// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Reduced graph building //! //! Here we build the "reduced graph": the graph of the module tree without //! any imports resolved. use macros::{InvocationData, LegacyScope}; use resolve_imports::ImportDirective; use resolve_imports::ImportDirectiveSubclass::{self, GlobImport, SingleImport}; use {Module, ModuleData, ModuleKind, NameBinding, NameBindingKind, ToNameBinding}; use {ModuleOrUniformRoot, PerNS, Resolver, ResolverArenas}; use Namespace::{self, TypeNS, ValueNS, MacroNS}; use {resolve_error, resolve_struct_error, ResolutionError}; use rustc::hir::def::*; use rustc::hir::def_id::{BUILTIN_MACROS_CRATE, CRATE_DEF_INDEX, LOCAL_CRATE, DefId}; use rustc::ty; use rustc::middle::cstore::CrateStore; use rustc_metadata::cstore::LoadedMacro; use std::cell::Cell; use rustc_data_structures::sync::Lrc; use syntax::ast::{Name, Ident}; use syntax::attr; use syntax::ast::{self, Block, ForeignItem, ForeignItemKind, Item, ItemKind, NodeId}; use syntax::ast::{Mutability, StmtKind, TraitItem, TraitItemKind, Variant}; use syntax::ext::base::{MacroKind, SyntaxExtension}; use syntax::ext::base::Determinacy::Undetermined; use syntax::ext::hygiene::Mark; use syntax::ext::tt::macro_rules; use syntax::parse::token::{self, Token}; use syntax::std_inject::injected_crate_name; use syntax::symbol::keywords; use syntax::visit::{self, Visitor}; use syntax_pos::{Span, DUMMY_SP}; impl<'a> ToNameBinding<'a> for (Module<'a>, ty::Visibility, Span, Mark) { fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> { arenas.alloc_name_binding(NameBinding { kind: NameBindingKind::Module(self.0), vis: self.1, span: self.2, expansion: self.3, }) } } impl<'a> ToNameBinding<'a> for (Def, ty::Visibility, Span, Mark) { fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> { arenas.alloc_name_binding(NameBinding { kind: NameBindingKind::Def(self.0, false), vis: self.1, span: self.2, expansion: self.3, }) } } pub(crate) struct IsMacroExport; impl<'a> ToNameBinding<'a> for (Def, ty::Visibility, Span, Mark, IsMacroExport) { fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> { arenas.alloc_name_binding(NameBinding { kind: NameBindingKind::Def(self.0, true), vis: self.1, span: self.2, expansion: self.3, }) } } #[derive(Default, PartialEq, Eq)] struct LegacyMacroImports { import_all: Option, imports: Vec<(Name, Span)>, } impl<'a, 'cl> Resolver<'a, 'cl> { /// Defines `name` in namespace `ns` of module `parent` to be `def` if it is not yet defined; /// otherwise, reports an error. pub fn define(&mut self, parent: Module<'a>, ident: Ident, ns: Namespace, def: T) where T: ToNameBinding<'a>, { let binding = def.to_name_binding(self.arenas); if let Err(old_binding) = self.try_define(parent, ident, ns, binding) { self.report_conflict(parent, ident, ns, old_binding, &binding); } } fn block_needs_anonymous_module(&mut self, block: &Block) -> bool { // If any statements are items, we need to create an anonymous module block.stmts.iter().any(|statement| match statement.node { StmtKind::Item(_) | StmtKind::Mac(_) => true, _ => false, }) } fn insert_field_names(&mut self, def_id: DefId, field_names: Vec) { if !field_names.is_empty() { self.field_names.insert(def_id, field_names); } } fn build_reduced_graph_for_use_tree( &mut self, root_use_tree: &ast::UseTree, root_id: NodeId, use_tree: &ast::UseTree, id: NodeId, vis: ty::Visibility, prefix: &ast::Path, mut uniform_paths_canary_emitted: bool, nested: bool, item: &Item, expansion: Mark, ) { debug!("build_reduced_graph_for_use_tree(prefix={:?}, \ uniform_paths_canary_emitted={}, \ use_tree={:?}, nested={})", prefix, uniform_paths_canary_emitted, use_tree, nested); let is_prelude = attr::contains_name(&item.attrs, "prelude_import"); let path = &use_tree.prefix; let mut module_path: Vec<_> = prefix.segments.iter() .chain(path.segments.iter()) .map(|seg| seg.ident) .collect(); debug!("build_reduced_graph_for_use_tree: module_path={:?}", module_path); // `#[feature(uniform_paths)]` allows an unqualified import path, // e.g. `use x::...;` to resolve not just globally (`use ::x::...;`) // but also relatively (`use self::x::...;`). To catch ambiguities // that might arise from both of these being available and resolution // silently picking one of them, an artificial `use self::x as _;` // import is injected as a "canary", and an error is emitted if it // successfully resolves while an `x` external crate exists. // // For each block scope around the `use` item, one special canary // import of the form `use x as _;` is also injected, having its // parent set to that scope; `resolve_imports` will only resolve // it within its appropriate scope; if any of them successfully // resolve, an ambiguity error is emitted, since the original // import can't see the item in the block scope (`self::x` only // looks in the enclosing module), but a non-`use` path could. // // Additionally, the canary might be able to catch limitations of the // current implementation, where `::x` may be chosen due to `self::x` // not existing, but `self::x` could appear later, from macro expansion. // // NB. The canary currently only errors if the `x::...` path *could* // resolve as a relative path through the extern crate, i.e. `x` is // in `extern_prelude`, *even though* `::x` might still forcefully // load a non-`extern_prelude` crate. // While always producing an ambiguity errors if `self::x` exists and // a crate *could* be loaded, would be more conservative, imports for // local modules named `test` (or less commonly, `syntax` or `log`), // would need to be qualified (e.g. `self::test`), which is considered // ergonomically unacceptable. let emit_uniform_paths_canary = !uniform_paths_canary_emitted && module_path.get(0).map_or(false, |ident| { !ident.is_path_segment_keyword() }); if emit_uniform_paths_canary { // Relative paths should only get here if the feature-gate is on. assert!(self.session.rust_2018() && self.session.features_untracked().uniform_paths); let source = module_path[0]; // HACK(eddyb) For `use x::{self, ...};`, use the ID of the // `self` nested import for the canary. This allows the // ambiguity reporting scope to ignore false positives // in the same way it does for `use x;` (by comparing IDs). let mut canary_id = id; if let ast::UseTreeKind::Nested(ref items) = use_tree.kind { for &(ref use_tree, id) in items { if let ast::UseTreeKind::Simple(..) = use_tree.kind { if use_tree.ident().name == keywords::SelfValue.name() { canary_id = id; break; } } } } // Helper closure to emit a canary with the given base path. let emit = |this: &mut Self, base: Option| { let subclass = SingleImport { target: Ident { name: keywords::Underscore.name().gensymed(), span: source.span, }, source, result: PerNS { type_ns: Cell::new(Err(Undetermined)), value_ns: Cell::new(Err(Undetermined)), macro_ns: Cell::new(Err(Undetermined)), }, type_ns_only: false, }; this.add_import_directive( base.into_iter().collect(), subclass.clone(), source.span, canary_id, root_use_tree.span, root_id, ty::Visibility::Invisible, expansion, true, // is_uniform_paths_canary ); }; // A single simple `self::x` canary. emit(self, Some(Ident { name: keywords::SelfValue.name(), span: source.span, })); // One special unprefixed canary per block scope around // the import, to detect items unreachable by `self::x`. let orig_current_module = self.current_module; let mut span = source.span.modern(); loop { match self.current_module.kind { ModuleKind::Block(..) => emit(self, None), ModuleKind::Def(..) => break, } match self.hygienic_lexical_parent(self.current_module, &mut span) { Some(module) => { self.current_module = module; } None => break, } } self.current_module = orig_current_module; uniform_paths_canary_emitted = true; } match use_tree.kind { ast::UseTreeKind::Simple(rename, ..) => { let mut ident = use_tree.ident(); let mut source = module_path.pop().unwrap(); let mut type_ns_only = false; if nested { // Correctly handle `self` if source.name == keywords::SelfValue.name() { type_ns_only = true; let empty_prefix = module_path.last().map_or(true, |ident| { ident.name == keywords::CrateRoot.name() }); if empty_prefix { resolve_error( self, use_tree.span, ResolutionError:: SelfImportOnlyInImportListWithNonEmptyPrefix ); return; } // Replace `use foo::self;` with `use foo;` source = module_path.pop().unwrap(); if rename.is_none() { ident = source; } } } else { // Disallow `self` if source.name == keywords::SelfValue.name() { resolve_error(self, use_tree.span, ResolutionError::SelfImportsOnlyAllowedWithin); } // Disallow `use $crate;` if source.name == keywords::DollarCrate.name() && module_path.is_empty() { let crate_root = self.resolve_crate_root(source); let crate_name = match crate_root.kind { ModuleKind::Def(_, name) => name, ModuleKind::Block(..) => unreachable!(), }; // HACK(eddyb) unclear how good this is, but keeping `$crate` // in `source` breaks `src/test/compile-fail/import-crate-var.rs`, // while the current crate doesn't have a valid `crate_name`. if crate_name != keywords::Invalid.name() { // `crate_name` should not be interpreted as relative. module_path.push(Ident { name: keywords::CrateRoot.name(), span: source.span, }); source.name = crate_name; } if rename.is_none() { ident.name = crate_name; } self.session.struct_span_warn(item.span, "`$crate` may not be imported") .note("`use $crate;` was erroneously allowed and \ will become a hard error in a future release") .emit(); } } if ident.name == keywords::Crate.name() { self.session.span_err(ident.span, "crate root imports need to be explicitly named: \ `use crate as name;`"); } let subclass = SingleImport { target: ident, source, result: PerNS { type_ns: Cell::new(Err(Undetermined)), value_ns: Cell::new(Err(Undetermined)), macro_ns: Cell::new(Err(Undetermined)), }, type_ns_only, }; self.add_import_directive( module_path, subclass, use_tree.span, id, root_use_tree.span, root_id, vis, expansion, false, // is_uniform_paths_canary ); } ast::UseTreeKind::Glob => { let subclass = GlobImport { is_prelude, max_vis: Cell::new(ty::Visibility::Invisible), }; self.add_import_directive( module_path, subclass, use_tree.span, id, root_use_tree.span, root_id, vis, expansion, false, // is_uniform_paths_canary ); } ast::UseTreeKind::Nested(ref items) => { let prefix = ast::Path { segments: module_path.into_iter() .map(|ident| ast::PathSegment::from_ident(ident)) .collect(), span: path.span, }; // Ensure there is at most one `self` in the list let self_spans = items.iter().filter_map(|&(ref use_tree, _)| { if let ast::UseTreeKind::Simple(..) = use_tree.kind { if use_tree.ident().name == keywords::SelfValue.name() { return Some(use_tree.span); } } None }).collect::>(); if self_spans.len() > 1 { let mut e = resolve_struct_error(self, self_spans[0], ResolutionError::SelfImportCanOnlyAppearOnceInTheList); for other_span in self_spans.iter().skip(1) { e.span_label(*other_span, "another `self` import appears here"); } e.emit(); } for &(ref tree, id) in items { self.build_reduced_graph_for_use_tree( root_use_tree, root_id, tree, id, vis, &prefix, uniform_paths_canary_emitted, true, item, expansion, ); } } } } /// Constructs the reduced graph for one item. fn build_reduced_graph_for_item(&mut self, item: &Item, expansion: Mark) { let parent = self.current_module; let ident = item.ident; let sp = item.span; let vis = self.resolve_visibility(&item.vis); match item.node { ItemKind::Use(ref use_tree) => { let uniform_paths = self.session.rust_2018() && self.session.features_untracked().uniform_paths; // Imports are resolved as global by default, add starting root segment. let root = if !uniform_paths { use_tree.prefix.make_root() } else { // Except when `#![feature(uniform_paths)]` is on. None }; let prefix = ast::Path { segments: root.into_iter().collect(), span: use_tree.span, }; self.build_reduced_graph_for_use_tree( use_tree, item.id, use_tree, item.id, vis, &prefix, false, // uniform_paths_canary_emitted false, item, expansion, ); } ItemKind::ExternCrate(orig_name) => { let crate_id = self.crate_loader.process_extern_crate(item, &self.definitions); let module = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX }); self.populate_module_if_necessary(module); if injected_crate_name().map_or(false, |name| item.ident.name == name) { self.injected_crate = Some(module); } let used = self.process_legacy_macro_imports(item, module, expansion); let binding = (module, ty::Visibility::Public, sp, expansion).to_name_binding(self.arenas); let directive = self.arenas.alloc_import_directive(ImportDirective { root_id: item.id, id: item.id, parent, imported_module: Cell::new(Some(ModuleOrUniformRoot::Module(module))), subclass: ImportDirectiveSubclass::ExternCrate(orig_name), root_span: item.span, span: item.span, module_path: Vec::new(), vis: Cell::new(vis), expansion, used: Cell::new(used), is_uniform_paths_canary: false, }); self.potentially_unused_imports.push(directive); let imported_binding = self.import(binding, directive); self.define(parent, ident, TypeNS, imported_binding); } ItemKind::GlobalAsm(..) => {} ItemKind::Mod(..) if item.ident == keywords::Invalid.ident() => {} // Crate root ItemKind::Mod(..) => { let def_id = self.definitions.local_def_id(item.id); let module_kind = ModuleKind::Def(Def::Mod(def_id), ident.name); let module = self.arenas.alloc_module(ModuleData { no_implicit_prelude: parent.no_implicit_prelude || { attr::contains_name(&item.attrs, "no_implicit_prelude") }, ..ModuleData::new(Some(parent), module_kind, def_id, expansion, item.span) }); self.define(parent, ident, TypeNS, (module, vis, sp, expansion)); self.module_map.insert(def_id, module); // Descend into the module. self.current_module = module; } // Handled in `rustc_metadata::{native_libs,link_args}` ItemKind::ForeignMod(..) => {} // These items live in the value namespace. ItemKind::Static(_, m, _) => { let mutbl = m == Mutability::Mutable; let def = Def::Static(self.definitions.local_def_id(item.id), mutbl); self.define(parent, ident, ValueNS, (def, vis, sp, expansion)); } ItemKind::Const(..) => { let def = Def::Const(self.definitions.local_def_id(item.id)); self.define(parent, ident, ValueNS, (def, vis, sp, expansion)); } ItemKind::Fn(..) => { let def = Def::Fn(self.definitions.local_def_id(item.id)); self.define(parent, ident, ValueNS, (def, vis, sp, expansion)); // Functions introducing procedural macros reserve a slot // in the macro namespace as well (see #52225). if attr::contains_name(&item.attrs, "proc_macro") || attr::contains_name(&item.attrs, "proc_macro_attribute") { let def = Def::Macro(def.def_id(), MacroKind::ProcMacroStub); self.define(parent, ident, MacroNS, (def, vis, sp, expansion)); } if let Some(attr) = attr::find_by_name(&item.attrs, "proc_macro_derive") { if let Some(trait_attr) = attr.meta_item_list().and_then(|list| list.get(0).cloned()) { if let Some(ident) = trait_attr.name().map(Ident::with_empty_ctxt) { let sp = trait_attr.span; let def = Def::Macro(def.def_id(), MacroKind::ProcMacroStub); self.define(parent, ident, MacroNS, (def, vis, sp, expansion)); } } } } // These items live in the type namespace. ItemKind::Ty(..) => { let def = Def::TyAlias(self.definitions.local_def_id(item.id)); self.define(parent, ident, TypeNS, (def, vis, sp, expansion)); } ItemKind::Existential(_, _) => { let def = Def::Existential(self.definitions.local_def_id(item.id)); self.define(parent, ident, TypeNS, (def, vis, sp, expansion)); } ItemKind::Enum(ref enum_definition, _) => { let def = Def::Enum(self.definitions.local_def_id(item.id)); let module_kind = ModuleKind::Def(def, ident.name); let module = self.new_module(parent, module_kind, parent.normal_ancestor_id, expansion, item.span); self.define(parent, ident, TypeNS, (module, vis, sp, expansion)); for variant in &(*enum_definition).variants { self.build_reduced_graph_for_variant(variant, module, vis, expansion); } } ItemKind::TraitAlias(..) => { let def = Def::TraitAlias(self.definitions.local_def_id(item.id)); self.define(parent, ident, TypeNS, (def, vis, sp, expansion)); } // These items live in both the type and value namespaces. ItemKind::Struct(ref struct_def, _) => { // Define a name in the type namespace. let def_id = self.definitions.local_def_id(item.id); let def = Def::Struct(def_id); self.define(parent, ident, TypeNS, (def, vis, sp, expansion)); let mut ctor_vis = vis; let has_non_exhaustive = attr::contains_name(&item.attrs, "non_exhaustive"); // If the structure is marked as non_exhaustive then lower the visibility // to within the crate. if has_non_exhaustive && vis == ty::Visibility::Public { ctor_vis = ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)); } // Record field names for error reporting. let field_names = struct_def.fields().iter().filter_map(|field| { let field_vis = self.resolve_visibility(&field.vis); if ctor_vis.is_at_least(field_vis, &*self) { ctor_vis = field_vis; } field.ident.map(|ident| ident.name) }).collect(); let item_def_id = self.definitions.local_def_id(item.id); self.insert_field_names(item_def_id, field_names); // If this is a tuple or unit struct, define a name // in the value namespace as well. if !struct_def.is_struct() { let ctor_def = Def::StructCtor(self.definitions.local_def_id(struct_def.id()), CtorKind::from_ast(struct_def)); self.define(parent, ident, ValueNS, (ctor_def, ctor_vis, sp, expansion)); self.struct_constructors.insert(def.def_id(), (ctor_def, ctor_vis)); } } ItemKind::Union(ref vdata, _) => { let def = Def::Union(self.definitions.local_def_id(item.id)); self.define(parent, ident, TypeNS, (def, vis, sp, expansion)); // Record field names for error reporting. let field_names = vdata.fields().iter().filter_map(|field| { self.resolve_visibility(&field.vis); field.ident.map(|ident| ident.name) }).collect(); let item_def_id = self.definitions.local_def_id(item.id); self.insert_field_names(item_def_id, field_names); } ItemKind::Impl(..) => {} ItemKind::Trait(..) => { let def_id = self.definitions.local_def_id(item.id); // Add all the items within to a new module. let module_kind = ModuleKind::Def(Def::Trait(def_id), ident.name); let module = self.new_module(parent, module_kind, parent.normal_ancestor_id, expansion, item.span); self.define(parent, ident, TypeNS, (module, vis, sp, expansion)); self.current_module = module; } ItemKind::MacroDef(..) | ItemKind::Mac(_) => unreachable!(), } } // Constructs the reduced graph for one variant. Variants exist in the // type and value namespaces. fn build_reduced_graph_for_variant(&mut self, variant: &Variant, parent: Module<'a>, vis: ty::Visibility, expansion: Mark) { let ident = variant.node.ident; let def_id = self.definitions.local_def_id(variant.node.data.id()); // Define a name in the type namespace. let def = Def::Variant(def_id); self.define(parent, ident, TypeNS, (def, vis, variant.span, expansion)); // Define a constructor name in the value namespace. // Braced variants, unlike structs, generate unusable names in // value namespace, they are reserved for possible future use. let ctor_kind = CtorKind::from_ast(&variant.node.data); let ctor_def = Def::VariantCtor(def_id, ctor_kind); self.define(parent, ident, ValueNS, (ctor_def, vis, variant.span, expansion)); } /// Constructs the reduced graph for one foreign item. fn build_reduced_graph_for_foreign_item(&mut self, item: &ForeignItem, expansion: Mark) { let (def, ns) = match item.node { ForeignItemKind::Fn(..) => { (Def::Fn(self.definitions.local_def_id(item.id)), ValueNS) } ForeignItemKind::Static(_, m) => { (Def::Static(self.definitions.local_def_id(item.id), m), ValueNS) } ForeignItemKind::Ty => { (Def::ForeignTy(self.definitions.local_def_id(item.id)), TypeNS) } ForeignItemKind::Macro(_) => unreachable!(), }; let parent = self.current_module; let vis = self.resolve_visibility(&item.vis); self.define(parent, item.ident, ns, (def, vis, item.span, expansion)); } fn build_reduced_graph_for_block(&mut self, block: &Block, expansion: Mark) { let parent = self.current_module; if self.block_needs_anonymous_module(block) { let module = self.new_module(parent, ModuleKind::Block(block.id), parent.normal_ancestor_id, expansion, block.span); self.block_map.insert(block.id, module); self.current_module = module; // Descend into the block. } } /// Builds the reduced graph for a single item in an external crate. fn build_reduced_graph_for_external_crate_def(&mut self, parent: Module<'a>, child: Export) { let Export { ident, def, vis, span, .. } = child; let def_id = def.def_id(); let expansion = Mark::root(); // FIXME(jseyfried) intercrate hygiene match def { Def::Mod(..) | Def::Enum(..) => { let module = self.new_module(parent, ModuleKind::Def(def, ident.name), def_id, expansion, span); self.define(parent, ident, TypeNS, (module, vis, DUMMY_SP, expansion)); } Def::Variant(..) | Def::TyAlias(..) | Def::ForeignTy(..) => { self.define(parent, ident, TypeNS, (def, vis, DUMMY_SP, expansion)); } Def::Fn(..) | Def::Static(..) | Def::Const(..) | Def::VariantCtor(..) => { self.define(parent, ident, ValueNS, (def, vis, DUMMY_SP, expansion)); } Def::StructCtor(..) => { self.define(parent, ident, ValueNS, (def, vis, DUMMY_SP, expansion)); if let Some(struct_def_id) = self.cstore.def_key(def_id).parent .map(|index| DefId { krate: def_id.krate, index: index }) { self.struct_constructors.insert(struct_def_id, (def, vis)); } } Def::Trait(..) => { let module_kind = ModuleKind::Def(def, ident.name); let module = self.new_module(parent, module_kind, parent.normal_ancestor_id, expansion, span); self.define(parent, ident, TypeNS, (module, vis, DUMMY_SP, expansion)); for child in self.cstore.item_children_untracked(def_id, self.session) { let ns = if let Def::AssociatedTy(..) = child.def { TypeNS } else { ValueNS }; self.define(module, child.ident, ns, (child.def, ty::Visibility::Public, DUMMY_SP, expansion)); if self.cstore.associated_item_cloned_untracked(child.def.def_id()) .method_has_self_argument { self.has_self.insert(child.def.def_id()); } } module.populated.set(true); } Def::Struct(..) | Def::Union(..) => { self.define(parent, ident, TypeNS, (def, vis, DUMMY_SP, expansion)); // Record field names for error reporting. let field_names = self.cstore.struct_field_names_untracked(def_id); self.insert_field_names(def_id, field_names); } Def::Macro(..) => { self.define(parent, ident, MacroNS, (def, vis, DUMMY_SP, expansion)); } _ => bug!("unexpected definition: {:?}", def) } } pub fn get_module(&mut self, def_id: DefId) -> Module<'a> { if def_id.krate == LOCAL_CRATE { return self.module_map[&def_id] } let macros_only = self.cstore.dep_kind_untracked(def_id.krate).macros_only(); if let Some(&module) = self.extern_module_map.get(&(def_id, macros_only)) { return module; } let (name, parent) = if def_id.index == CRATE_DEF_INDEX { (self.cstore.crate_name_untracked(def_id.krate).as_interned_str(), None) } else { let def_key = self.cstore.def_key(def_id); (def_key.disambiguated_data.data.get_opt_name().unwrap(), Some(self.get_module(DefId { index: def_key.parent.unwrap(), ..def_id }))) }; let kind = ModuleKind::Def(Def::Mod(def_id), name.as_symbol()); let module = self.arenas.alloc_module(ModuleData::new(parent, kind, def_id, Mark::root(), DUMMY_SP)); self.extern_module_map.insert((def_id, macros_only), module); module } pub fn macro_def_scope(&mut self, expansion: Mark) -> Module<'a> { let def_id = self.macro_defs[&expansion]; if let Some(id) = self.definitions.as_local_node_id(def_id) { self.local_macro_def_scopes[&id] } else if def_id.krate == BUILTIN_MACROS_CRATE { self.injected_crate.unwrap_or(self.graph_root) } else { let module_def_id = ty::DefIdTree::parent(&*self, def_id).unwrap(); self.get_module(module_def_id) } } pub fn get_macro(&mut self, def: Def) -> Lrc { let def_id = match def { Def::Macro(def_id, ..) => def_id, Def::NonMacroAttr(attr_kind) => return Lrc::new(SyntaxExtension::NonMacroAttr { mark_used: attr_kind == NonMacroAttrKind::Tool, }), _ => panic!("expected `Def::Macro` or `Def::NonMacroAttr`"), }; if let Some(ext) = self.macro_map.get(&def_id) { return ext.clone(); } let macro_def = match self.cstore.load_macro_untracked(def_id, &self.session) { LoadedMacro::MacroDef(macro_def) => macro_def, LoadedMacro::ProcMacro(ext) => return ext, }; let ext = Lrc::new(macro_rules::compile(&self.session.parse_sess, &self.session.features_untracked(), ¯o_def, self.cstore.crate_edition_untracked(def_id.krate))); self.macro_map.insert(def_id, ext.clone()); ext } /// Ensures that the reduced graph rooted at the given external module /// is built, building it if it is not. pub fn populate_module_if_necessary(&mut self, module: Module<'a>) { if module.populated.get() { return } let def_id = module.def_id().unwrap(); for child in self.cstore.item_children_untracked(def_id, self.session) { self.build_reduced_graph_for_external_crate_def(module, child); } module.populated.set(true) } fn legacy_import_macro(&mut self, name: Name, binding: &'a NameBinding<'a>, span: Span, allow_shadowing: bool) { if self.macro_prelude.insert(name, binding).is_some() && !allow_shadowing { let msg = format!("`{}` is already in scope", name); let note = "macro-expanded `#[macro_use]`s may not shadow existing macros (see RFC 1560)"; self.session.struct_span_err(span, &msg).note(note).emit(); } } // This returns true if we should consider the underlying `extern crate` to be used. fn process_legacy_macro_imports(&mut self, item: &Item, module: Module<'a>, expansion: Mark) -> bool { let allow_shadowing = expansion == Mark::root(); let legacy_imports = self.legacy_macro_imports(&item.attrs); let used = legacy_imports != LegacyMacroImports::default(); // `#[macro_use]` is only allowed at the crate root. if self.current_module.parent.is_some() && used { span_err!(self.session, item.span, E0468, "an `extern crate` loading macros must be at the crate root"); } let (graph_root, arenas) = (self.graph_root, self.arenas); let macro_use_directive = |span| arenas.alloc_import_directive(ImportDirective { root_id: item.id, id: item.id, parent: graph_root, imported_module: Cell::new(Some(ModuleOrUniformRoot::Module(module))), subclass: ImportDirectiveSubclass::MacroUse, root_span: span, span, module_path: Vec::new(), vis: Cell::new(ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))), expansion, used: Cell::new(false), is_uniform_paths_canary: false, }); if let Some(span) = legacy_imports.import_all { let directive = macro_use_directive(span); self.potentially_unused_imports.push(directive); module.for_each_child(|ident, ns, binding| if ns == MacroNS { let imported_binding = self.import(binding, directive); self.legacy_import_macro(ident.name, imported_binding, span, allow_shadowing); }); } else { for (name, span) in legacy_imports.imports { let ident = Ident::with_empty_ctxt(name); let result = self.resolve_ident_in_module( ModuleOrUniformRoot::Module(module), ident, MacroNS, false, span, ); if let Ok(binding) = result { let directive = macro_use_directive(span); self.potentially_unused_imports.push(directive); let imported_binding = self.import(binding, directive); self.legacy_import_macro(name, imported_binding, span, allow_shadowing); } else { span_err!(self.session, span, E0469, "imported macro not found"); } } } used } // does this attribute list contain "macro_use"? fn contains_macro_use(&mut self, attrs: &[ast::Attribute]) -> bool { for attr in attrs { if attr.check_name("macro_escape") { let msg = "macro_escape is a deprecated synonym for macro_use"; let mut err = self.session.struct_span_warn(attr.span, msg); if let ast::AttrStyle::Inner = attr.style { err.help("consider an outer attribute, #[macro_use] mod ...").emit(); } else { err.emit(); } } else if !attr.check_name("macro_use") { continue; } if !attr.is_word() { self.session.span_err(attr.span, "arguments to macro_use are not allowed here"); } return true; } false } fn legacy_macro_imports(&mut self, attrs: &[ast::Attribute]) -> LegacyMacroImports { let mut imports = LegacyMacroImports::default(); for attr in attrs { if attr.check_name("macro_use") { match attr.meta_item_list() { Some(names) => for attr in names { if let Some(word) = attr.word() { imports.imports.push((word.name(), attr.span())); } else { span_err!(self.session, attr.span(), E0466, "bad macro import"); } }, None => imports.import_all = Some(attr.span), } } } imports } } pub struct BuildReducedGraphVisitor<'a, 'b: 'a, 'c: 'b> { pub resolver: &'a mut Resolver<'b, 'c>, pub current_legacy_scope: LegacyScope<'b>, pub expansion: Mark, } impl<'a, 'b, 'cl> BuildReducedGraphVisitor<'a, 'b, 'cl> { fn visit_invoc(&mut self, id: ast::NodeId) -> &'b InvocationData<'b> { let mark = id.placeholder_to_mark(); self.resolver.current_module.unresolved_invocations.borrow_mut().insert(mark); let invocation = self.resolver.invocations[&mark]; invocation.module.set(self.resolver.current_module); invocation.parent_legacy_scope.set(self.current_legacy_scope); invocation } } macro_rules! method { ($visit:ident: $ty:ty, $invoc:path, $walk:ident) => { fn $visit(&mut self, node: &'a $ty) { if let $invoc(..) = node.node { self.visit_invoc(node.id); } else { visit::$walk(self, node); } } } } impl<'a, 'b, 'cl> Visitor<'a> for BuildReducedGraphVisitor<'a, 'b, 'cl> { method!(visit_impl_item: ast::ImplItem, ast::ImplItemKind::Macro, walk_impl_item); method!(visit_expr: ast::Expr, ast::ExprKind::Mac, walk_expr); method!(visit_pat: ast::Pat, ast::PatKind::Mac, walk_pat); method!(visit_ty: ast::Ty, ast::TyKind::Mac, walk_ty); fn visit_item(&mut self, item: &'a Item) { let macro_use = match item.node { ItemKind::MacroDef(..) => { self.resolver.define_macro(item, self.expansion, &mut self.current_legacy_scope); return } ItemKind::Mac(..) => { self.current_legacy_scope = LegacyScope::Expansion(self.visit_invoc(item.id)); return } ItemKind::Mod(..) => self.resolver.contains_macro_use(&item.attrs), _ => false, }; let orig_current_module = self.resolver.current_module; let orig_current_legacy_scope = self.current_legacy_scope; self.resolver.build_reduced_graph_for_item(item, self.expansion); visit::walk_item(self, item); self.resolver.current_module = orig_current_module; if !macro_use { self.current_legacy_scope = orig_current_legacy_scope; } } fn visit_stmt(&mut self, stmt: &'a ast::Stmt) { if let ast::StmtKind::Mac(..) = stmt.node { self.current_legacy_scope = LegacyScope::Expansion(self.visit_invoc(stmt.id)); } else { visit::walk_stmt(self, stmt); } } fn visit_foreign_item(&mut self, foreign_item: &'a ForeignItem) { if let ForeignItemKind::Macro(_) = foreign_item.node { self.visit_invoc(foreign_item.id); return; } self.resolver.build_reduced_graph_for_foreign_item(foreign_item, self.expansion); visit::walk_foreign_item(self, foreign_item); } fn visit_block(&mut self, block: &'a Block) { let orig_current_module = self.resolver.current_module; let orig_current_legacy_scope = self.current_legacy_scope; self.resolver.build_reduced_graph_for_block(block, self.expansion); visit::walk_block(self, block); self.resolver.current_module = orig_current_module; self.current_legacy_scope = orig_current_legacy_scope; } fn visit_trait_item(&mut self, item: &'a TraitItem) { let parent = self.resolver.current_module; if let TraitItemKind::Macro(_) = item.node { self.visit_invoc(item.id); return } // Add the item to the trait info. let item_def_id = self.resolver.definitions.local_def_id(item.id); let (def, ns) = match item.node { TraitItemKind::Const(..) => (Def::AssociatedConst(item_def_id), ValueNS), TraitItemKind::Method(ref sig, _) => { if sig.decl.has_self() { self.resolver.has_self.insert(item_def_id); } (Def::Method(item_def_id), ValueNS) } TraitItemKind::Type(..) => (Def::AssociatedTy(item_def_id), TypeNS), TraitItemKind::Macro(_) => bug!(), // handled above }; let vis = ty::Visibility::Public; self.resolver.define(parent, item.ident, ns, (def, vis, item.span, self.expansion)); self.resolver.current_module = parent.parent.unwrap(); // nearest normal ancestor visit::walk_trait_item(self, item); self.resolver.current_module = parent; } fn visit_token(&mut self, t: Token) { if let Token::Interpolated(nt) = t { match nt.0 { token::NtExpr(ref expr) => { if let ast::ExprKind::Mac(..) = expr.node { self.visit_invoc(expr.id); } } _ => {} } } } }