use rustc_middle::mir::{self, Body, Location, Place}; use rustc_middle::ty::RegionVid; use rustc_middle::ty::TyCtxt; use rustc_data_structures::fx::FxHashMap; use rustc_index::bit_set::BitSet; use crate::borrow_check::{ places_conflict, BorrowSet, PlaceConflictBias, PlaceExt, RegionInferenceContext, ToRegionVid, }; use crate::dataflow::BottomValue; use crate::dataflow::{self, GenKill}; use std::rc::Rc; rustc_index::newtype_index! { pub struct BorrowIndex { DEBUG_FORMAT = "bw{}" } } /// `Borrows` stores the data used in the analyses that track the flow /// of borrows. /// /// It uniquely identifies every borrow (`Rvalue::Ref`) by a /// `BorrowIndex`, and maps each such index to a `BorrowData` /// describing the borrow. These indexes are used for representing the /// borrows in compact bitvectors. pub struct Borrows<'a, 'tcx> { tcx: TyCtxt<'tcx>, body: &'a Body<'tcx>, borrow_set: Rc>, borrows_out_of_scope_at_location: FxHashMap>, /// NLL region inference context with which NLL queries should be resolved _nonlexical_regioncx: Rc>, } struct StackEntry { bb: mir::BasicBlock, lo: usize, hi: usize, first_part_only: bool, } fn precompute_borrows_out_of_scope<'tcx>( body: &Body<'tcx>, regioncx: &Rc>, borrows_out_of_scope_at_location: &mut FxHashMap>, borrow_index: BorrowIndex, borrow_region: RegionVid, location: Location, ) { // We visit one BB at a time. The complication is that we may start in the // middle of the first BB visited (the one containing `location`), in which // case we may have to later on process the first part of that BB if there // is a path back to its start. // For visited BBs, we record the index of the first statement processed. // (In fully processed BBs this index is 0.) Note also that we add BBs to // `visited` once they are added to `stack`, before they are actually // processed, because this avoids the need to look them up again on // completion. let mut visited = FxHashMap::default(); visited.insert(location.block, location.statement_index); let mut stack = vec![]; stack.push(StackEntry { bb: location.block, lo: location.statement_index, hi: body[location.block].statements.len(), first_part_only: false, }); while let Some(StackEntry { bb, lo, hi, first_part_only }) = stack.pop() { let mut finished_early = first_part_only; for i in lo..=hi { let location = Location { block: bb, statement_index: i }; // If region does not contain a point at the location, then add to list and skip // successor locations. if !regioncx.region_contains(borrow_region, location) { debug!("borrow {:?} gets killed at {:?}", borrow_index, location); borrows_out_of_scope_at_location.entry(location).or_default().push(borrow_index); finished_early = true; break; } } if !finished_early { // Add successor BBs to the work list, if necessary. let bb_data = &body[bb]; assert!(hi == bb_data.statements.len()); for &succ_bb in bb_data.terminator().successors() { visited .entry(succ_bb) .and_modify(|lo| { // `succ_bb` has been seen before. If it wasn't // fully processed, add its first part to `stack` // for processing. if *lo > 0 { stack.push(StackEntry { bb: succ_bb, lo: 0, hi: *lo - 1, first_part_only: true, }); } // And update this entry with 0, to represent the // whole BB being processed. *lo = 0; }) .or_insert_with(|| { // succ_bb hasn't been seen before. Add it to // `stack` for processing. stack.push(StackEntry { bb: succ_bb, lo: 0, hi: body[succ_bb].statements.len(), first_part_only: false, }); // Insert 0 for this BB, to represent the whole BB // being processed. 0 }); } } } } impl<'a, 'tcx> Borrows<'a, 'tcx> { crate fn new( tcx: TyCtxt<'tcx>, body: &'a Body<'tcx>, nonlexical_regioncx: Rc>, borrow_set: &Rc>, ) -> Self { let mut borrows_out_of_scope_at_location = FxHashMap::default(); for (borrow_index, borrow_data) in borrow_set.iter_enumerated() { let borrow_region = borrow_data.region.to_region_vid(); let location = borrow_data.reserve_location; precompute_borrows_out_of_scope( body, &nonlexical_regioncx, &mut borrows_out_of_scope_at_location, borrow_index, borrow_region, location, ); } Borrows { tcx, body, borrow_set: borrow_set.clone(), borrows_out_of_scope_at_location, _nonlexical_regioncx: nonlexical_regioncx, } } pub fn location(&self, idx: BorrowIndex) -> &Location { &self.borrow_set[idx].reserve_location } /// Add all borrows to the kill set, if those borrows are out of scope at `location`. /// That means they went out of a nonlexical scope fn kill_loans_out_of_scope_at_location( &self, trans: &mut impl GenKill, location: Location, ) { // NOTE: The state associated with a given `location` // reflects the dataflow on entry to the statement. // Iterate over each of the borrows that we've precomputed // to have went out of scope at this location and kill them. // // We are careful always to call this function *before* we // set up the gen-bits for the statement or // termanator. That way, if the effect of the statement or // terminator *does* introduce a new loan of the same // region, then setting that gen-bit will override any // potential kill introduced here. if let Some(indices) = self.borrows_out_of_scope_at_location.get(&location) { trans.kill_all(indices.iter().copied()); } } /// Kill any borrows that conflict with `place`. fn kill_borrows_on_place(&self, trans: &mut impl GenKill, place: Place<'tcx>) { debug!("kill_borrows_on_place: place={:?}", place); let other_borrows_of_local = self .borrow_set .local_map .get(&place.local) .into_iter() .flat_map(|bs| bs.iter()) .copied(); // If the borrowed place is a local with no projections, all other borrows of this // local must conflict. This is purely an optimization so we don't have to call // `places_conflict` for every borrow. if place.projection.is_empty() { if !self.body.local_decls[place.local].is_ref_to_static() { trans.kill_all(other_borrows_of_local); } return; } // By passing `PlaceConflictBias::NoOverlap`, we conservatively assume that any given // pair of array indices are unequal, so that when `places_conflict` returns true, we // will be assured that two places being compared definitely denotes the same sets of // locations. let definitely_conflicting_borrows = other_borrows_of_local.filter(|&i| { places_conflict( self.tcx, self.body, self.borrow_set[i].borrowed_place, place, PlaceConflictBias::NoOverlap, ) }); trans.kill_all(definitely_conflicting_borrows); } } impl<'tcx> dataflow::AnalysisDomain<'tcx> for Borrows<'_, 'tcx> { type Idx = BorrowIndex; const NAME: &'static str = "borrows"; fn bits_per_block(&self, _: &mir::Body<'tcx>) -> usize { self.borrow_set.len() * 2 } fn initialize_start_block(&self, _: &mir::Body<'tcx>, _: &mut BitSet) { // no borrows of code region_scopes have been taken prior to // function execution, so this method has no effect. } fn pretty_print_idx(&self, w: &mut impl std::io::Write, idx: Self::Idx) -> std::io::Result<()> { write!(w, "{:?}", self.location(idx)) } } impl<'tcx> dataflow::GenKillAnalysis<'tcx> for Borrows<'_, 'tcx> { fn before_statement_effect( &self, trans: &mut impl GenKill, _statement: &mir::Statement<'tcx>, location: Location, ) { self.kill_loans_out_of_scope_at_location(trans, location); } fn statement_effect( &self, trans: &mut impl GenKill, stmt: &mir::Statement<'tcx>, location: Location, ) { match stmt.kind { mir::StatementKind::Assign(box (lhs, ref rhs)) => { if let mir::Rvalue::Ref(_, _, place) = *rhs { if place.ignore_borrow( self.tcx, self.body, &self.borrow_set.locals_state_at_exit, ) { return; } let index = self.borrow_set.get_index_of(&location).unwrap_or_else(|| { panic!("could not find BorrowIndex for location {:?}", location); }); trans.gen(index); } // Make sure there are no remaining borrows for variables // that are assigned over. self.kill_borrows_on_place(trans, lhs); } mir::StatementKind::StorageDead(local) => { // Make sure there are no remaining borrows for locals that // are gone out of scope. self.kill_borrows_on_place(trans, Place::from(local)); } mir::StatementKind::LlvmInlineAsm(ref asm) => { for (output, kind) in asm.outputs.iter().zip(&asm.asm.outputs) { if !kind.is_indirect && !kind.is_rw { self.kill_borrows_on_place(trans, *output); } } } mir::StatementKind::FakeRead(..) | mir::StatementKind::SetDiscriminant { .. } | mir::StatementKind::StorageLive(..) | mir::StatementKind::Retag { .. } | mir::StatementKind::AscribeUserType(..) | mir::StatementKind::Coverage(..) | mir::StatementKind::Nop => {} } } fn before_terminator_effect( &self, trans: &mut impl GenKill, _terminator: &mir::Terminator<'tcx>, location: Location, ) { self.kill_loans_out_of_scope_at_location(trans, location); } fn terminator_effect( &self, trans: &mut impl GenKill, teminator: &mir::Terminator<'tcx>, _location: Location, ) { if let mir::TerminatorKind::InlineAsm { operands, .. } = &teminator.kind { for op in operands { if let mir::InlineAsmOperand::Out { place: Some(place), .. } | mir::InlineAsmOperand::InOut { out_place: Some(place), .. } = *op { self.kill_borrows_on_place(trans, place); } } } } fn call_return_effect( &self, _trans: &mut impl GenKill, _block: mir::BasicBlock, _func: &mir::Operand<'tcx>, _args: &[mir::Operand<'tcx>], _dest_place: mir::Place<'tcx>, ) { } } impl<'a, 'tcx> BottomValue for Borrows<'a, 'tcx> { /// bottom = nothing is reserved or activated yet; const BOTTOM_VALUE: bool = false; }