export t; export create; export union; export intersect; export copy; export clone; export get; export equal; export clear; export set_all; export invert; export difference; export set; export is_true; export is_false; export to_vec; export to_str; export eq_vec; // FIXME: With recursive object types, we could implement binary methods like // union, intersection, and difference. At that point, we could write // an optimizing version of this module that produces a different obj // for the case where nbits <= 32. // FIXME: Almost all the functions in this module should be state fns, but the // effect system isn't currently working correctly. type t = rec(vec[mutable uint] storage, uint nbits); // FIXME: this should be a constant once they work fn uint_bits() -> uint { ret 32u + (1u << 32u >> 27u); } fn create(uint nbits, bool init) -> t { auto elt = if (init) { !0u } else { 0u }; auto storage = vec::init_elt_mut[uint](elt, nbits / uint_bits() + 1u); ret rec(storage=storage, nbits=nbits); } fn process(&fn(uint, uint) -> uint op, &t v0, &t v1) -> bool { auto len = vec::len(v1.storage); assert (vec::len(v0.storage) == len); assert (v0.nbits == v1.nbits); auto changed = false; for each (uint i in uint::range(0u, len)) { auto w0 = v0.storage.(i); auto w1 = v1.storage.(i); auto w = op(w0, w1); if (w0 != w) { changed = true; v0.storage.(i) = w; } } ret changed; } fn lor(uint w0, uint w1) -> uint { ret w0 | w1; } fn union(&t v0, &t v1) -> bool { auto sub = lor; ret process(sub, v0, v1); } fn land(uint w0, uint w1) -> uint { ret w0 & w1; } fn intersect(&t v0, &t v1) -> bool { auto sub = land; ret process(sub, v0, v1); } fn right(uint w0, uint w1) -> uint { ret w1; } fn copy(&t v0, t v1) -> bool { auto sub = right; ret process(sub, v0, v1); } fn clone(t v) -> t { auto storage = vec::init_elt_mut[uint](0u, v.nbits / uint_bits() + 1u); auto len = vec::len(v.storage); for each (uint i in uint::range(0u, len)) { storage.(i) = v.storage.(i); } ret rec(storage=storage, nbits=v.nbits); } fn get(&t v, uint i) -> bool { assert (i < v.nbits); auto bits = uint_bits(); auto w = i / bits; auto b = i % bits; auto x = 1u & v.storage.(w) >> b; ret x == 1u; } fn equal(&t v0, &t v1) -> bool { // FIXME: when we can break or return from inside an iterator loop, // we can eliminate this painful while-loop auto len = vec::len(v1.storage); auto i = 0u; while (i < len) { if (v0.storage.(i) != v1.storage.(i)) { ret false; } i = i + 1u; } ret true; } fn clear(&t v) { for each (uint i in uint::range(0u, vec::len(v.storage))) { v.storage.(i) = 0u; } } fn set_all(&t v) { for each (uint i in uint::range(0u, v.nbits)) { set(v, i, true); } } fn invert(&t v) { for each (uint i in uint::range(0u, vec::len(v.storage))) { v.storage.(i) = !v.storage.(i); } } /* v0 = v0 - v1 */ fn difference(&t v0, &t v1) -> bool { invert(v1); auto b = intersect(v0, v1); invert(v1); ret b; } fn set(&t v, uint i, bool x) { assert (i < v.nbits); auto bits = uint_bits(); auto w = i / bits; auto b = i % bits; auto w0 = v.storage.(w); auto flag = 1u << b; v.storage.(w) = if (x) { v.storage.(w) | flag } else { v.storage.(w) & !flag }; } /* true if all bits are 1 */ fn is_true(&t v) -> bool { for (uint i in to_vec(v)) { if (i != 1u) { ret false; } } ret true; } /* true if all bits are non-1 */ fn is_false(&t v) -> bool { for (uint i in to_vec(v)) { if (i == 1u) { ret false; } } ret true; } fn init_to_vec(t v, uint i) -> uint { ret if (get(v, i)) { 1u } else { 0u }; } fn to_vec(&t v) -> vec[uint] { auto sub = bind init_to_vec(v, _); ret vec::init_fn[uint](sub, v.nbits); } fn to_str(&t v) -> str { auto rs = ""; for (uint i in bitv::to_vec(v)) { if (i == 1u) { rs += "1"; } else { rs += "0"; } } ret rs; } // FIXME: can we just use structural equality on to_vec? fn eq_vec(&t v0, &vec[uint] v1) -> bool { assert (v0.nbits == vec::len[uint](v1)); auto len = v0.nbits; auto i = 0u; while (i < len) { auto w0 = get(v0, i); auto w1 = v1.(i); if (!w0 && w1 != 0u || w0 && w1 == 0u) { ret false; } i = i + 1u; } ret true; } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: //