//! MIR datatypes and passes. See the [rustc dev guide] for more info. //! //! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/mir/index.html use crate::mir::coverage::{CodeRegion, CoverageKind}; use crate::mir::interpret::{Allocation, ConstValue, GlobalAlloc, Scalar}; use crate::mir::visit::MirVisitable; use crate::ty::adjustment::PointerCast; use crate::ty::codec::{TyDecoder, TyEncoder}; use crate::ty::fold::{FallibleTypeFolder, TypeFoldable, TypeVisitor}; use crate::ty::print::{FmtPrinter, Printer}; use crate::ty::subst::{Subst, SubstsRef}; use crate::ty::{self, List, Ty, TyCtxt}; use crate::ty::{AdtDef, InstanceDef, Region, ScalarInt, UserTypeAnnotationIndex}; use rustc_errors::ErrorGuaranteed; use rustc_hir::def::{CtorKind, Namespace}; use rustc_hir::def_id::{DefId, CRATE_DEF_INDEX}; use rustc_hir::{self, GeneratorKind}; use rustc_hir::{self as hir, HirId}; use rustc_session::Session; use rustc_target::abi::{Size, VariantIdx}; use polonius_engine::Atom; pub use rustc_ast::Mutability; use rustc_data_structures::fx::FxHashSet; use rustc_data_structures::graph::dominators::{dominators, Dominators}; use rustc_data_structures::graph::{self, GraphSuccessors}; use rustc_index::bit_set::BitMatrix; use rustc_index::vec::{Idx, IndexVec}; use rustc_serialize::{Decodable, Encodable}; use rustc_span::symbol::Symbol; use rustc_span::{Span, DUMMY_SP}; use rustc_target::asm::InlineAsmRegOrRegClass; use either::Either; use std::borrow::Cow; use std::convert::TryInto; use std::fmt::{self, Debug, Display, Formatter, Write}; use std::ops::{ControlFlow, Index, IndexMut}; use std::slice; use std::{iter, mem, option}; use self::graph_cyclic_cache::GraphIsCyclicCache; use self::predecessors::{PredecessorCache, Predecessors}; pub use self::query::*; pub mod coverage; mod generic_graph; pub mod generic_graphviz; mod graph_cyclic_cache; pub mod graphviz; pub mod interpret; pub mod mono; pub mod patch; mod predecessors; pub mod pretty; mod query; pub mod spanview; pub mod tcx; pub mod terminator; pub use terminator::*; pub mod traversal; mod type_foldable; pub mod visit; pub use self::generic_graph::graphviz_safe_def_name; pub use self::graphviz::write_mir_graphviz; pub use self::pretty::{ create_dump_file, display_allocation, dump_enabled, dump_mir, write_mir_pretty, PassWhere, }; /// Types for locals pub type LocalDecls<'tcx> = IndexVec>; pub trait HasLocalDecls<'tcx> { fn local_decls(&self) -> &LocalDecls<'tcx>; } impl<'tcx> HasLocalDecls<'tcx> for LocalDecls<'tcx> { #[inline] fn local_decls(&self) -> &LocalDecls<'tcx> { self } } impl<'tcx> HasLocalDecls<'tcx> for Body<'tcx> { #[inline] fn local_decls(&self) -> &LocalDecls<'tcx> { &self.local_decls } } /// A streamlined trait that you can implement to create a pass; the /// pass will be named after the type, and it will consist of a main /// loop that goes over each available MIR and applies `run_pass`. pub trait MirPass<'tcx> { fn name(&self) -> Cow<'_, str> { let name = std::any::type_name::(); if let Some(tail) = name.rfind(':') { Cow::from(&name[tail + 1..]) } else { Cow::from(name) } } /// Returns `true` if this pass is enabled with the current combination of compiler flags. fn is_enabled(&self, _sess: &Session) -> bool { true } fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>); /// If this pass causes the MIR to enter a new phase, return that phase. fn phase_change(&self) -> Option { None } fn is_mir_dump_enabled(&self) -> bool { true } } /// The various "big phases" that MIR goes through. /// /// These phases all describe dialects of MIR. Since all MIR uses the same datastructures, the /// dialects forbid certain variants or values in certain phases. /// /// Note: Each phase's validation checks all invariants of the *previous* phases' dialects. A phase /// that changes the dialect documents what invariants must be upheld *after* that phase finishes. /// /// Warning: ordering of variants is significant. #[derive(Copy, Clone, TyEncodable, TyDecodable, Debug, PartialEq, Eq, PartialOrd, Ord)] #[derive(HashStable)] pub enum MirPhase { Build = 0, // FIXME(oli-obk): it's unclear whether we still need this phase (and its corresponding query). // We used to have this for pre-miri MIR based const eval. Const = 1, /// This phase checks the MIR for promotable elements and takes them out of the main MIR body /// by creating a new MIR body per promoted element. After this phase (and thus the termination /// of the `mir_promoted` query), these promoted elements are available in the `promoted_mir` /// query. ConstPromotion = 2, /// After this phase /// * the only `AggregateKind`s allowed are `Array` and `Generator`, /// * `DropAndReplace` is gone for good /// * `Drop` now uses explicit drop flags visible in the MIR and reaching a `Drop` terminator /// means that the auto-generated drop glue will be invoked. DropLowering = 3, /// After this phase, generators are explicit state machines (no more `Yield`). /// `AggregateKind::Generator` is gone for good. GeneratorLowering = 4, Optimization = 5, } impl MirPhase { /// Gets the index of the current MirPhase within the set of all `MirPhase`s. pub fn phase_index(&self) -> usize { *self as usize } } /// Where a specific `mir::Body` comes from. #[derive(Copy, Clone, Debug, PartialEq, Eq)] #[derive(HashStable, TyEncodable, TyDecodable, TypeFoldable)] pub struct MirSource<'tcx> { pub instance: InstanceDef<'tcx>, /// If `Some`, this is a promoted rvalue within the parent function. pub promoted: Option, } impl<'tcx> MirSource<'tcx> { pub fn item(def_id: DefId) -> Self { MirSource { instance: InstanceDef::Item(ty::WithOptConstParam::unknown(def_id)), promoted: None, } } pub fn from_instance(instance: InstanceDef<'tcx>) -> Self { MirSource { instance, promoted: None } } pub fn with_opt_param(self) -> ty::WithOptConstParam { self.instance.with_opt_param() } #[inline] pub fn def_id(&self) -> DefId { self.instance.def_id() } } #[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable)] pub struct GeneratorInfo<'tcx> { /// The yield type of the function, if it is a generator. pub yield_ty: Option>, /// Generator drop glue. pub generator_drop: Option>, /// The layout of a generator. Produced by the state transformation. pub generator_layout: Option>, /// If this is a generator then record the type of source expression that caused this generator /// to be created. pub generator_kind: GeneratorKind, } /// The lowered representation of a single function. #[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable)] pub struct Body<'tcx> { /// A list of basic blocks. References to basic block use a newtyped index type [`BasicBlock`] /// that indexes into this vector. basic_blocks: IndexVec>, /// Records how far through the "desugaring and optimization" process this particular /// MIR has traversed. This is particularly useful when inlining, since in that context /// we instantiate the promoted constants and add them to our promoted vector -- but those /// promoted items have already been optimized, whereas ours have not. This field allows /// us to see the difference and forego optimization on the inlined promoted items. pub phase: MirPhase, pub source: MirSource<'tcx>, /// A list of source scopes; these are referenced by statements /// and used for debuginfo. Indexed by a `SourceScope`. pub source_scopes: IndexVec>, pub generator: Option>>, /// Declarations of locals. /// /// The first local is the return value pointer, followed by `arg_count` /// locals for the function arguments, followed by any user-declared /// variables and temporaries. pub local_decls: LocalDecls<'tcx>, /// User type annotations. pub user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>, /// The number of arguments this function takes. /// /// Starting at local 1, `arg_count` locals will be provided by the caller /// and can be assumed to be initialized. /// /// If this MIR was built for a constant, this will be 0. pub arg_count: usize, /// Mark an argument local (which must be a tuple) as getting passed as /// its individual components at the LLVM level. /// /// This is used for the "rust-call" ABI. pub spread_arg: Option, /// Debug information pertaining to user variables, including captures. pub var_debug_info: Vec>, /// A span representing this MIR, for error reporting. pub span: Span, /// Constants that are required to evaluate successfully for this MIR to be well-formed. /// We hold in this field all the constants we are not able to evaluate yet. pub required_consts: Vec>, /// Does this body use generic parameters. This is used for the `ConstEvaluatable` check. /// /// Note that this does not actually mean that this body is not computable right now. /// The repeat count in the following example is polymorphic, but can still be evaluated /// without knowing anything about the type parameter `T`. /// /// ```rust /// fn test() { /// let _ = [0; std::mem::size_of::<*mut T>()]; /// } /// ``` /// /// **WARNING**: Do not change this flags after the MIR was originally created, even if an optimization /// removed the last mention of all generic params. We do not want to rely on optimizations and /// potentially allow things like `[u8; std::mem::size_of::() * 0]` due to this. pub is_polymorphic: bool, predecessor_cache: PredecessorCache, is_cyclic: GraphIsCyclicCache, pub tainted_by_errors: Option, } impl<'tcx> Body<'tcx> { pub fn new( source: MirSource<'tcx>, basic_blocks: IndexVec>, source_scopes: IndexVec>, local_decls: LocalDecls<'tcx>, user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>, arg_count: usize, var_debug_info: Vec>, span: Span, generator_kind: Option, tainted_by_errors: Option, ) -> Self { // We need `arg_count` locals, and one for the return place. assert!( local_decls.len() > arg_count, "expected at least {} locals, got {}", arg_count + 1, local_decls.len() ); let mut body = Body { phase: MirPhase::Build, source, basic_blocks, source_scopes, generator: generator_kind.map(|generator_kind| { Box::new(GeneratorInfo { yield_ty: None, generator_drop: None, generator_layout: None, generator_kind, }) }), local_decls, user_type_annotations, arg_count, spread_arg: None, var_debug_info, span, required_consts: Vec::new(), is_polymorphic: false, predecessor_cache: PredecessorCache::new(), is_cyclic: GraphIsCyclicCache::new(), tainted_by_errors, }; body.is_polymorphic = body.has_param_types_or_consts(); body } /// Returns a partially initialized MIR body containing only a list of basic blocks. /// /// The returned MIR contains no `LocalDecl`s (even for the return place) or source scopes. It /// is only useful for testing but cannot be `#[cfg(test)]` because it is used in a different /// crate. pub fn new_cfg_only(basic_blocks: IndexVec>) -> Self { let mut body = Body { phase: MirPhase::Build, source: MirSource::item(DefId::local(CRATE_DEF_INDEX)), basic_blocks, source_scopes: IndexVec::new(), generator: None, local_decls: IndexVec::new(), user_type_annotations: IndexVec::new(), arg_count: 0, spread_arg: None, span: DUMMY_SP, required_consts: Vec::new(), var_debug_info: Vec::new(), is_polymorphic: false, predecessor_cache: PredecessorCache::new(), is_cyclic: GraphIsCyclicCache::new(), tainted_by_errors: None, }; body.is_polymorphic = body.has_param_types_or_consts(); body } #[inline] pub fn basic_blocks(&self) -> &IndexVec> { &self.basic_blocks } #[inline] pub fn basic_blocks_mut(&mut self) -> &mut IndexVec> { // Because the user could mutate basic block terminators via this reference, we need to // invalidate the caches. // // FIXME: Use a finer-grained API for this, so only transformations that alter terminators // invalidate the caches. self.predecessor_cache.invalidate(); self.is_cyclic.invalidate(); &mut self.basic_blocks } #[inline] pub fn basic_blocks_and_local_decls_mut( &mut self, ) -> (&mut IndexVec>, &mut LocalDecls<'tcx>) { self.predecessor_cache.invalidate(); self.is_cyclic.invalidate(); (&mut self.basic_blocks, &mut self.local_decls) } #[inline] pub fn basic_blocks_local_decls_mut_and_var_debug_info( &mut self, ) -> ( &mut IndexVec>, &mut LocalDecls<'tcx>, &mut Vec>, ) { self.predecessor_cache.invalidate(); self.is_cyclic.invalidate(); (&mut self.basic_blocks, &mut self.local_decls, &mut self.var_debug_info) } /// Returns `true` if a cycle exists in the control-flow graph that is reachable from the /// `START_BLOCK`. pub fn is_cfg_cyclic(&self) -> bool { self.is_cyclic.is_cyclic(self) } #[inline] pub fn local_kind(&self, local: Local) -> LocalKind { let index = local.as_usize(); if index == 0 { debug_assert!( self.local_decls[local].mutability == Mutability::Mut, "return place should be mutable" ); LocalKind::ReturnPointer } else if index < self.arg_count + 1 { LocalKind::Arg } else if self.local_decls[local].is_user_variable() { LocalKind::Var } else { LocalKind::Temp } } /// Returns an iterator over all user-declared mutable locals. #[inline] pub fn mut_vars_iter<'a>(&'a self) -> impl Iterator + 'a { (self.arg_count + 1..self.local_decls.len()).filter_map(move |index| { let local = Local::new(index); let decl = &self.local_decls[local]; if decl.is_user_variable() && decl.mutability == Mutability::Mut { Some(local) } else { None } }) } /// Returns an iterator over all user-declared mutable arguments and locals. #[inline] pub fn mut_vars_and_args_iter<'a>(&'a self) -> impl Iterator + 'a { (1..self.local_decls.len()).filter_map(move |index| { let local = Local::new(index); let decl = &self.local_decls[local]; if (decl.is_user_variable() || index < self.arg_count + 1) && decl.mutability == Mutability::Mut { Some(local) } else { None } }) } /// Returns an iterator over all function arguments. #[inline] pub fn args_iter(&self) -> impl Iterator + ExactSizeIterator { (1..self.arg_count + 1).map(Local::new) } /// Returns an iterator over all user-defined variables and compiler-generated temporaries (all /// locals that are neither arguments nor the return place). #[inline] pub fn vars_and_temps_iter( &self, ) -> impl DoubleEndedIterator + ExactSizeIterator { (self.arg_count + 1..self.local_decls.len()).map(Local::new) } #[inline] pub fn drain_vars_and_temps<'a>(&'a mut self) -> impl Iterator> + 'a { self.local_decls.drain(self.arg_count + 1..) } /// Changes a statement to a nop. This is both faster than deleting instructions and avoids /// invalidating statement indices in `Location`s. pub fn make_statement_nop(&mut self, location: Location) { let block = &mut self.basic_blocks[location.block]; debug_assert!(location.statement_index < block.statements.len()); block.statements[location.statement_index].make_nop() } /// Returns the source info associated with `location`. pub fn source_info(&self, location: Location) -> &SourceInfo { let block = &self[location.block]; let stmts = &block.statements; let idx = location.statement_index; if idx < stmts.len() { &stmts[idx].source_info } else { assert_eq!(idx, stmts.len()); &block.terminator().source_info } } /// Returns the return type; it always return first element from `local_decls` array. #[inline] pub fn return_ty(&self) -> Ty<'tcx> { self.local_decls[RETURN_PLACE].ty } /// Gets the location of the terminator for the given block. #[inline] pub fn terminator_loc(&self, bb: BasicBlock) -> Location { Location { block: bb, statement_index: self[bb].statements.len() } } pub fn stmt_at(&self, location: Location) -> Either<&Statement<'tcx>, &Terminator<'tcx>> { let Location { block, statement_index } = location; let block_data = &self.basic_blocks[block]; block_data .statements .get(statement_index) .map(Either::Left) .unwrap_or_else(|| Either::Right(block_data.terminator())) } #[inline] pub fn predecessors(&self) -> &Predecessors { self.predecessor_cache.compute(&self.basic_blocks) } #[inline] pub fn dominators(&self) -> Dominators { dominators(self) } #[inline] pub fn yield_ty(&self) -> Option> { self.generator.as_ref().and_then(|generator| generator.yield_ty) } #[inline] pub fn generator_layout(&self) -> Option<&GeneratorLayout<'tcx>> { self.generator.as_ref().and_then(|generator| generator.generator_layout.as_ref()) } #[inline] pub fn generator_drop(&self) -> Option<&Body<'tcx>> { self.generator.as_ref().and_then(|generator| generator.generator_drop.as_ref()) } #[inline] pub fn generator_kind(&self) -> Option { self.generator.as_ref().map(|generator| generator.generator_kind) } } #[derive(Copy, Clone, PartialEq, Eq, Debug, TyEncodable, TyDecodable, HashStable)] pub enum Safety { Safe, /// Unsafe because of compiler-generated unsafe code, like `await` desugaring BuiltinUnsafe, /// Unsafe because of an unsafe fn FnUnsafe, /// Unsafe because of an `unsafe` block ExplicitUnsafe(hir::HirId), } impl<'tcx> Index for Body<'tcx> { type Output = BasicBlockData<'tcx>; #[inline] fn index(&self, index: BasicBlock) -> &BasicBlockData<'tcx> { &self.basic_blocks()[index] } } impl<'tcx> IndexMut for Body<'tcx> { #[inline] fn index_mut(&mut self, index: BasicBlock) -> &mut BasicBlockData<'tcx> { &mut self.basic_blocks_mut()[index] } } #[derive(Copy, Clone, Debug, HashStable, TypeFoldable)] pub enum ClearCrossCrate { Clear, Set(T), } impl ClearCrossCrate { pub fn as_ref(&self) -> ClearCrossCrate<&T> { match self { ClearCrossCrate::Clear => ClearCrossCrate::Clear, ClearCrossCrate::Set(v) => ClearCrossCrate::Set(v), } } pub fn assert_crate_local(self) -> T { match self { ClearCrossCrate::Clear => bug!("unwrapping cross-crate data"), ClearCrossCrate::Set(v) => v, } } } const TAG_CLEAR_CROSS_CRATE_CLEAR: u8 = 0; const TAG_CLEAR_CROSS_CRATE_SET: u8 = 1; impl<'tcx, E: TyEncoder<'tcx>, T: Encodable> Encodable for ClearCrossCrate { #[inline] fn encode(&self, e: &mut E) -> Result<(), E::Error> { if E::CLEAR_CROSS_CRATE { return Ok(()); } match *self { ClearCrossCrate::Clear => TAG_CLEAR_CROSS_CRATE_CLEAR.encode(e), ClearCrossCrate::Set(ref val) => { TAG_CLEAR_CROSS_CRATE_SET.encode(e)?; val.encode(e) } } } } impl<'tcx, D: TyDecoder<'tcx>, T: Decodable> Decodable for ClearCrossCrate { #[inline] fn decode(d: &mut D) -> ClearCrossCrate { if D::CLEAR_CROSS_CRATE { return ClearCrossCrate::Clear; } let discr = u8::decode(d); match discr { TAG_CLEAR_CROSS_CRATE_CLEAR => ClearCrossCrate::Clear, TAG_CLEAR_CROSS_CRATE_SET => { let val = T::decode(d); ClearCrossCrate::Set(val) } tag => panic!("Invalid tag for ClearCrossCrate: {:?}", tag), } } } /// Grouped information about the source code origin of a MIR entity. /// Intended to be inspected by diagnostics and debuginfo. /// Most passes can work with it as a whole, within a single function. // The unofficial Cranelift backend, at least as of #65828, needs `SourceInfo` to implement `Eq` and // `Hash`. Please ping @bjorn3 if removing them. #[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)] pub struct SourceInfo { /// The source span for the AST pertaining to this MIR entity. pub span: Span, /// The source scope, keeping track of which bindings can be /// seen by debuginfo, active lint levels, `unsafe {...}`, etc. pub scope: SourceScope, } impl SourceInfo { #[inline] pub fn outermost(span: Span) -> Self { SourceInfo { span, scope: OUTERMOST_SOURCE_SCOPE } } } /////////////////////////////////////////////////////////////////////////// // Borrow kinds #[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, TyEncodable, TyDecodable)] #[derive(Hash, HashStable)] pub enum BorrowKind { /// Data must be immutable and is aliasable. Shared, /// The immediately borrowed place must be immutable, but projections from /// it don't need to be. For example, a shallow borrow of `a.b` doesn't /// conflict with a mutable borrow of `a.b.c`. /// /// This is used when lowering matches: when matching on a place we want to /// ensure that place have the same value from the start of the match until /// an arm is selected. This prevents this code from compiling: /// /// let mut x = &Some(0); /// match *x { /// None => (), /// Some(_) if { x = &None; false } => (), /// Some(_) => (), /// } /// /// This can't be a shared borrow because mutably borrowing (*x as Some).0 /// should not prevent `if let None = x { ... }`, for example, because the /// mutating `(*x as Some).0` can't affect the discriminant of `x`. /// We can also report errors with this kind of borrow differently. Shallow, /// Data must be immutable but not aliasable. This kind of borrow /// cannot currently be expressed by the user and is used only in /// implicit closure bindings. It is needed when the closure is /// borrowing or mutating a mutable referent, e.g.: /// /// let x: &mut isize = ...; /// let y = || *x += 5; /// /// If we were to try to translate this closure into a more explicit /// form, we'd encounter an error with the code as written: /// /// struct Env { x: & &mut isize } /// let x: &mut isize = ...; /// let y = (&mut Env { &x }, fn_ptr); // Closure is pair of env and fn /// fn fn_ptr(env: &mut Env) { **env.x += 5; } /// /// This is then illegal because you cannot mutate an `&mut` found /// in an aliasable location. To solve, you'd have to translate with /// an `&mut` borrow: /// /// struct Env { x: &mut &mut isize } /// let x: &mut isize = ...; /// let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x /// fn fn_ptr(env: &mut Env) { **env.x += 5; } /// /// Now the assignment to `**env.x` is legal, but creating a /// mutable pointer to `x` is not because `x` is not mutable. We /// could fix this by declaring `x` as `let mut x`. This is ok in /// user code, if awkward, but extra weird for closures, since the /// borrow is hidden. /// /// So we introduce a "unique imm" borrow -- the referent is /// immutable, but not aliasable. This solves the problem. For /// simplicity, we don't give users the way to express this /// borrow, it's just used when translating closures. Unique, /// Data is mutable and not aliasable. Mut { /// `true` if this borrow arose from method-call auto-ref /// (i.e., `adjustment::Adjust::Borrow`). allow_two_phase_borrow: bool, }, } impl BorrowKind { pub fn allows_two_phase_borrow(&self) -> bool { match *self { BorrowKind::Shared | BorrowKind::Shallow | BorrowKind::Unique => false, BorrowKind::Mut { allow_two_phase_borrow } => allow_two_phase_borrow, } } pub fn describe_mutability(&self) -> String { match *self { BorrowKind::Shared | BorrowKind::Shallow | BorrowKind::Unique => { "immutable".to_string() } BorrowKind::Mut { .. } => "mutable".to_string(), } } } /////////////////////////////////////////////////////////////////////////// // Variables and temps rustc_index::newtype_index! { pub struct Local { derive [HashStable] DEBUG_FORMAT = "_{}", const RETURN_PLACE = 0, } } impl Atom for Local { fn index(self) -> usize { Idx::index(self) } } /// Classifies locals into categories. See `Body::local_kind`. #[derive(Clone, Copy, PartialEq, Eq, Debug, HashStable)] pub enum LocalKind { /// User-declared variable binding. Var, /// Compiler-introduced temporary. Temp, /// Function argument. Arg, /// Location of function's return value. ReturnPointer, } #[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)] pub struct VarBindingForm<'tcx> { /// Is variable bound via `x`, `mut x`, `ref x`, or `ref mut x`? pub binding_mode: ty::BindingMode, /// If an explicit type was provided for this variable binding, /// this holds the source Span of that type. /// /// NOTE: if you want to change this to a `HirId`, be wary that /// doing so breaks incremental compilation (as of this writing), /// while a `Span` does not cause our tests to fail. pub opt_ty_info: Option, /// Place of the RHS of the =, or the subject of the `match` where this /// variable is initialized. None in the case of `let PATTERN;`. /// Some((None, ..)) in the case of and `let [mut] x = ...` because /// (a) the right-hand side isn't evaluated as a place expression. /// (b) it gives a way to separate this case from the remaining cases /// for diagnostics. pub opt_match_place: Option<(Option>, Span)>, /// The span of the pattern in which this variable was bound. pub pat_span: Span, } #[derive(Clone, Debug, TyEncodable, TyDecodable)] pub enum BindingForm<'tcx> { /// This is a binding for a non-`self` binding, or a `self` that has an explicit type. Var(VarBindingForm<'tcx>), /// Binding for a `self`/`&self`/`&mut self` binding where the type is implicit. ImplicitSelf(ImplicitSelfKind), /// Reference used in a guard expression to ensure immutability. RefForGuard, } /// Represents what type of implicit self a function has, if any. #[derive(Clone, Copy, PartialEq, Debug, TyEncodable, TyDecodable, HashStable)] pub enum ImplicitSelfKind { /// Represents a `fn x(self);`. Imm, /// Represents a `fn x(mut self);`. Mut, /// Represents a `fn x(&self);`. ImmRef, /// Represents a `fn x(&mut self);`. MutRef, /// Represents when a function does not have a self argument or /// when a function has a `self: X` argument. None, } TrivialTypeFoldableAndLiftImpls! { BindingForm<'tcx>, } mod binding_form_impl { use rustc_data_structures::stable_hasher::{HashStable, StableHasher}; use rustc_query_system::ich::StableHashingContext; impl<'a, 'tcx> HashStable> for super::BindingForm<'tcx> { fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) { use super::BindingForm::*; std::mem::discriminant(self).hash_stable(hcx, hasher); match self { Var(binding) => binding.hash_stable(hcx, hasher), ImplicitSelf(kind) => kind.hash_stable(hcx, hasher), RefForGuard => (), } } } } /// `BlockTailInfo` is attached to the `LocalDecl` for temporaries /// created during evaluation of expressions in a block tail /// expression; that is, a block like `{ STMT_1; STMT_2; EXPR }`. /// /// It is used to improve diagnostics when such temporaries are /// involved in borrow_check errors, e.g., explanations of where the /// temporaries come from, when their destructors are run, and/or how /// one might revise the code to satisfy the borrow checker's rules. #[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)] pub struct BlockTailInfo { /// If `true`, then the value resulting from evaluating this tail /// expression is ignored by the block's expression context. /// /// Examples include `{ ...; tail };` and `let _ = { ...; tail };` /// but not e.g., `let _x = { ...; tail };` pub tail_result_is_ignored: bool, /// `Span` of the tail expression. pub span: Span, } /// A MIR local. /// /// This can be a binding declared by the user, a temporary inserted by the compiler, a function /// argument, or the return place. #[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)] pub struct LocalDecl<'tcx> { /// Whether this is a mutable binding (i.e., `let x` or `let mut x`). /// /// Temporaries and the return place are always mutable. pub mutability: Mutability, // FIXME(matthewjasper) Don't store in this in `Body` pub local_info: Option>>, /// `true` if this is an internal local. /// /// These locals are not based on types in the source code and are only used /// for a few desugarings at the moment. /// /// The generator transformation will sanity check the locals which are live /// across a suspension point against the type components of the generator /// which type checking knows are live across a suspension point. We need to /// flag drop flags to avoid triggering this check as they are introduced /// outside of type inference. /// /// This should be sound because the drop flags are fully algebraic, and /// therefore don't affect the auto-trait or outlives properties of the /// generator. pub internal: bool, /// If this local is a temporary and `is_block_tail` is `Some`, /// then it is a temporary created for evaluation of some /// subexpression of some block's tail expression (with no /// intervening statement context). // FIXME(matthewjasper) Don't store in this in `Body` pub is_block_tail: Option, /// The type of this local. pub ty: Ty<'tcx>, /// If the user manually ascribed a type to this variable, /// e.g., via `let x: T`, then we carry that type here. The MIR /// borrow checker needs this information since it can affect /// region inference. // FIXME(matthewjasper) Don't store in this in `Body` pub user_ty: Option>, /// The *syntactic* (i.e., not visibility) source scope the local is defined /// in. If the local was defined in a let-statement, this /// is *within* the let-statement, rather than outside /// of it. /// /// This is needed because the visibility source scope of locals within /// a let-statement is weird. /// /// The reason is that we want the local to be *within* the let-statement /// for lint purposes, but we want the local to be *after* the let-statement /// for names-in-scope purposes. /// /// That's it, if we have a let-statement like the one in this /// function: /// /// ``` /// fn foo(x: &str) { /// #[allow(unused_mut)] /// let mut x: u32 = { // <- one unused mut /// let mut y: u32 = x.parse().unwrap(); /// y + 2 /// }; /// drop(x); /// } /// ``` /// /// Then, from a lint point of view, the declaration of `x: u32` /// (and `y: u32`) are within the `#[allow(unused_mut)]` scope - the /// lint scopes are the same as the AST/HIR nesting. /// /// However, from a name lookup point of view, the scopes look more like /// as if the let-statements were `match` expressions: /// /// ``` /// fn foo(x: &str) { /// match { /// match x.parse().unwrap() { /// y => y + 2 /// } /// } { /// x => drop(x) /// }; /// } /// ``` /// /// We care about the name-lookup scopes for debuginfo - if the /// debuginfo instruction pointer is at the call to `x.parse()`, we /// want `x` to refer to `x: &str`, but if it is at the call to /// `drop(x)`, we want it to refer to `x: u32`. /// /// To allow both uses to work, we need to have more than a single scope /// for a local. We have the `source_info.scope` represent the "syntactic" /// lint scope (with a variable being under its let block) while the /// `var_debug_info.source_info.scope` represents the "local variable" /// scope (where the "rest" of a block is under all prior let-statements). /// /// The end result looks like this: /// /// ```text /// ROOT SCOPE /// │{ argument x: &str } /// │ /// │ │{ #[allow(unused_mut)] } // This is actually split into 2 scopes /// │ │ // in practice because I'm lazy. /// │ │ /// │ │← x.source_info.scope /// │ │← `x.parse().unwrap()` /// │ │ /// │ │ │← y.source_info.scope /// │ │ /// │ │ │{ let y: u32 } /// │ │ │ /// │ │ │← y.var_debug_info.source_info.scope /// │ │ │← `y + 2` /// │ /// │ │{ let x: u32 } /// │ │← x.var_debug_info.source_info.scope /// │ │← `drop(x)` // This accesses `x: u32`. /// ``` pub source_info: SourceInfo, } // `LocalDecl` is used a lot. Make sure it doesn't unintentionally get bigger. #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))] static_assert_size!(LocalDecl<'_>, 56); /// Extra information about a some locals that's used for diagnostics and for /// classifying variables into local variables, statics, etc, which is needed e.g. /// for unsafety checking. /// /// Not used for non-StaticRef temporaries, the return place, or anonymous /// function parameters. #[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)] pub enum LocalInfo<'tcx> { /// A user-defined local variable or function parameter /// /// The `BindingForm` is solely used for local diagnostics when generating /// warnings/errors when compiling the current crate, and therefore it need /// not be visible across crates. User(ClearCrossCrate>), /// A temporary created that references the static with the given `DefId`. StaticRef { def_id: DefId, is_thread_local: bool }, /// A temporary created that references the const with the given `DefId` ConstRef { def_id: DefId }, /// A temporary created during the creation of an aggregate /// (e.g. a temporary for `foo` in `MyStruct { my_field: foo }`) AggregateTemp, } impl<'tcx> LocalDecl<'tcx> { /// Returns `true` only if local is a binding that can itself be /// made mutable via the addition of the `mut` keyword, namely /// something like the occurrences of `x` in: /// - `fn foo(x: Type) { ... }`, /// - `let x = ...`, /// - or `match ... { C(x) => ... }` pub fn can_be_made_mutable(&self) -> bool { matches!( self.local_info, Some(box LocalInfo::User(ClearCrossCrate::Set( BindingForm::Var(VarBindingForm { binding_mode: ty::BindingMode::BindByValue(_), opt_ty_info: _, opt_match_place: _, pat_span: _, }) | BindingForm::ImplicitSelf(ImplicitSelfKind::Imm), ))) ) } /// Returns `true` if local is definitely not a `ref ident` or /// `ref mut ident` binding. (Such bindings cannot be made into /// mutable bindings, but the inverse does not necessarily hold). pub fn is_nonref_binding(&self) -> bool { matches!( self.local_info, Some(box LocalInfo::User(ClearCrossCrate::Set( BindingForm::Var(VarBindingForm { binding_mode: ty::BindingMode::BindByValue(_), opt_ty_info: _, opt_match_place: _, pat_span: _, }) | BindingForm::ImplicitSelf(_), ))) ) } /// Returns `true` if this variable is a named variable or function /// parameter declared by the user. #[inline] pub fn is_user_variable(&self) -> bool { matches!(self.local_info, Some(box LocalInfo::User(_))) } /// Returns `true` if this is a reference to a variable bound in a `match` /// expression that is used to access said variable for the guard of the /// match arm. pub fn is_ref_for_guard(&self) -> bool { matches!( self.local_info, Some(box LocalInfo::User(ClearCrossCrate::Set(BindingForm::RefForGuard))) ) } /// Returns `Some` if this is a reference to a static item that is used to /// access that static. pub fn is_ref_to_static(&self) -> bool { matches!(self.local_info, Some(box LocalInfo::StaticRef { .. })) } /// Returns `Some` if this is a reference to a thread-local static item that is used to /// access that static. pub fn is_ref_to_thread_local(&self) -> bool { match self.local_info { Some(box LocalInfo::StaticRef { is_thread_local, .. }) => is_thread_local, _ => false, } } /// Returns `true` is the local is from a compiler desugaring, e.g., /// `__next` from a `for` loop. #[inline] pub fn from_compiler_desugaring(&self) -> bool { self.source_info.span.desugaring_kind().is_some() } /// Creates a new `LocalDecl` for a temporary: mutable, non-internal. #[inline] pub fn new(ty: Ty<'tcx>, span: Span) -> Self { Self::with_source_info(ty, SourceInfo::outermost(span)) } /// Like `LocalDecl::new`, but takes a `SourceInfo` instead of a `Span`. #[inline] pub fn with_source_info(ty: Ty<'tcx>, source_info: SourceInfo) -> Self { LocalDecl { mutability: Mutability::Mut, local_info: None, internal: false, is_block_tail: None, ty, user_ty: None, source_info, } } /// Converts `self` into same `LocalDecl` except tagged as internal. #[inline] pub fn internal(mut self) -> Self { self.internal = true; self } /// Converts `self` into same `LocalDecl` except tagged as immutable. #[inline] pub fn immutable(mut self) -> Self { self.mutability = Mutability::Not; self } /// Converts `self` into same `LocalDecl` except tagged as internal temporary. #[inline] pub fn block_tail(mut self, info: BlockTailInfo) -> Self { assert!(self.is_block_tail.is_none()); self.is_block_tail = Some(info); self } } #[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable)] pub enum VarDebugInfoContents<'tcx> { /// NOTE(eddyb) There's an unenforced invariant that this `Place` is /// based on a `Local`, not a `Static`, and contains no indexing. Place(Place<'tcx>), Const(Constant<'tcx>), } impl<'tcx> Debug for VarDebugInfoContents<'tcx> { fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { match self { VarDebugInfoContents::Const(c) => write!(fmt, "{}", c), VarDebugInfoContents::Place(p) => write!(fmt, "{:?}", p), } } } /// Debug information pertaining to a user variable. #[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)] pub struct VarDebugInfo<'tcx> { pub name: Symbol, /// Source info of the user variable, including the scope /// within which the variable is visible (to debuginfo) /// (see `LocalDecl`'s `source_info` field for more details). pub source_info: SourceInfo, /// Where the data for this user variable is to be found. pub value: VarDebugInfoContents<'tcx>, } /////////////////////////////////////////////////////////////////////////// // BasicBlock rustc_index::newtype_index! { /// A node in the MIR [control-flow graph][CFG]. /// /// There are no branches (e.g., `if`s, function calls, etc.) within a basic block, which makes /// it easier to do [data-flow analyses] and optimizations. Instead, branches are represented /// as an edge in a graph between basic blocks. /// /// Basic blocks consist of a series of [statements][Statement], ending with a /// [terminator][Terminator]. Basic blocks can have multiple predecessors and successors, /// however there is a MIR pass ([`CriticalCallEdges`]) that removes *critical edges*, which /// are edges that go from a multi-successor node to a multi-predecessor node. This pass is /// needed because some analyses require that there are no critical edges in the CFG. /// /// Note that this type is just an index into [`Body.basic_blocks`](Body::basic_blocks); /// the actual data that a basic block holds is in [`BasicBlockData`]. /// /// Read more about basic blocks in the [rustc-dev-guide][guide-mir]. /// /// [CFG]: https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg /// [data-flow analyses]: /// https://rustc-dev-guide.rust-lang.org/appendix/background.html#what-is-a-dataflow-analysis /// [`CriticalCallEdges`]: ../../rustc_const_eval/transform/add_call_guards/enum.AddCallGuards.html#variant.CriticalCallEdges /// [guide-mir]: https://rustc-dev-guide.rust-lang.org/mir/ pub struct BasicBlock { derive [HashStable] DEBUG_FORMAT = "bb{}", const START_BLOCK = 0, } } impl BasicBlock { pub fn start_location(self) -> Location { Location { block: self, statement_index: 0 } } } /////////////////////////////////////////////////////////////////////////// // BasicBlockData and Terminator /// See [`BasicBlock`] for documentation on what basic blocks are at a high level. #[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)] pub struct BasicBlockData<'tcx> { /// List of statements in this block. pub statements: Vec>, /// Terminator for this block. /// /// N.B., this should generally ONLY be `None` during construction. /// Therefore, you should generally access it via the /// `terminator()` or `terminator_mut()` methods. The only /// exception is that certain passes, such as `simplify_cfg`, swap /// out the terminator temporarily with `None` while they continue /// to recurse over the set of basic blocks. pub terminator: Option>, /// If true, this block lies on an unwind path. This is used /// during codegen where distinct kinds of basic blocks may be /// generated (particularly for MSVC cleanup). Unwind blocks must /// only branch to other unwind blocks. pub is_cleanup: bool, } /// Information about an assertion failure. #[derive(Clone, TyEncodable, TyDecodable, Hash, HashStable, PartialEq, PartialOrd)] pub enum AssertKind { BoundsCheck { len: O, index: O }, Overflow(BinOp, O, O), OverflowNeg(O), DivisionByZero(O), RemainderByZero(O), ResumedAfterReturn(GeneratorKind), ResumedAfterPanic(GeneratorKind), } #[derive(Clone, Debug, PartialEq, TyEncodable, TyDecodable, Hash, HashStable, TypeFoldable)] pub enum InlineAsmOperand<'tcx> { In { reg: InlineAsmRegOrRegClass, value: Operand<'tcx>, }, Out { reg: InlineAsmRegOrRegClass, late: bool, place: Option>, }, InOut { reg: InlineAsmRegOrRegClass, late: bool, in_value: Operand<'tcx>, out_place: Option>, }, Const { value: Box>, }, SymFn { value: Box>, }, SymStatic { def_id: DefId, }, } /// Type for MIR `Assert` terminator error messages. pub type AssertMessage<'tcx> = AssertKind>; pub type Successors<'a> = iter::Chain, slice::Iter<'a, BasicBlock>>; pub type SuccessorsMut<'a> = iter::Chain, slice::IterMut<'a, BasicBlock>>; impl<'tcx> BasicBlockData<'tcx> { pub fn new(terminator: Option>) -> BasicBlockData<'tcx> { BasicBlockData { statements: vec![], terminator, is_cleanup: false } } /// Accessor for terminator. /// /// Terminator may not be None after construction of the basic block is complete. This accessor /// provides a convenience way to reach the terminator. #[inline] pub fn terminator(&self) -> &Terminator<'tcx> { self.terminator.as_ref().expect("invalid terminator state") } #[inline] pub fn terminator_mut(&mut self) -> &mut Terminator<'tcx> { self.terminator.as_mut().expect("invalid terminator state") } pub fn retain_statements(&mut self, mut f: F) where F: FnMut(&mut Statement<'_>) -> bool, { for s in &mut self.statements { if !f(s) { s.make_nop(); } } } pub fn expand_statements(&mut self, mut f: F) where F: FnMut(&mut Statement<'tcx>) -> Option, I: iter::TrustedLen>, { // Gather all the iterators we'll need to splice in, and their positions. let mut splices: Vec<(usize, I)> = vec![]; let mut extra_stmts = 0; for (i, s) in self.statements.iter_mut().enumerate() { if let Some(mut new_stmts) = f(s) { if let Some(first) = new_stmts.next() { // We can already store the first new statement. *s = first; // Save the other statements for optimized splicing. let remaining = new_stmts.size_hint().0; if remaining > 0 { splices.push((i + 1 + extra_stmts, new_stmts)); extra_stmts += remaining; } } else { s.make_nop(); } } } // Splice in the new statements, from the end of the block. // FIXME(eddyb) This could be more efficient with a "gap buffer" // where a range of elements ("gap") is left uninitialized, with // splicing adding new elements to the end of that gap and moving // existing elements from before the gap to the end of the gap. // For now, this is safe code, emulating a gap but initializing it. let mut gap = self.statements.len()..self.statements.len() + extra_stmts; self.statements.resize( gap.end, Statement { source_info: SourceInfo::outermost(DUMMY_SP), kind: StatementKind::Nop }, ); for (splice_start, new_stmts) in splices.into_iter().rev() { let splice_end = splice_start + new_stmts.size_hint().0; while gap.end > splice_end { gap.start -= 1; gap.end -= 1; self.statements.swap(gap.start, gap.end); } self.statements.splice(splice_start..splice_end, new_stmts); gap.end = splice_start; } } pub fn visitable(&self, index: usize) -> &dyn MirVisitable<'tcx> { if index < self.statements.len() { &self.statements[index] } else { &self.terminator } } } impl AssertKind { /// Getting a description does not require `O` to be printable, and does not /// require allocation. /// The caller is expected to handle `BoundsCheck` separately. pub fn description(&self) -> &'static str { use AssertKind::*; match self { Overflow(BinOp::Add, _, _) => "attempt to add with overflow", Overflow(BinOp::Sub, _, _) => "attempt to subtract with overflow", Overflow(BinOp::Mul, _, _) => "attempt to multiply with overflow", Overflow(BinOp::Div, _, _) => "attempt to divide with overflow", Overflow(BinOp::Rem, _, _) => "attempt to calculate the remainder with overflow", OverflowNeg(_) => "attempt to negate with overflow", Overflow(BinOp::Shr, _, _) => "attempt to shift right with overflow", Overflow(BinOp::Shl, _, _) => "attempt to shift left with overflow", Overflow(op, _, _) => bug!("{:?} cannot overflow", op), DivisionByZero(_) => "attempt to divide by zero", RemainderByZero(_) => "attempt to calculate the remainder with a divisor of zero", ResumedAfterReturn(GeneratorKind::Gen) => "generator resumed after completion", ResumedAfterReturn(GeneratorKind::Async(_)) => "`async fn` resumed after completion", ResumedAfterPanic(GeneratorKind::Gen) => "generator resumed after panicking", ResumedAfterPanic(GeneratorKind::Async(_)) => "`async fn` resumed after panicking", BoundsCheck { .. } => bug!("Unexpected AssertKind"), } } /// Format the message arguments for the `assert(cond, msg..)` terminator in MIR printing. pub fn fmt_assert_args(&self, f: &mut W) -> fmt::Result where O: Debug, { use AssertKind::*; match self { BoundsCheck { ref len, ref index } => write!( f, "\"index out of bounds: the length is {{}} but the index is {{}}\", {:?}, {:?}", len, index ), OverflowNeg(op) => { write!(f, "\"attempt to negate `{{}}`, which would overflow\", {:?}", op) } DivisionByZero(op) => write!(f, "\"attempt to divide `{{}}` by zero\", {:?}", op), RemainderByZero(op) => write!( f, "\"attempt to calculate the remainder of `{{}}` with a divisor of zero\", {:?}", op ), Overflow(BinOp::Add, l, r) => write!( f, "\"attempt to compute `{{}} + {{}}`, which would overflow\", {:?}, {:?}", l, r ), Overflow(BinOp::Sub, l, r) => write!( f, "\"attempt to compute `{{}} - {{}}`, which would overflow\", {:?}, {:?}", l, r ), Overflow(BinOp::Mul, l, r) => write!( f, "\"attempt to compute `{{}} * {{}}`, which would overflow\", {:?}, {:?}", l, r ), Overflow(BinOp::Div, l, r) => write!( f, "\"attempt to compute `{{}} / {{}}`, which would overflow\", {:?}, {:?}", l, r ), Overflow(BinOp::Rem, l, r) => write!( f, "\"attempt to compute the remainder of `{{}} % {{}}`, which would overflow\", {:?}, {:?}", l, r ), Overflow(BinOp::Shr, _, r) => { write!(f, "\"attempt to shift right by `{{}}`, which would overflow\", {:?}", r) } Overflow(BinOp::Shl, _, r) => { write!(f, "\"attempt to shift left by `{{}}`, which would overflow\", {:?}", r) } _ => write!(f, "\"{}\"", self.description()), } } } impl fmt::Debug for AssertKind { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { use AssertKind::*; match self { BoundsCheck { ref len, ref index } => write!( f, "index out of bounds: the length is {:?} but the index is {:?}", len, index ), OverflowNeg(op) => write!(f, "attempt to negate `{:#?}`, which would overflow", op), DivisionByZero(op) => write!(f, "attempt to divide `{:#?}` by zero", op), RemainderByZero(op) => write!( f, "attempt to calculate the remainder of `{:#?}` with a divisor of zero", op ), Overflow(BinOp::Add, l, r) => { write!(f, "attempt to compute `{:#?} + {:#?}`, which would overflow", l, r) } Overflow(BinOp::Sub, l, r) => { write!(f, "attempt to compute `{:#?} - {:#?}`, which would overflow", l, r) } Overflow(BinOp::Mul, l, r) => { write!(f, "attempt to compute `{:#?} * {:#?}`, which would overflow", l, r) } Overflow(BinOp::Div, l, r) => { write!(f, "attempt to compute `{:#?} / {:#?}`, which would overflow", l, r) } Overflow(BinOp::Rem, l, r) => write!( f, "attempt to compute the remainder of `{:#?} % {:#?}`, which would overflow", l, r ), Overflow(BinOp::Shr, _, r) => { write!(f, "attempt to shift right by `{:#?}`, which would overflow", r) } Overflow(BinOp::Shl, _, r) => { write!(f, "attempt to shift left by `{:#?}`, which would overflow", r) } _ => write!(f, "{}", self.description()), } } } /////////////////////////////////////////////////////////////////////////// // Statements #[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable)] pub struct Statement<'tcx> { pub source_info: SourceInfo, pub kind: StatementKind<'tcx>, } // `Statement` is used a lot. Make sure it doesn't unintentionally get bigger. #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))] static_assert_size!(Statement<'_>, 32); impl Statement<'_> { /// Changes a statement to a nop. This is both faster than deleting instructions and avoids /// invalidating statement indices in `Location`s. pub fn make_nop(&mut self) { self.kind = StatementKind::Nop } /// Changes a statement to a nop and returns the original statement. #[must_use = "If you don't need the statement, use `make_nop` instead"] pub fn replace_nop(&mut self) -> Self { Statement { source_info: self.source_info, kind: mem::replace(&mut self.kind, StatementKind::Nop), } } } #[derive(Clone, Debug, PartialEq, TyEncodable, TyDecodable, Hash, HashStable, TypeFoldable)] pub enum StatementKind<'tcx> { /// Write the RHS Rvalue to the LHS Place. Assign(Box<(Place<'tcx>, Rvalue<'tcx>)>), /// This represents all the reading that a pattern match may do /// (e.g., inspecting constants and discriminant values), and the /// kind of pattern it comes from. This is in order to adapt potential /// error messages to these specific patterns. /// /// Note that this also is emitted for regular `let` bindings to ensure that locals that are /// never accessed still get some sanity checks for, e.g., `let x: ! = ..;` FakeRead(Box<(FakeReadCause, Place<'tcx>)>), /// Write the discriminant for a variant to the enum Place. SetDiscriminant { place: Box>, variant_index: VariantIdx }, /// Start a live range for the storage of the local. StorageLive(Local), /// End the current live range for the storage of the local. StorageDead(Local), /// Retag references in the given place, ensuring they got fresh tags. This is /// part of the Stacked Borrows model. These statements are currently only interpreted /// by miri and only generated when "-Z mir-emit-retag" is passed. /// See /// for more details. Retag(RetagKind, Box>), /// Encodes a user's type ascription. These need to be preserved /// intact so that NLL can respect them. For example: /// /// let a: T = y; /// /// The effect of this annotation is to relate the type `T_y` of the place `y` /// to the user-given type `T`. The effect depends on the specified variance: /// /// - `Covariant` -- requires that `T_y <: T` /// - `Contravariant` -- requires that `T_y :> T` /// - `Invariant` -- requires that `T_y == T` /// - `Bivariant` -- no effect AscribeUserType(Box<(Place<'tcx>, UserTypeProjection)>, ty::Variance), /// Marks the start of a "coverage region", injected with '-Cinstrument-coverage'. A /// `Coverage` statement carries metadata about the coverage region, used to inject a coverage /// map into the binary. If `Coverage::kind` is a `Counter`, the statement also generates /// executable code, to increment a counter variable at runtime, each time the code region is /// executed. Coverage(Box), /// Denotes a call to the intrinsic function copy_overlapping, where `src_dst` denotes the /// memory being read from and written to(one field to save memory), and size /// indicates how many bytes are being copied over. CopyNonOverlapping(Box>), /// No-op. Useful for deleting instructions without affecting statement indices. Nop, } impl<'tcx> StatementKind<'tcx> { pub fn as_assign_mut(&mut self) -> Option<&mut (Place<'tcx>, Rvalue<'tcx>)> { match self { StatementKind::Assign(x) => Some(x), _ => None, } } pub fn as_assign(&self) -> Option<&(Place<'tcx>, Rvalue<'tcx>)> { match self { StatementKind::Assign(x) => Some(x), _ => None, } } } /// Describes what kind of retag is to be performed. #[derive(Copy, Clone, TyEncodable, TyDecodable, Debug, PartialEq, Eq, Hash, HashStable)] pub enum RetagKind { /// The initial retag when entering a function. FnEntry, /// Retag preparing for a two-phase borrow. TwoPhase, /// Retagging raw pointers. Raw, /// A "normal" retag. Default, } /// The `FakeReadCause` describes the type of pattern why a FakeRead statement exists. #[derive(Copy, Clone, TyEncodable, TyDecodable, Debug, Hash, HashStable, PartialEq)] pub enum FakeReadCause { /// Inject a fake read of the borrowed input at the end of each guards /// code. /// /// This should ensure that you cannot change the variant for an enum while /// you are in the midst of matching on it. ForMatchGuard, /// `let x: !; match x {}` doesn't generate any read of x so we need to /// generate a read of x to check that it is initialized and safe. /// /// If a closure pattern matches a Place starting with an Upvar, then we introduce a /// FakeRead for that Place outside the closure, in such a case this option would be /// Some(closure_def_id). /// Otherwise, the value of the optional DefId will be None. ForMatchedPlace(Option), /// A fake read of the RefWithinGuard version of a bind-by-value variable /// in a match guard to ensure that its value hasn't change by the time /// we create the OutsideGuard version. ForGuardBinding, /// Officially, the semantics of /// /// `let pattern = ;` /// /// is that `` is evaluated into a temporary and then this temporary is /// into the pattern. /// /// However, if we see the simple pattern `let var = `, we optimize this to /// evaluate `` directly into the variable `var`. This is mostly unobservable, /// but in some cases it can affect the borrow checker, as in #53695. /// Therefore, we insert a "fake read" here to ensure that we get /// appropriate errors. /// /// If a closure pattern matches a Place starting with an Upvar, then we introduce a /// FakeRead for that Place outside the closure, in such a case this option would be /// Some(closure_def_id). /// Otherwise, the value of the optional DefId will be None. ForLet(Option), /// If we have an index expression like /// /// (*x)[1][{ x = y; 4}] /// /// then the first bounds check is invalidated when we evaluate the second /// index expression. Thus we create a fake borrow of `x` across the second /// indexer, which will cause a borrow check error. ForIndex, } impl Debug for Statement<'_> { fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { use self::StatementKind::*; match self.kind { Assign(box (ref place, ref rv)) => write!(fmt, "{:?} = {:?}", place, rv), FakeRead(box (ref cause, ref place)) => { write!(fmt, "FakeRead({:?}, {:?})", cause, place) } Retag(ref kind, ref place) => write!( fmt, "Retag({}{:?})", match kind { RetagKind::FnEntry => "[fn entry] ", RetagKind::TwoPhase => "[2phase] ", RetagKind::Raw => "[raw] ", RetagKind::Default => "", }, place, ), StorageLive(ref place) => write!(fmt, "StorageLive({:?})", place), StorageDead(ref place) => write!(fmt, "StorageDead({:?})", place), SetDiscriminant { ref place, variant_index } => { write!(fmt, "discriminant({:?}) = {:?}", place, variant_index) } AscribeUserType(box (ref place, ref c_ty), ref variance) => { write!(fmt, "AscribeUserType({:?}, {:?}, {:?})", place, variance, c_ty) } Coverage(box self::Coverage { ref kind, code_region: Some(ref rgn) }) => { write!(fmt, "Coverage::{:?} for {:?}", kind, rgn) } Coverage(box ref coverage) => write!(fmt, "Coverage::{:?}", coverage.kind), CopyNonOverlapping(box crate::mir::CopyNonOverlapping { ref src, ref dst, ref count, }) => { write!(fmt, "copy_nonoverlapping(src={:?}, dst={:?}, count={:?})", src, dst, count) } Nop => write!(fmt, "nop"), } } } #[derive(Clone, Debug, PartialEq, TyEncodable, TyDecodable, Hash, HashStable, TypeFoldable)] pub struct Coverage { pub kind: CoverageKind, pub code_region: Option, } #[derive(Clone, Debug, PartialEq, TyEncodable, TyDecodable, Hash, HashStable, TypeFoldable)] pub struct CopyNonOverlapping<'tcx> { pub src: Operand<'tcx>, pub dst: Operand<'tcx>, /// Number of elements to copy from src to dest, not bytes. pub count: Operand<'tcx>, } /////////////////////////////////////////////////////////////////////////// // Places /// A path to a value; something that can be evaluated without /// changing or disturbing program state. #[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, HashStable)] pub struct Place<'tcx> { pub local: Local, /// projection out of a place (access a field, deref a pointer, etc) pub projection: &'tcx List>, } #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))] static_assert_size!(Place<'_>, 16); #[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)] #[derive(TyEncodable, TyDecodable, HashStable)] pub enum ProjectionElem { Deref, Field(Field, T), Index(V), /// These indices are generated by slice patterns. Easiest to explain /// by example: /// /// ``` /// [X, _, .._, _, _] => { offset: 0, min_length: 4, from_end: false }, /// [_, X, .._, _, _] => { offset: 1, min_length: 4, from_end: false }, /// [_, _, .._, X, _] => { offset: 2, min_length: 4, from_end: true }, /// [_, _, .._, _, X] => { offset: 1, min_length: 4, from_end: true }, /// ``` ConstantIndex { /// index or -index (in Python terms), depending on from_end offset: u64, /// The thing being indexed must be at least this long. For arrays this /// is always the exact length. min_length: u64, /// Counting backwards from end? This is always false when indexing an /// array. from_end: bool, }, /// These indices are generated by slice patterns. /// /// If `from_end` is true `slice[from..slice.len() - to]`. /// Otherwise `array[from..to]`. Subslice { from: u64, to: u64, /// Whether `to` counts from the start or end of the array/slice. /// For `PlaceElem`s this is `true` if and only if the base is a slice. /// For `ProjectionKind`, this can also be `true` for arrays. from_end: bool, }, /// "Downcast" to a variant of an ADT. Currently, we only introduce /// this for ADTs with more than one variant. It may be better to /// just introduce it always, or always for enums. /// /// The included Symbol is the name of the variant, used for printing MIR. Downcast(Option, VariantIdx), } impl ProjectionElem { /// Returns `true` if the target of this projection may refer to a different region of memory /// than the base. fn is_indirect(&self) -> bool { match self { Self::Deref => true, Self::Field(_, _) | Self::Index(_) | Self::ConstantIndex { .. } | Self::Subslice { .. } | Self::Downcast(_, _) => false, } } /// Returns `true` if this is a `Downcast` projection with the given `VariantIdx`. pub fn is_downcast_to(&self, v: VariantIdx) -> bool { matches!(*self, Self::Downcast(_, x) if x == v) } /// Returns `true` if this is a `Field` projection with the given index. pub fn is_field_to(&self, f: Field) -> bool { matches!(*self, Self::Field(x, _) if x == f) } } /// Alias for projections as they appear in places, where the base is a place /// and the index is a local. pub type PlaceElem<'tcx> = ProjectionElem>; // At least on 64 bit systems, `PlaceElem` should not be larger than two pointers. #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))] static_assert_size!(PlaceElem<'_>, 24); /// Alias for projections as they appear in `UserTypeProjection`, where we /// need neither the `V` parameter for `Index` nor the `T` for `Field`. pub type ProjectionKind = ProjectionElem<(), ()>; rustc_index::newtype_index! { /// A [newtype'd][wrapper] index type in the MIR [control-flow graph][CFG] /// /// A field (e.g., `f` in `_1.f`) is one variant of [`ProjectionElem`]. Conceptually, /// rustc can identify that a field projection refers to either two different regions of memory /// or the same one between the base and the 'projection element'. /// Read more about projections in the [rustc-dev-guide][mir-datatypes] /// /// [wrapper]: https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#newtype /// [CFG]: https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg /// [mir-datatypes]: https://rustc-dev-guide.rust-lang.org/mir/index.html#mir-data-types pub struct Field { derive [HashStable] DEBUG_FORMAT = "field[{}]" } } #[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct PlaceRef<'tcx> { pub local: Local, pub projection: &'tcx [PlaceElem<'tcx>], } impl<'tcx> Place<'tcx> { // FIXME change this to a const fn by also making List::empty a const fn. pub fn return_place() -> Place<'tcx> { Place { local: RETURN_PLACE, projection: List::empty() } } /// Returns `true` if this `Place` contains a `Deref` projection. /// /// If `Place::is_indirect` returns false, the caller knows that the `Place` refers to the /// same region of memory as its base. pub fn is_indirect(&self) -> bool { self.projection.iter().any(|elem| elem.is_indirect()) } /// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or /// a single deref of a local. #[inline(always)] pub fn local_or_deref_local(&self) -> Option { self.as_ref().local_or_deref_local() } /// If this place represents a local variable like `_X` with no /// projections, return `Some(_X)`. #[inline(always)] pub fn as_local(&self) -> Option { self.as_ref().as_local() } #[inline] pub fn as_ref(&self) -> PlaceRef<'tcx> { PlaceRef { local: self.local, projection: &self.projection } } /// Iterate over the projections in evaluation order, i.e., the first element is the base with /// its projection and then subsequently more projections are added. /// As a concrete example, given the place a.b.c, this would yield: /// - (a, .b) /// - (a.b, .c) /// /// Given a place without projections, the iterator is empty. #[inline] pub fn iter_projections( self, ) -> impl Iterator, PlaceElem<'tcx>)> + DoubleEndedIterator { self.projection.iter().enumerate().map(move |(i, proj)| { let base = PlaceRef { local: self.local, projection: &self.projection[..i] }; (base, proj) }) } } impl From for Place<'_> { fn from(local: Local) -> Self { Place { local, projection: List::empty() } } } impl<'tcx> PlaceRef<'tcx> { /// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or /// a single deref of a local. pub fn local_or_deref_local(&self) -> Option { match *self { PlaceRef { local, projection: [] } | PlaceRef { local, projection: [ProjectionElem::Deref] } => Some(local), _ => None, } } /// If this place represents a local variable like `_X` with no /// projections, return `Some(_X)`. #[inline] pub fn as_local(&self) -> Option { match *self { PlaceRef { local, projection: [] } => Some(local), _ => None, } } #[inline] pub fn last_projection(&self) -> Option<(PlaceRef<'tcx>, PlaceElem<'tcx>)> { if let &[ref proj_base @ .., elem] = self.projection { Some((PlaceRef { local: self.local, projection: proj_base }, elem)) } else { None } } } impl Debug for Place<'_> { fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { for elem in self.projection.iter().rev() { match elem { ProjectionElem::Downcast(_, _) | ProjectionElem::Field(_, _) => { write!(fmt, "(").unwrap(); } ProjectionElem::Deref => { write!(fmt, "(*").unwrap(); } ProjectionElem::Index(_) | ProjectionElem::ConstantIndex { .. } | ProjectionElem::Subslice { .. } => {} } } write!(fmt, "{:?}", self.local)?; for elem in self.projection.iter() { match elem { ProjectionElem::Downcast(Some(name), _index) => { write!(fmt, " as {})", name)?; } ProjectionElem::Downcast(None, index) => { write!(fmt, " as variant#{:?})", index)?; } ProjectionElem::Deref => { write!(fmt, ")")?; } ProjectionElem::Field(field, ty) => { write!(fmt, ".{:?}: {:?})", field.index(), ty)?; } ProjectionElem::Index(ref index) => { write!(fmt, "[{:?}]", index)?; } ProjectionElem::ConstantIndex { offset, min_length, from_end: false } => { write!(fmt, "[{:?} of {:?}]", offset, min_length)?; } ProjectionElem::ConstantIndex { offset, min_length, from_end: true } => { write!(fmt, "[-{:?} of {:?}]", offset, min_length)?; } ProjectionElem::Subslice { from, to, from_end: true } if to == 0 => { write!(fmt, "[{:?}:]", from)?; } ProjectionElem::Subslice { from, to, from_end: true } if from == 0 => { write!(fmt, "[:-{:?}]", to)?; } ProjectionElem::Subslice { from, to, from_end: true } => { write!(fmt, "[{:?}:-{:?}]", from, to)?; } ProjectionElem::Subslice { from, to, from_end: false } => { write!(fmt, "[{:?}..{:?}]", from, to)?; } } } Ok(()) } } /////////////////////////////////////////////////////////////////////////// // Scopes rustc_index::newtype_index! { pub struct SourceScope { derive [HashStable] DEBUG_FORMAT = "scope[{}]", const OUTERMOST_SOURCE_SCOPE = 0, } } impl SourceScope { /// Finds the original HirId this MIR item came from. /// This is necessary after MIR optimizations, as otherwise we get a HirId /// from the function that was inlined instead of the function call site. pub fn lint_root<'tcx>( self, source_scopes: &IndexVec>, ) -> Option { let mut data = &source_scopes[self]; // FIXME(oli-obk): we should be able to just walk the `inlined_parent_scope`, but it // does not work as I thought it would. Needs more investigation and documentation. while data.inlined.is_some() { trace!(?data); data = &source_scopes[data.parent_scope.unwrap()]; } trace!(?data); match &data.local_data { ClearCrossCrate::Set(data) => Some(data.lint_root), ClearCrossCrate::Clear => None, } } } #[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)] pub struct SourceScopeData<'tcx> { pub span: Span, pub parent_scope: Option, /// Whether this scope is the root of a scope tree of another body, /// inlined into this body by the MIR inliner. /// `ty::Instance` is the callee, and the `Span` is the call site. pub inlined: Option<(ty::Instance<'tcx>, Span)>, /// Nearest (transitive) parent scope (if any) which is inlined. /// This is an optimization over walking up `parent_scope` /// until a scope with `inlined: Some(...)` is found. pub inlined_parent_scope: Option, /// Crate-local information for this source scope, that can't (and /// needn't) be tracked across crates. pub local_data: ClearCrossCrate, } #[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)] pub struct SourceScopeLocalData { /// An `HirId` with lint levels equivalent to this scope's lint levels. pub lint_root: hir::HirId, /// The unsafe block that contains this node. pub safety: Safety, } /////////////////////////////////////////////////////////////////////////// // Operands /// These are values that can appear inside an rvalue. They are intentionally /// limited to prevent rvalues from being nested in one another. #[derive(Clone, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)] pub enum Operand<'tcx> { /// Copy: The value must be available for use afterwards. /// /// This implies that the type of the place must be `Copy`; this is true /// by construction during build, but also checked by the MIR type checker. Copy(Place<'tcx>), /// Move: The value (including old borrows of it) will not be used again. /// /// Safe for values of all types (modulo future developments towards `?Move`). /// Correct usage patterns are enforced by the borrow checker for safe code. /// `Copy` may be converted to `Move` to enable "last-use" optimizations. Move(Place<'tcx>), /// Synthesizes a constant value. Constant(Box>), } #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))] static_assert_size!(Operand<'_>, 24); impl<'tcx> Debug for Operand<'tcx> { fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { use self::Operand::*; match *self { Constant(ref a) => write!(fmt, "{:?}", a), Copy(ref place) => write!(fmt, "{:?}", place), Move(ref place) => write!(fmt, "move {:?}", place), } } } impl<'tcx> Operand<'tcx> { /// Convenience helper to make a constant that refers to the fn /// with given `DefId` and substs. Since this is used to synthesize /// MIR, assumes `user_ty` is None. pub fn function_handle( tcx: TyCtxt<'tcx>, def_id: DefId, substs: SubstsRef<'tcx>, span: Span, ) -> Self { let ty = tcx.type_of(def_id).subst(tcx, substs); Operand::Constant(Box::new(Constant { span, user_ty: None, literal: ConstantKind::Ty(ty::Const::zero_sized(tcx, ty)), })) } pub fn is_move(&self) -> bool { matches!(self, Operand::Move(..)) } /// Convenience helper to make a literal-like constant from a given scalar value. /// Since this is used to synthesize MIR, assumes `user_ty` is None. pub fn const_from_scalar( tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, val: Scalar, span: Span, ) -> Operand<'tcx> { debug_assert!({ let param_env_and_ty = ty::ParamEnv::empty().and(ty); let type_size = tcx .layout_of(param_env_and_ty) .unwrap_or_else(|e| panic!("could not compute layout for {:?}: {:?}", ty, e)) .size; let scalar_size = match val { Scalar::Int(int) => int.size(), _ => panic!("Invalid scalar type {:?}", val), }; scalar_size == type_size }); Operand::Constant(Box::new(Constant { span, user_ty: None, literal: ConstantKind::Val(ConstValue::Scalar(val), ty), })) } pub fn to_copy(&self) -> Self { match *self { Operand::Copy(_) | Operand::Constant(_) => self.clone(), Operand::Move(place) => Operand::Copy(place), } } /// Returns the `Place` that is the target of this `Operand`, or `None` if this `Operand` is a /// constant. pub fn place(&self) -> Option> { match self { Operand::Copy(place) | Operand::Move(place) => Some(*place), Operand::Constant(_) => None, } } /// Returns the `Constant` that is the target of this `Operand`, or `None` if this `Operand` is a /// place. pub fn constant(&self) -> Option<&Constant<'tcx>> { match self { Operand::Constant(x) => Some(&**x), Operand::Copy(_) | Operand::Move(_) => None, } } } /////////////////////////////////////////////////////////////////////////// /// Rvalues #[derive(Clone, TyEncodable, TyDecodable, Hash, HashStable, PartialEq)] pub enum Rvalue<'tcx> { /// x (either a move or copy, depending on type of x) Use(Operand<'tcx>), /// [x; 32] Repeat(Operand<'tcx>, ty::Const<'tcx>), /// &x or &mut x Ref(Region<'tcx>, BorrowKind, Place<'tcx>), /// Accessing a thread local static. This is inherently a runtime operation, even if llvm /// treats it as an access to a static. This `Rvalue` yields a reference to the thread local /// static. ThreadLocalRef(DefId), /// Create a raw pointer to the given place /// Can be generated by raw address of expressions (`&raw const x`), /// or when casting a reference to a raw pointer. AddressOf(Mutability, Place<'tcx>), /// length of a `[X]` or `[X;n]` value Len(Place<'tcx>), Cast(CastKind, Operand<'tcx>, Ty<'tcx>), BinaryOp(BinOp, Box<(Operand<'tcx>, Operand<'tcx>)>), CheckedBinaryOp(BinOp, Box<(Operand<'tcx>, Operand<'tcx>)>), NullaryOp(NullOp, Ty<'tcx>), UnaryOp(UnOp, Operand<'tcx>), /// Read the discriminant of an ADT. /// /// Undefined (i.e., no effort is made to make it defined, but there’s no reason why it cannot /// be defined to return, say, a 0) if ADT is not an enum. Discriminant(Place<'tcx>), /// Creates an aggregate value, like a tuple or struct. This is /// only needed because we want to distinguish `dest = Foo { x: /// ..., y: ... }` from `dest.x = ...; dest.y = ...;` in the case /// that `Foo` has a destructor. These rvalues can be optimized /// away after type-checking and before lowering. Aggregate(Box>, Vec>), /// Transmutes a `*mut u8` into shallow-initialized `Box`. /// /// This is different a normal transmute because dataflow analysis will treat the box /// as initialized but its content as uninitialized. ShallowInitBox(Operand<'tcx>, Ty<'tcx>), } #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))] static_assert_size!(Rvalue<'_>, 40); #[derive(Clone, Copy, Debug, PartialEq, Eq, TyEncodable, TyDecodable, Hash, HashStable)] pub enum CastKind { Misc, Pointer(PointerCast), } #[derive(Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, Hash, HashStable)] pub enum AggregateKind<'tcx> { /// The type is of the element Array(Ty<'tcx>), Tuple, /// The second field is the variant index. It's equal to 0 for struct /// and union expressions. The fourth field is /// active field number and is present only for union expressions /// -- e.g., for a union expression `SomeUnion { c: .. }`, the /// active field index would identity the field `c` Adt(DefId, VariantIdx, SubstsRef<'tcx>, Option, Option), Closure(DefId, SubstsRef<'tcx>), Generator(DefId, SubstsRef<'tcx>, hir::Movability), } #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))] static_assert_size!(AggregateKind<'_>, 48); #[derive(Copy, Clone, Debug, PartialEq, PartialOrd, Eq, TyEncodable, TyDecodable, Hash, HashStable)] pub enum BinOp { /// The `+` operator (addition) Add, /// The `-` operator (subtraction) Sub, /// The `*` operator (multiplication) Mul, /// The `/` operator (division) /// /// Division by zero is UB, because the compiler should have inserted checks /// prior to this. Div, /// The `%` operator (modulus) /// /// Using zero as the modulus (second operand) is UB, because the compiler /// should have inserted checks prior to this. Rem, /// The `^` operator (bitwise xor) BitXor, /// The `&` operator (bitwise and) BitAnd, /// The `|` operator (bitwise or) BitOr, /// The `<<` operator (shift left) /// /// The offset is truncated to the size of the first operand before shifting. Shl, /// The `>>` operator (shift right) /// /// The offset is truncated to the size of the first operand before shifting. Shr, /// The `==` operator (equality) Eq, /// The `<` operator (less than) Lt, /// The `<=` operator (less than or equal to) Le, /// The `!=` operator (not equal to) Ne, /// The `>=` operator (greater than or equal to) Ge, /// The `>` operator (greater than) Gt, /// The `ptr.offset` operator Offset, } impl BinOp { pub fn is_checkable(self) -> bool { use self::BinOp::*; matches!(self, Add | Sub | Mul | Shl | Shr) } } #[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, Hash, HashStable)] pub enum NullOp { /// Returns the size of a value of that type SizeOf, /// Returns the minimum alignment of a type AlignOf, } #[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, Hash, HashStable)] pub enum UnOp { /// The `!` operator for logical inversion Not, /// The `-` operator for negation Neg, } impl<'tcx> Debug for Rvalue<'tcx> { fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { use self::Rvalue::*; match *self { Use(ref place) => write!(fmt, "{:?}", place), Repeat(ref a, b) => { write!(fmt, "[{:?}; ", a)?; pretty_print_const(b, fmt, false)?; write!(fmt, "]") } Len(ref a) => write!(fmt, "Len({:?})", a), Cast(ref kind, ref place, ref ty) => { write!(fmt, "{:?} as {:?} ({:?})", place, ty, kind) } BinaryOp(ref op, box (ref a, ref b)) => write!(fmt, "{:?}({:?}, {:?})", op, a, b), CheckedBinaryOp(ref op, box (ref a, ref b)) => { write!(fmt, "Checked{:?}({:?}, {:?})", op, a, b) } UnaryOp(ref op, ref a) => write!(fmt, "{:?}({:?})", op, a), Discriminant(ref place) => write!(fmt, "discriminant({:?})", place), NullaryOp(ref op, ref t) => write!(fmt, "{:?}({:?})", op, t), ThreadLocalRef(did) => ty::tls::with(|tcx| { let muta = tcx.static_mutability(did).unwrap().prefix_str(); write!(fmt, "&/*tls*/ {}{}", muta, tcx.def_path_str(did)) }), Ref(region, borrow_kind, ref place) => { let kind_str = match borrow_kind { BorrowKind::Shared => "", BorrowKind::Shallow => "shallow ", BorrowKind::Mut { .. } | BorrowKind::Unique => "mut ", }; // When printing regions, add trailing space if necessary. let print_region = ty::tls::with(|tcx| { tcx.sess.verbose() || tcx.sess.opts.debugging_opts.identify_regions }); let region = if print_region { let mut region = region.to_string(); if !region.is_empty() { region.push(' '); } region } else { // Do not even print 'static String::new() }; write!(fmt, "&{}{}{:?}", region, kind_str, place) } AddressOf(mutability, ref place) => { let kind_str = match mutability { Mutability::Mut => "mut", Mutability::Not => "const", }; write!(fmt, "&raw {} {:?}", kind_str, place) } Aggregate(ref kind, ref places) => { let fmt_tuple = |fmt: &mut Formatter<'_>, name: &str| { let mut tuple_fmt = fmt.debug_tuple(name); for place in places { tuple_fmt.field(place); } tuple_fmt.finish() }; match **kind { AggregateKind::Array(_) => write!(fmt, "{:?}", places), AggregateKind::Tuple => { if places.is_empty() { write!(fmt, "()") } else { fmt_tuple(fmt, "") } } AggregateKind::Adt(adt_did, variant, substs, _user_ty, _) => { ty::tls::with(|tcx| { let variant_def = &tcx.adt_def(adt_did).variants[variant]; let substs = tcx.lift(substs).expect("could not lift for printing"); let name = FmtPrinter::new(tcx, Namespace::ValueNS) .print_def_path(variant_def.def_id, substs)? .into_buffer(); match variant_def.ctor_kind { CtorKind::Const => fmt.write_str(&name), CtorKind::Fn => fmt_tuple(fmt, &name), CtorKind::Fictive => { let mut struct_fmt = fmt.debug_struct(&name); for (field, place) in iter::zip(&variant_def.fields, places) { struct_fmt.field(field.name.as_str(), place); } struct_fmt.finish() } } }) } AggregateKind::Closure(def_id, substs) => ty::tls::with(|tcx| { if let Some(def_id) = def_id.as_local() { let name = if tcx.sess.opts.debugging_opts.span_free_formats { let substs = tcx.lift(substs).unwrap(); format!( "[closure@{}]", tcx.def_path_str_with_substs(def_id.to_def_id(), substs), ) } else { let span = tcx.def_span(def_id); format!( "[closure@{}]", tcx.sess.source_map().span_to_diagnostic_string(span) ) }; let mut struct_fmt = fmt.debug_struct(&name); // FIXME(project-rfc-2229#48): This should be a list of capture names/places if let Some(upvars) = tcx.upvars_mentioned(def_id) { for (&var_id, place) in iter::zip(upvars.keys(), places) { let var_name = tcx.hir().name(var_id); struct_fmt.field(var_name.as_str(), place); } } struct_fmt.finish() } else { write!(fmt, "[closure]") } }), AggregateKind::Generator(def_id, _, _) => ty::tls::with(|tcx| { if let Some(def_id) = def_id.as_local() { let name = format!("[generator@{:?}]", tcx.def_span(def_id)); let mut struct_fmt = fmt.debug_struct(&name); // FIXME(project-rfc-2229#48): This should be a list of capture names/places if let Some(upvars) = tcx.upvars_mentioned(def_id) { for (&var_id, place) in iter::zip(upvars.keys(), places) { let var_name = tcx.hir().name(var_id); struct_fmt.field(var_name.as_str(), place); } } struct_fmt.finish() } else { write!(fmt, "[generator]") } }), } } ShallowInitBox(ref place, ref ty) => { write!(fmt, "ShallowInitBox({:?}, {:?})", place, ty) } } } } /////////////////////////////////////////////////////////////////////////// /// Constants /// /// Two constants are equal if they are the same constant. Note that /// this does not necessarily mean that they are `==` in Rust. In /// particular, one must be wary of `NaN`! #[derive(Clone, Copy, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)] pub struct Constant<'tcx> { pub span: Span, /// Optional user-given type: for something like /// `collect::>`, this would be present and would /// indicate that `Vec<_>` was explicitly specified. /// /// Needed for NLL to impose user-given type constraints. pub user_ty: Option, pub literal: ConstantKind<'tcx>, } #[derive(Clone, Copy, PartialEq, Eq, TyEncodable, TyDecodable, Hash, HashStable, Debug)] #[derive(Lift)] pub enum ConstantKind<'tcx> { /// This constant came from the type system Ty(ty::Const<'tcx>), /// This constant cannot go back into the type system, as it represents /// something the type system cannot handle (e.g. pointers). Val(interpret::ConstValue<'tcx>, Ty<'tcx>), } impl<'tcx> Constant<'tcx> { pub fn check_static_ptr(&self, tcx: TyCtxt<'_>) -> Option { match self.literal.try_to_scalar() { Some(Scalar::Ptr(ptr, _size)) => match tcx.global_alloc(ptr.provenance) { GlobalAlloc::Static(def_id) => { assert!(!tcx.is_thread_local_static(def_id)); Some(def_id) } _ => None, }, _ => None, } } #[inline] pub fn ty(&self) -> Ty<'tcx> { self.literal.ty() } } impl<'tcx> From> for ConstantKind<'tcx> { #[inline] fn from(ct: ty::Const<'tcx>) -> Self { Self::Ty(ct) } } impl<'tcx> ConstantKind<'tcx> { /// Returns `None` if the constant is not trivially safe for use in the type system. pub fn const_for_ty(&self) -> Option> { match self { ConstantKind::Ty(c) => Some(*c), ConstantKind::Val(..) => None, } } pub fn ty(&self) -> Ty<'tcx> { match self { ConstantKind::Ty(c) => c.ty(), ConstantKind::Val(_, ty) => *ty, } } #[inline] pub fn try_to_value(self) -> Option> { match self { ConstantKind::Ty(c) => c.val().try_to_value(), ConstantKind::Val(val, _) => Some(val), } } #[inline] pub fn try_to_scalar(self) -> Option { self.try_to_value()?.try_to_scalar() } #[inline] pub fn try_to_scalar_int(self) -> Option { Some(self.try_to_value()?.try_to_scalar()?.assert_int()) } #[inline] pub fn try_to_bits(self, size: Size) -> Option { self.try_to_scalar_int()?.to_bits(size).ok() } #[inline] pub fn try_to_bool(self) -> Option { self.try_to_scalar_int()?.try_into().ok() } #[inline] pub fn try_eval_bits( &self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>, ) -> Option { match self { Self::Ty(ct) => ct.try_eval_bits(tcx, param_env, ty), Self::Val(val, t) => { assert_eq!(*t, ty); let size = tcx.layout_of(param_env.with_reveal_all_normalized(tcx).and(ty)).ok()?.size; val.try_to_bits(size) } } } #[inline] pub fn try_eval_bool(&self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Option { match self { Self::Ty(ct) => ct.try_eval_bool(tcx, param_env), Self::Val(val, _) => val.try_to_bool(), } } #[inline] pub fn try_eval_usize(&self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Option { match self { Self::Ty(ct) => ct.try_eval_usize(tcx, param_env), Self::Val(val, _) => val.try_to_machine_usize(tcx), } } } /// A collection of projections into user types. /// /// They are projections because a binding can occur a part of a /// parent pattern that has been ascribed a type. /// /// Its a collection because there can be multiple type ascriptions on /// the path from the root of the pattern down to the binding itself. /// /// An example: /// /// ```rust /// struct S<'a>((i32, &'a str), String); /// let S((_, w): (i32, &'static str), _): S = ...; /// // ------ ^^^^^^^^^^^^^^^^^^^ (1) /// // --------------------------------- ^ (2) /// ``` /// /// The highlights labelled `(1)` show the subpattern `(_, w)` being /// ascribed the type `(i32, &'static str)`. /// /// The highlights labelled `(2)` show the whole pattern being /// ascribed the type `S`. /// /// In this example, when we descend to `w`, we will have built up the /// following two projected types: /// /// * base: `S`, projection: `(base.0).1` /// * base: `(i32, &'static str)`, projection: `base.1` /// /// The first will lead to the constraint `w: &'1 str` (for some /// inferred region `'1`). The second will lead to the constraint `w: /// &'static str`. #[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)] pub struct UserTypeProjections { pub contents: Vec<(UserTypeProjection, Span)>, } impl<'tcx> UserTypeProjections { pub fn none() -> Self { UserTypeProjections { contents: vec![] } } pub fn is_empty(&self) -> bool { self.contents.is_empty() } pub fn projections_and_spans( &self, ) -> impl Iterator + ExactSizeIterator { self.contents.iter() } pub fn projections(&self) -> impl Iterator + ExactSizeIterator { self.contents.iter().map(|&(ref user_type, _span)| user_type) } pub fn push_projection(mut self, user_ty: &UserTypeProjection, span: Span) -> Self { self.contents.push((user_ty.clone(), span)); self } fn map_projections( mut self, mut f: impl FnMut(UserTypeProjection) -> UserTypeProjection, ) -> Self { self.contents = self.contents.into_iter().map(|(proj, span)| (f(proj), span)).collect(); self } pub fn index(self) -> Self { self.map_projections(|pat_ty_proj| pat_ty_proj.index()) } pub fn subslice(self, from: u64, to: u64) -> Self { self.map_projections(|pat_ty_proj| pat_ty_proj.subslice(from, to)) } pub fn deref(self) -> Self { self.map_projections(|pat_ty_proj| pat_ty_proj.deref()) } pub fn leaf(self, field: Field) -> Self { self.map_projections(|pat_ty_proj| pat_ty_proj.leaf(field)) } pub fn variant(self, adt_def: &'tcx AdtDef, variant_index: VariantIdx, field: Field) -> Self { self.map_projections(|pat_ty_proj| pat_ty_proj.variant(adt_def, variant_index, field)) } } /// Encodes the effect of a user-supplied type annotation on the /// subcomponents of a pattern. The effect is determined by applying the /// given list of proejctions to some underlying base type. Often, /// the projection element list `projs` is empty, in which case this /// directly encodes a type in `base`. But in the case of complex patterns with /// subpatterns and bindings, we want to apply only a *part* of the type to a variable, /// in which case the `projs` vector is used. /// /// Examples: /// /// * `let x: T = ...` -- here, the `projs` vector is empty. /// /// * `let (x, _): T = ...` -- here, the `projs` vector would contain /// `field[0]` (aka `.0`), indicating that the type of `s` is /// determined by finding the type of the `.0` field from `T`. #[derive(Clone, Debug, TyEncodable, TyDecodable, Hash, HashStable, PartialEq)] pub struct UserTypeProjection { pub base: UserTypeAnnotationIndex, pub projs: Vec, } impl Copy for ProjectionKind {} impl UserTypeProjection { pub(crate) fn index(mut self) -> Self { self.projs.push(ProjectionElem::Index(())); self } pub(crate) fn subslice(mut self, from: u64, to: u64) -> Self { self.projs.push(ProjectionElem::Subslice { from, to, from_end: true }); self } pub(crate) fn deref(mut self) -> Self { self.projs.push(ProjectionElem::Deref); self } pub(crate) fn leaf(mut self, field: Field) -> Self { self.projs.push(ProjectionElem::Field(field, ())); self } pub(crate) fn variant( mut self, adt_def: &AdtDef, variant_index: VariantIdx, field: Field, ) -> Self { self.projs.push(ProjectionElem::Downcast( Some(adt_def.variants[variant_index].name), variant_index, )); self.projs.push(ProjectionElem::Field(field, ())); self } } TrivialTypeFoldableAndLiftImpls! { ProjectionKind, } impl<'tcx> TypeFoldable<'tcx> for UserTypeProjection { fn try_super_fold_with>( self, folder: &mut F, ) -> Result { Ok(UserTypeProjection { base: self.base.try_fold_with(folder)?, projs: self.projs.try_fold_with(folder)?, }) } fn super_visit_with>( &self, visitor: &mut Vs, ) -> ControlFlow { self.base.visit_with(visitor) // Note: there's nothing in `self.proj` to visit. } } rustc_index::newtype_index! { pub struct Promoted { derive [HashStable] DEBUG_FORMAT = "promoted[{}]" } } impl<'tcx> Debug for Constant<'tcx> { fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { write!(fmt, "{}", self) } } impl<'tcx> Display for Constant<'tcx> { fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { match self.ty().kind() { ty::FnDef(..) => {} _ => write!(fmt, "const ")?, } Display::fmt(&self.literal, fmt) } } impl<'tcx> Display for ConstantKind<'tcx> { fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { match *self { ConstantKind::Ty(c) => pretty_print_const(c, fmt, true), ConstantKind::Val(val, ty) => pretty_print_const_value(val, ty, fmt, true), } } } fn pretty_print_const<'tcx>( c: ty::Const<'tcx>, fmt: &mut Formatter<'_>, print_types: bool, ) -> fmt::Result { use crate::ty::print::PrettyPrinter; ty::tls::with(|tcx| { let literal = tcx.lift(c).unwrap(); let mut cx = FmtPrinter::new(tcx, Namespace::ValueNS); cx.print_alloc_ids = true; let cx = cx.pretty_print_const(literal, print_types)?; fmt.write_str(&cx.into_buffer())?; Ok(()) }) } fn pretty_print_const_value<'tcx>( val: interpret::ConstValue<'tcx>, ty: Ty<'tcx>, fmt: &mut Formatter<'_>, print_types: bool, ) -> fmt::Result { use crate::ty::print::PrettyPrinter; ty::tls::with(|tcx| { let val = tcx.lift(val).unwrap(); let ty = tcx.lift(ty).unwrap(); let mut cx = FmtPrinter::new(tcx, Namespace::ValueNS); cx.print_alloc_ids = true; let cx = cx.pretty_print_const_value(val, ty, print_types)?; fmt.write_str(&cx.into_buffer())?; Ok(()) }) } impl<'tcx> graph::DirectedGraph for Body<'tcx> { type Node = BasicBlock; } impl<'tcx> graph::WithNumNodes for Body<'tcx> { #[inline] fn num_nodes(&self) -> usize { self.basic_blocks.len() } } impl<'tcx> graph::WithStartNode for Body<'tcx> { #[inline] fn start_node(&self) -> Self::Node { START_BLOCK } } impl<'tcx> graph::WithSuccessors for Body<'tcx> { #[inline] fn successors(&self, node: Self::Node) -> >::Iter { self.basic_blocks[node].terminator().successors().cloned() } } impl<'a, 'b> graph::GraphSuccessors<'b> for Body<'a> { type Item = BasicBlock; type Iter = iter::Cloned>; } impl<'tcx, 'graph> graph::GraphPredecessors<'graph> for Body<'tcx> { type Item = BasicBlock; type Iter = std::iter::Copied>; } impl<'tcx> graph::WithPredecessors for Body<'tcx> { #[inline] fn predecessors(&self, node: Self::Node) -> >::Iter { self.predecessors()[node].iter().copied() } } /// `Location` represents the position of the start of the statement; or, if /// `statement_index` equals the number of statements, then the start of the /// terminator. #[derive(Copy, Clone, PartialEq, Eq, Hash, Ord, PartialOrd, HashStable)] pub struct Location { /// The block that the location is within. pub block: BasicBlock, pub statement_index: usize, } impl fmt::Debug for Location { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { write!(fmt, "{:?}[{}]", self.block, self.statement_index) } } impl Location { pub const START: Location = Location { block: START_BLOCK, statement_index: 0 }; /// Returns the location immediately after this one within the enclosing block. /// /// Note that if this location represents a terminator, then the /// resulting location would be out of bounds and invalid. pub fn successor_within_block(&self) -> Location { Location { block: self.block, statement_index: self.statement_index + 1 } } /// Returns `true` if `other` is earlier in the control flow graph than `self`. pub fn is_predecessor_of<'tcx>(&self, other: Location, body: &Body<'tcx>) -> bool { // If we are in the same block as the other location and are an earlier statement // then we are a predecessor of `other`. if self.block == other.block && self.statement_index < other.statement_index { return true; } let predecessors = body.predecessors(); // If we're in another block, then we want to check that block is a predecessor of `other`. let mut queue: Vec = predecessors[other.block].to_vec(); let mut visited = FxHashSet::default(); while let Some(block) = queue.pop() { // If we haven't visited this block before, then make sure we visit its predecessors. if visited.insert(block) { queue.extend(predecessors[block].iter().cloned()); } else { continue; } // If we found the block that `self` is in, then we are a predecessor of `other` (since // we found that block by looking at the predecessors of `other`). if self.block == block { return true; } } false } pub fn dominates(&self, other: Location, dominators: &Dominators) -> bool { if self.block == other.block { self.statement_index <= other.statement_index } else { dominators.is_dominated_by(other.block, self.block) } } }