@block_ctxt, vec[ValueRef]) { let vec[ValueRef] vs = vec(); let @block_ctxt bcx = cx; for (@ast.expr e in es) { auto res = trans_expr(bcx, *e); vs += res.val; bcx = res.bcx; } ret tup(bcx, vs); } fn trans_expr(@block_ctxt cx, &ast.expr e) -> result { alt (e.node) { case (ast.expr_lit(?lit, _)) { ret trans_lit(cx, *lit); } case (ast.expr_unary(?op, ?x, _)) { ret trans_unary(cx, op, *x); } case (ast.expr_binary(?op, ?x, ?y, _)) { ret trans_binary(cx, op, *x, *y); } case (ast.expr_if(?cond, ?thn, ?els, _)) { ret trans_if(cx, *cond, thn, els); } case (ast.expr_block(?blk, _)) { auto sub_cx = new_empty_block_ctxt(cx.fcx); auto next_cx = new_extension_block_ctxt(cx); auto sub = trans_block(sub_cx, blk); cx.build.Br(sub_cx.llbb); sub.bcx.build.Br(next_cx.llbb); ret res(next_cx, sub.val); } case (ast.expr_name(_,_,_)) { auto sub = trans_lval(cx, e); if (sub._1) { ret res(sub._0.bcx, cx.build.Load(sub._0.val)); } else { ret sub._0; } } case (ast.expr_assign(?dst, ?src, _)) { auto lhs_res = trans_lval(cx, *dst); check (lhs_res._1); auto rhs_res = trans_expr(lhs_res._0.bcx, *src); ret res(rhs_res.bcx, cx.build.Store(rhs_res.val, lhs_res._0.val)); } case (ast.expr_call(?f, ?args, _)) { auto f_res = trans_lval(cx, *f); check (! f_res._1); // FIXME: Revolting hack to get the type of the outptr. Can get a // variety of other ways; will wait until we have a typechecker // perhaps to pick a more tasteful one. auto outptr = cx.fcx.lloutptr; alt (cx.fcx.tcx.items.get(f_res._2).node) { case (ast.item_fn(_, ?ff, _)) { outptr = cx.build.Alloca(type_of(cx.fcx.tcx, ff.output)); } } auto args_res = trans_exprs(f_res._0.bcx, args); auto llargs = vec(outptr, cx.fcx.lltaskptr); llargs += args_res._1; ret res(args_res._0, cx.build.Call(f_res._0.val, llargs)); } } cx.fcx.tcx.sess.unimpl("expr variant in trans_expr"); fail; } fn trans_log(@block_ctxt cx, &ast.expr e) -> result { alt (e.node) { case (ast.expr_lit(?lit, _)) { alt (lit.node) { case (ast.lit_str(_)) { auto sub = trans_expr(cx, e); auto v = sub.bcx.build.PtrToInt(sub.val, T_int()); ret trans_upcall(sub.bcx, "upcall_log_str", vec(v)); } case (_) { auto sub = trans_expr(cx, e); ret trans_upcall(sub.bcx, "upcall_log_int", vec(sub.val)); } } } case (_) { auto sub = trans_expr(cx, e); ret trans_upcall(sub.bcx, "upcall_log_int", vec(sub.val)); } } } fn trans_check_expr(@block_ctxt cx, &ast.expr e) -> result { auto cond_res = trans_expr(cx, e); // FIXME: need pretty-printer. auto V_expr_str = p2i(C_str(cx.fcx.tcx, "")); auto V_filename = p2i(C_str(cx.fcx.tcx, e.span.filename)); auto V_line = e.span.lo.line as int; auto args = vec(V_expr_str, V_filename, C_int(V_line)); auto fail_cx = new_empty_block_ctxt(cx.fcx); auto fail_res = trans_upcall(fail_cx, "upcall_fail", args); auto next_cx = new_extension_block_ctxt(cx); fail_res.bcx.build.Br(next_cx.llbb); cond_res.bcx.build.CondBr(cond_res.val, next_cx.llbb, fail_cx.llbb); ret res(next_cx, C_nil()); } fn trans_ret(@block_ctxt cx, &option[@ast.expr] e) -> result { auto r = res(cx, C_nil()); alt (e) { case (some[@ast.expr](?x)) { r = trans_expr(cx, *x); r.bcx.build.Store(r.val, cx.fcx.lloutptr); } } // FIXME: if we actually ret here, the block structure falls apart; // need to do something more-clever with terminators and block cleanup. // Mean time 'ret' means 'copy result to output slot and keep going'. // r.val = r.bcx.build.RetVoid(); ret r; } fn trans_stmt(@block_ctxt cx, &ast.stmt s) -> result { auto sub = res(cx, C_nil()); alt (s.node) { case (ast.stmt_log(?a)) { sub.bcx = trans_log(cx, *a).bcx; } case (ast.stmt_check_expr(?a)) { sub.bcx = trans_check_expr(cx, *a).bcx; } case (ast.stmt_ret(?e)) { sub.bcx = trans_ret(cx, e).bcx; } case (ast.stmt_expr(?e)) { sub.bcx = trans_expr(cx, *e).bcx; } case (ast.stmt_decl(?d)) { alt (d.node) { case (ast.decl_local(?local)) { alt (local.init) { case (some[@ast.expr](?e)) { auto llptr = cx.fcx.lllocals.get(local.id); sub = trans_expr(cx, *e); sub.val = sub.bcx.build.Store(sub.val, llptr); } } } } } case (_) { cx.fcx.tcx.sess.unimpl("stmt variant"); } } ret sub; } fn new_builder(BasicBlockRef llbb) -> builder { let BuilderRef llbuild = llvm.LLVMCreateBuilder(); llvm.LLVMPositionBuilderAtEnd(llbuild, llbb); ret builder(llbuild); } // You probably don't want to use this one. See the // next three functions instead. fn new_block_ctxt(@fn_ctxt cx, terminator term, vec[cleanup] cleanups) -> @block_ctxt { let BasicBlockRef llbb = llvm.LLVMAppendBasicBlock(cx.llfn, _str.buf("")); ret @rec(llbb=llbb, build=new_builder(llbb), term=term, mutable cleanups=cleanups, fcx=cx); } // Use this when you are making a block_ctxt to replace the // current one, i.e. when chaining together sequences of stmts // or making sub-blocks you will branch back out of and wish to // "carry on" in the parent block's context. fn new_extension_block_ctxt(@block_ctxt bcx) -> @block_ctxt { ret new_block_ctxt(bcx.fcx, bcx.term, bcx.cleanups); } // Use this when you're at the top block of a function or the like. fn new_top_block_ctxt(@fn_ctxt fcx) -> @block_ctxt { fn terminate_ret_void(@fn_ctxt cx, builder build) { build.RetVoid(); } auto term = terminate_ret_void; let vec[cleanup] cleanups = vec(); ret new_block_ctxt(fcx, term, cleanups); } // Use this when you are making a block_ctxt that starts with a fresh // terminator and empty cleanups (no locals, no implicit return when // falling off the end). fn new_empty_block_ctxt(@fn_ctxt fcx) -> @block_ctxt { fn terminate_no_op(@fn_ctxt cx, builder build) { } auto term = terminate_no_op; let vec[cleanup] cleanups = vec(); ret new_block_ctxt(fcx, term, cleanups); } fn trans_block_cleanups(@block_ctxt cx) -> @block_ctxt { auto bcx = cx; for (cleanup c in cx.cleanups) { alt (c) { case (clean(?cfn)) { bcx = cfn(bcx).bcx; } } } ret bcx; } iter block_locals(&ast.block b) -> @ast.local { // FIXME: putting from inside an iter block doesn't work, so we can't // use the index here. for (@ast.stmt s in b.node.stmts) { alt (s.node) { case (ast.stmt_decl(?d)) { alt (d.node) { case (ast.decl_local(?local)) { put local; } } } } } } fn trans_block(@block_ctxt cx, &ast.block b) -> result { auto bcx = cx; for each (@ast.local local in block_locals(b)) { auto ty = T_nil(); alt (local.ty) { case (some[@ast.ty](?t)) { ty = type_of(cx.fcx.tcx, t); } case (none[@ast.ty]) { cx.fcx.tcx.sess.err("missing type for local " + local.ident); } } auto val = bcx.build.Alloca(ty); cx.fcx.lllocals.insert(local.id, val); } for (@ast.stmt s in b.node.stmts) { bcx = trans_stmt(bcx, *s).bcx; } bcx = trans_block_cleanups(bcx); bcx.term(bcx.fcx, bcx.build); ret res(bcx, C_nil()); } fn new_fn_ctxt(@trans_ctxt cx, str name, &ast._fn f, ast.def_id fid) -> @fn_ctxt { let ValueRef llfn = cx.fn_ids.get(fid); cx.fn_names.insert(cx.path, llfn); let ValueRef lloutptr = llvm.LLVMGetParam(llfn, 0u); let ValueRef lltaskptr = llvm.LLVMGetParam(llfn, 1u); let hashmap[ast.def_id, ValueRef] lllocals = new_def_hash[ValueRef](); let hashmap[ast.def_id, ValueRef] llargs = new_def_hash[ValueRef](); let uint arg_n = 2u; for (ast.arg arg in f.inputs) { llargs.insert(arg.id, llvm.LLVMGetParam(llfn, arg_n)); arg_n += 1u; } ret @rec(llfn=llfn, lloutptr=lloutptr, lltaskptr=lltaskptr, llargs=llargs, lllocals=lllocals, tcx=cx); } fn trans_fn(@trans_ctxt cx, &ast._fn f, ast.def_id fid) { auto fcx = new_fn_ctxt(cx, cx.path, f, fid); trans_block(new_top_block_ctxt(fcx), f.body); } fn trans_item(@trans_ctxt cx, &ast.item item) { alt (item.node) { case (ast.item_fn(?name, ?f, ?fid)) { auto sub_cx = @rec(path=cx.path + "." + name with *cx); trans_fn(sub_cx, f, fid); } case (ast.item_mod(?name, ?m, _)) { auto sub_cx = @rec(path=cx.path + "." + name with *cx); trans_mod(sub_cx, m); } } } fn trans_mod(@trans_ctxt cx, &ast._mod m) { for (@ast.item item in m.items) { trans_item(cx, *item); } } fn collect_item(&@trans_ctxt cx, @ast.item i) -> @trans_ctxt { alt (i.node) { case (ast.item_fn(?name, ?f, ?fid)) { cx.items.insert(fid, i); let vec[TypeRef] args = vec(T_ptr(type_of(cx, f.output)), // outptr. T_taskptr() // taskptr ); let vec[TypeRef] T_explicit_args = vec(); for (ast.arg arg in f.inputs) { T_explicit_args += type_of(cx, arg.ty); } args += T_explicit_args; let str s = cx.names.next("_rust_fn") + "." + name; let ValueRef llfn = decl_cdecl_fn(cx.llmod, s, args, T_void()); cx.fn_ids.insert(fid, llfn); } case (ast.item_mod(?name, ?m, ?mid)) { cx.items.insert(mid, i); } } ret cx; } fn collect_items(@trans_ctxt cx, @ast.crate crate) { let fold.ast_fold[@trans_ctxt] fld = fold.new_identity_fold[@trans_ctxt](); fld = @rec( update_env_for_item = bind collect_item(_,_) with *fld ); fold.fold_crate[@trans_ctxt](cx, fld, crate); } fn p2i(ValueRef v) -> ValueRef { ret llvm.LLVMConstPtrToInt(v, T_int()); } fn trans_exit_task_glue(@trans_ctxt cx) { let vec[TypeRef] T_args = vec(); let vec[ValueRef] V_args = vec(); auto llfn = cx.glues.exit_task_glue; let ValueRef lloutptr = C_null(T_int()); let ValueRef lltaskptr = llvm.LLVMGetParam(llfn, 0u); auto fcx = @rec(llfn=llfn, lloutptr=lloutptr, lltaskptr=lltaskptr, llargs=new_def_hash[ValueRef](), lllocals=new_def_hash[ValueRef](), tcx=cx); auto bcx = new_top_block_ctxt(fcx); trans_upcall(bcx, "upcall_exit", V_args); bcx.term(fcx, bcx.build); } fn crate_constant(@trans_ctxt cx) -> ValueRef { let ValueRef crate_ptr = llvm.LLVMAddGlobal(cx.llmod, T_crate(), _str.buf("rust_crate")); let ValueRef crate_addr = p2i(crate_ptr); let ValueRef activate_glue_off = llvm.LLVMConstSub(p2i(cx.glues.activate_glue), crate_addr); let ValueRef yield_glue_off = llvm.LLVMConstSub(p2i(cx.glues.yield_glue), crate_addr); let ValueRef exit_task_glue_off = llvm.LLVMConstSub(p2i(cx.glues.exit_task_glue), crate_addr); let ValueRef crate_val = C_struct(vec(C_null(T_int()), // ptrdiff_t image_base_off p2i(crate_ptr), // uintptr_t self_addr C_null(T_int()), // ptrdiff_t debug_abbrev_off C_null(T_int()), // size_t debug_abbrev_sz C_null(T_int()), // ptrdiff_t debug_info_off C_null(T_int()), // size_t debug_info_sz activate_glue_off, // size_t activate_glue_off yield_glue_off, // size_t yield_glue_off C_null(T_int()), // size_t unwind_glue_off C_null(T_int()), // size_t gc_glue_off exit_task_glue_off, // size_t main_exit_task_glue_off C_null(T_int()), // int n_rust_syms C_null(T_int()), // int n_c_syms C_null(T_int()) // int n_libs )); llvm.LLVMSetInitializer(crate_ptr, crate_val); ret crate_ptr; } fn trans_main_fn(@trans_ctxt cx, ValueRef llcrate) { auto T_main_args = vec(T_int(), T_int()); auto T_rust_start_args = vec(T_int(), T_int(), T_int(), T_int()); auto llmain = decl_cdecl_fn(cx.llmod, "main", T_main_args, T_int()); auto llrust_start = decl_cdecl_fn(cx.llmod, "rust_start", T_rust_start_args, T_int()); auto llargc = llvm.LLVMGetParam(llmain, 0u); auto llargv = llvm.LLVMGetParam(llmain, 1u); auto llrust_main = cx.fn_names.get("_rust.main"); // // Emit the moral equivalent of: // // main(int argc, char **argv) { // rust_start(&_rust.main, &crate, argc, argv); // } // let BasicBlockRef llbb = llvm.LLVMAppendBasicBlock(llmain, _str.buf("")); auto b = new_builder(llbb); auto start_args = vec(p2i(llrust_main), p2i(llcrate), llargc, llargv); b.Ret(b.Call(llrust_start, start_args)); } fn trans_crate(session.session sess, @ast.crate crate, str output) { auto llmod = llvm.LLVMModuleCreateWithNameInContext(_str.buf("rust_out"), llvm.LLVMGetGlobalContext()); llvm.LLVMSetModuleInlineAsm(llmod, _str.buf(x86.get_module_asm())); auto glues = @rec(activate_glue = decl_glue(llmod, abi.activate_glue_name()), yield_glue = decl_glue(llmod, abi.yield_glue_name()), /* * Note: the signature passed to decl_cdecl_fn here * looks unusual because it is. It corresponds neither * to an upcall signature nor a normal rust-ABI * signature. In fact it is a fake signature, that * exists solely to acquire the task pointer as an * argument to the upcall. It so happens that the * runtime sets up the task pointer as the sole incoming * argument to the frame that we return into when * returning to the exit task glue. So this is the * signature required to retrieve it. */ exit_task_glue = decl_cdecl_fn(llmod, abi.exit_task_glue_name(), vec(T_taskptr()), T_void()), upcall_glues = _vec.init_fn[ValueRef](bind decl_upcall(llmod, _), abi.n_upcall_glues as uint)); auto cx = @rec(sess = sess, llmod = llmod, upcalls = new_str_hash[ValueRef](), fn_names = new_str_hash[ValueRef](), fn_ids = new_def_hash[ValueRef](), items = new_def_hash[@ast.item](), glues = glues, names = namegen(0), path = "_rust"); collect_items(cx, crate); trans_mod(cx, crate.node.module); trans_exit_task_glue(cx); trans_main_fn(cx, crate_constant(cx)); llvm.LLVMWriteBitcodeToFile(llmod, _str.buf(output)); llvm.LLVMDisposeModule(llmod); } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C ../.. 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: //