// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use driver::session; use middle::ty; use middle::pat_util; use metadata::csearch; use util::ppaux::{ty_to_str}; use std::cmp; use std::hashmap::HashMap; use std::i16; use std::i32; use std::i64; use std::i8; use std::u16; use std::u32; use std::u64; use std::u8; use extra::smallintmap::SmallIntMap; use syntax::ast_map; use syntax::attr; use syntax::attr::{AttrMetaMethods, AttributeMethods}; use syntax::codemap::Span; use syntax::codemap; use syntax::parse::token; use syntax::{ast, ast_util, visit}; use syntax::visit::Visitor; /** * A 'lint' check is a kind of miscellaneous constraint that a user _might_ * want to enforce, but might reasonably want to permit as well, on a * module-by-module basis. They contrast with static constraints enforced by * other phases of the compiler, which are generally required to hold in order * to compile the program at all. * * The lint checking is all consolidated into one pass which runs just before * translation to LLVM bytecode. Throughout compilation, lint warnings can be * added via the `add_lint` method on the Session structure. This requires a * span and an id of the node that the lint is being added to. The lint isn't * actually emitted at that time because it is unknown what the actual lint * level at that location is. * * To actually emit lint warnings/errors, a separate pass is used just before * translation. A context keeps track of the current state of all lint levels. * Upon entering a node of the ast which can modify the lint settings, the * previous lint state is pushed onto a stack and the ast is then recursed upon. * As the ast is traversed, this keeps track of the current lint level for all * lint attributes. * * At each node of the ast which can modify lint attributes, all known lint * passes are also applied. Each lint pass is a visit::Visitor implementator. * The visitors are constructed via the lint_*() functions below. There are * also some lint checks which operate directly on ast nodes (such as * @ast::item), and those are organized as check_item_*(). Each visitor added * to the lint context is modified to stop once it reaches a node which could * alter the lint levels. This means that everything is looked at once and * only once by every lint pass. * * With this all in place, to add a new lint warning, all you need to do is to * either invoke `add_lint` on the session at the appropriate time, or write a * lint pass in this module which is just an ast visitor. The context used when * traversing the ast has a `span_lint` method which only needs the span of the * item that's being warned about. */ #[deriving(Clone, Eq)] pub enum lint { ctypes, cstack, unused_imports, unnecessary_qualification, while_true, path_statement, unrecognized_lint, non_camel_case_types, non_uppercase_statics, type_limits, unused_unsafe, managed_heap_memory, owned_heap_memory, heap_memory, unused_variable, dead_assignment, unused_mut, unnecessary_allocation, missing_doc, unreachable_code, deprecated, experimental, unstable, warnings, } pub fn level_to_str(lv: level) -> &'static str { match lv { allow => "allow", warn => "warn", deny => "deny", forbid => "forbid" } } #[deriving(Clone, Eq, Ord)] pub enum level { allow, warn, deny, forbid } #[deriving(Clone, Eq)] pub struct LintSpec { lint: lint, desc: &'static str, default: level } impl Ord for LintSpec { fn lt(&self, other: &LintSpec) -> bool { self.default < other.default } } pub type LintDict = HashMap<&'static str, LintSpec>; enum AttributedNode<'self> { Item(@ast::item), Method(&'self ast::method), Crate(&'self ast::Crate), } #[deriving(Eq)] enum LintSource { Node(Span), Default, CommandLine } static lint_table: &'static [(&'static str, LintSpec)] = &[ ("ctypes", LintSpec { lint: ctypes, desc: "proper use of std::libc types in foreign modules", default: warn }), ("cstack", LintSpec { lint: cstack, desc: "only invoke foreign functions from fixedstacksegment fns", default: deny }), ("unused_imports", LintSpec { lint: unused_imports, desc: "imports that are never used", default: warn }), ("unnecessary_qualification", LintSpec { lint: unnecessary_qualification, desc: "detects unnecessarily qualified names", default: allow }), ("while_true", LintSpec { lint: while_true, desc: "suggest using loop { } instead of while(true) { }", default: warn }), ("path_statement", LintSpec { lint: path_statement, desc: "path statements with no effect", default: warn }), ("unrecognized_lint", LintSpec { lint: unrecognized_lint, desc: "unrecognized lint attribute", default: warn }), ("non_camel_case_types", LintSpec { lint: non_camel_case_types, desc: "types, variants and traits should have camel case names", default: allow }), ("non_uppercase_statics", LintSpec { lint: non_uppercase_statics, desc: "static constants should have uppercase identifiers", default: allow }), ("managed_heap_memory", LintSpec { lint: managed_heap_memory, desc: "use of managed (@ type) heap memory", default: allow }), ("owned_heap_memory", LintSpec { lint: owned_heap_memory, desc: "use of owned (~ type) heap memory", default: allow }), ("heap_memory", LintSpec { lint: heap_memory, desc: "use of any (~ type or @ type) heap memory", default: allow }), ("type_limits", LintSpec { lint: type_limits, desc: "comparisons made useless by limits of the types involved", default: warn }), ("unused_unsafe", LintSpec { lint: unused_unsafe, desc: "unnecessary use of an `unsafe` block", default: warn }), ("unused_variable", LintSpec { lint: unused_variable, desc: "detect variables which are not used in any way", default: warn }), ("dead_assignment", LintSpec { lint: dead_assignment, desc: "detect assignments that will never be read", default: warn }), ("unused_mut", LintSpec { lint: unused_mut, desc: "detect mut variables which don't need to be mutable", default: warn }), ("unnecessary_allocation", LintSpec { lint: unnecessary_allocation, desc: "detects unnecessary allocations that can be eliminated", default: warn }), ("missing_doc", LintSpec { lint: missing_doc, desc: "detects missing documentation for public members", default: allow }), ("unreachable_code", LintSpec { lint: unreachable_code, desc: "detects unreachable code", default: warn }), ("deprecated", LintSpec { lint: deprecated, desc: "detects use of #[deprecated] items", default: warn }), ("experimental", LintSpec { lint: experimental, desc: "detects use of #[experimental] items", default: warn }), ("unstable", LintSpec { lint: unstable, desc: "detects use of #[unstable] items (incl. items with no stability attribute)", default: allow }), ("warnings", LintSpec { lint: warnings, desc: "mass-change the level for lints which produce warnings", default: warn }), ]; /* Pass names should not contain a '-', as the compiler normalizes '-' to '_' in command-line flags */ pub fn get_lint_dict() -> LintDict { let mut map = HashMap::new(); for &(k, v) in lint_table.iter() { map.insert(k, v); } return map; } trait OuterLint { fn process_item(@mut self, i:@ast::item, e:@mut Context); fn process_fn(@mut self, fk:&visit::fn_kind, fd:&ast::fn_decl, b:&ast::Block, s:Span, n:ast::NodeId, e:@mut Context); // Returned inner variant will not proceed past subitems. // Supports decomposition of simple lints into subitem-traversing // outer lint visitor and subitem-stopping inner lint visitor. fn inner_variant(@mut self) -> @mut InnerLint; } trait InnerLint { fn descend_item(@mut self, i:&ast::item, e:@mut Context); fn descend_crate(@mut self, crate: &ast::Crate, env: @mut Context); fn descend_fn(@mut self, function_kind: &visit::fn_kind, function_declaration: &ast::fn_decl, function_body: &ast::Block, sp: Span, id: ast::NodeId, env: @mut Context); } impl> InnerLint for V { fn descend_item(@mut self, i:&ast::item, e:@mut Context) { visit::walk_item(self, i, e); } fn descend_crate(@mut self, crate: &ast::Crate, env: @mut Context) { visit::walk_crate(self, crate, env); } fn descend_fn(@mut self, fk: &visit::fn_kind, fd: &ast::fn_decl, fb: &ast::Block, sp: Span, id: ast::NodeId, env: @mut Context) { visit::walk_fn(self, fk, fd, fb, sp, id, env); } } enum AnyVisitor { // This is a pair so every visitor can visit every node. When a lint pass // is registered, another visitor is created which stops at all items // which can alter the attributes of the ast. This "item stopping visitor" // is the second element of the pair, while the original visitor is the // first element. This means that when visiting a node, the original // recursive call can use the original visitor's method, although the // recursing visitor supplied to the method is the item stopping visitor. OldVisitor(@mut OuterLint, @mut InnerLint), NewVisitor(@mut visit::Visitor<()>), } struct Context { // All known lint modes (string versions) dict: @LintDict, // Current levels of each lint warning curr: SmallIntMap<(level, LintSource)>, // context we're checking in (used to access fields like sess) tcx: ty::ctxt, // Just a simple flag if we're currently recursing into a trait // implementation. This is only used by the lint_missing_doc() pass in_trait_impl: bool, // Another flag for doc lint emissions. Does some parent of the current node // have the doc(hidden) attribute? Treating this as allow(missing_doc) would // play badly with forbid(missing_doc) when it shouldn't. doc_hidden: bool, // When recursing into an attributed node of the ast which modifies lint // levels, this stack keeps track of the previous lint levels of whatever // was modified. lint_stack: ~[(lint, level, LintSource)], // Each of these visitors represents a lint pass. A number of the lint // attributes are registered by adding a visitor to iterate over the ast. // Others operate directly on @ast::item structures (or similar). Finally, // others still are added to the Session object via `add_lint`, and these // are all passed with the lint_session visitor. visitors: ~[AnyVisitor], } impl Context { fn get_level(&self, lint: lint) -> level { match self.curr.find(&(lint as uint)) { Some(&(lvl, _)) => lvl, None => allow } } fn get_source(&self, lint: lint) -> LintSource { match self.curr.find(&(lint as uint)) { Some(&(_, src)) => src, None => Default } } fn set_level(&mut self, lint: lint, level: level, src: LintSource) { if level == allow { self.curr.remove(&(lint as uint)); } else { self.curr.insert(lint as uint, (level, src)); } } fn lint_to_str(&self, lint: lint) -> &'static str { for (k, v) in self.dict.iter() { if v.lint == lint { return *k; } } fail!("unregistered lint %?", lint); } fn span_lint(&self, lint: lint, span: Span, msg: &str) { let (level, src) = match self.curr.find(&(lint as uint)) { None => { return } Some(&(warn, src)) => (self.get_level(warnings), src), Some(&pair) => pair, }; if level == allow { return } let mut note = None; let msg = match src { Default | CommandLine => { fmt!("%s [-%c %s%s]", msg, match level { warn => 'W', deny => 'D', forbid => 'F', allow => fail!() }, self.lint_to_str(lint).replace("_", "-"), if src == Default { " (default)" } else { "" }) }, Node(src) => { note = Some(src); msg.to_str() } }; match level { warn => { self.tcx.sess.span_warn(span, msg); } deny | forbid => { self.tcx.sess.span_err(span, msg); } allow => fail!(), } for &span in note.iter() { self.tcx.sess.span_note(span, "lint level defined here"); } } /** * Merge the lints specified by any lint attributes into the * current lint context, call the provided function, then reset the * lints in effect to their previous state. */ fn with_lint_attrs(@mut self, attrs: &[ast::Attribute], f: &fn()) { // Parse all of the lint attributes, and then add them all to the // current dictionary of lint information. Along the way, keep a history // of what we changed so we can roll everything back after invoking the // specified closure let mut pushed = 0u; do each_lint(self.tcx.sess, attrs) |meta, level, lintname| { match self.dict.find_equiv(&lintname) { None => { self.span_lint( unrecognized_lint, meta.span, fmt!("unknown `%s` attribute: `%s`", level_to_str(level), lintname)); } Some(lint) => { let lint = lint.lint; let now = self.get_level(lint); if now == forbid && level != forbid { self.tcx.sess.span_err(meta.span, fmt!("%s(%s) overruled by outer forbid(%s)", level_to_str(level), lintname, lintname)); } else if now != level { let src = self.get_source(lint); self.lint_stack.push((lint, now, src)); pushed += 1; self.set_level(lint, level, Node(meta.span)); } } } true }; // detect doc(hidden) let mut doc_hidden = do attrs.iter().any |attr| { "doc" == attr.name() && match attr.meta_item_list() { Some(l) => attr::contains_name(l, "hidden"), None => false // not of the form #[doc(...)] } }; if doc_hidden && !self.doc_hidden { self.doc_hidden = true; } else { doc_hidden = false; } f(); // rollback if doc_hidden && self.doc_hidden { self.doc_hidden = false; } do pushed.times { let (lint, lvl, src) = self.lint_stack.pop(); self.set_level(lint, lvl, src); } } fn add_old_lint(&mut self, v: @mut OuterLint) { self.visitors.push(OldVisitor(v, v.inner_variant())); } fn add_lint(&mut self, v: @mut visit::Visitor<()>) { self.visitors.push(NewVisitor(v)); } fn process(@mut self, n: AttributedNode) { // see comment of the `visitors` field in the struct for why there's a // pair instead of just one visitor. match n { Item(it) => { for visitor in self.visitors.iter() { match *visitor { OldVisitor(orig, stopping) => { orig.process_item(it, self); stopping.descend_item(it, self); } NewVisitor(new_visitor) => { let new_visitor = new_visitor; new_visitor.visit_item(it, ()); } } } } Crate(c) => { for visitor in self.visitors.iter() { match *visitor { OldVisitor(_, stopping) => { stopping.descend_crate(c, self) } NewVisitor(new_visitor) => { let mut new_visitor = new_visitor; visit::walk_crate(&mut new_visitor, c, ()) } } } } // Can't use visit::walk_method_helper because the // item_stopping_visitor has overridden visit_fn(&fk_method(... )) // to be a no-op, so manually invoke visit_fn. Method(m) => { for visitor in self.visitors.iter() { match *visitor { OldVisitor(orig, stopping) => { let fk = visit::fk_method(m.ident, &m.generics, m); orig.process_fn(&fk, &m.decl, &m.body, m.span, m.id, self); stopping.descend_fn(&fk, &m.decl, &m.body, m.span, m.id, self); } NewVisitor(new_visitor) => { let fk = visit::fk_method(m.ident, &m.generics, m); let new_visitor = new_visitor; new_visitor.visit_fn(&fk, &m.decl, &m.body, m.span, m.id, ()) } } } } } } } pub fn each_lint(sess: session::Session, attrs: &[ast::Attribute], f: &fn(@ast::MetaItem, level, @str) -> bool) -> bool { let xs = [allow, warn, deny, forbid]; for &level in xs.iter() { let level_name = level_to_str(level); for attr in attrs.iter().filter(|m| level_name == m.name()) { let meta = attr.node.value; let metas = match meta.node { ast::MetaList(_, ref metas) => metas, _ => { sess.span_err(meta.span, "malformed lint attribute"); loop; } }; for meta in metas.iter() { match meta.node { ast::MetaWord(lintname) => { if !f(*meta, level, lintname) { return false; } } _ => { sess.span_err(meta.span, "malformed lint attribute"); } } } } } true } trait SubitemStoppableVisitor : Visitor<@mut Context> { fn is_running_on_items(&mut self) -> bool; fn visit_item_action(&mut self, _i:@ast::item, _e:@mut Context) { // fill in with particular action without recursion if desired } fn visit_fn_action(&mut self, _fk:&visit::fn_kind, _fd:&ast::fn_decl, _b:&ast::Block, _s:Span, _n:ast::NodeId, _e:@mut Context) { // fill in with particular action without recursion if desired } // The two OVERRIDE methods: // // OVERRIDE_visit_item // OVERRIDE_visit_fn // // *must* be included as initial reimplementations of the standard // default behavior of visit_item and visit_fn for every impl of // Visitor, in order to recreate the effect of having two variant // Outer/Inner behaviors of lint visitors. (See earlier versions // of this module to see what the original encoding was of this // emulated behavior.) fn OVERRIDE_visit_item(&mut self, i:@ast::item, e:@mut Context) { if self.is_running_on_items() { self.visit_item_action(i, e); visit::walk_item(self, i, e); } } fn OVERRIDE_visit_fn(&mut self, fk:&visit::fn_kind, fd:&ast::fn_decl, b:&ast::Block, s:Span, n:ast::NodeId, e:@mut Context) { if self.is_running_on_items() { self.visit_fn_action(fk, fd, b, s, n, e); visit::walk_fn(self, fk, fd, b, s, n, e); } else { match *fk { visit::fk_method(*) => {} _ => { self.visit_fn_action(fk, fd, b, s, n, e); visit::walk_fn(self, fk, fd, b, s, n, e); } } } } } struct WhileTrueLintVisitor { stopping_on_items: bool } impl SubitemStoppableVisitor for WhileTrueLintVisitor { fn is_running_on_items(&mut self) -> bool { !self.stopping_on_items } } impl Visitor<@mut Context> for WhileTrueLintVisitor { fn visit_item(&mut self, i:@ast::item, e:@mut Context) { self.OVERRIDE_visit_item(i, e); } fn visit_fn(&mut self, fk:&visit::fn_kind, fd:&ast::fn_decl, b:&ast::Block, s:Span, n:ast::NodeId, e:@mut Context) { self.OVERRIDE_visit_fn(fk, fd, b, s, n, e); } fn visit_expr(&mut self, e:@ast::Expr, cx:@mut Context) { match e.node { ast::ExprWhile(cond, _) => { match cond.node { ast::ExprLit(@codemap::Spanned { node: ast::lit_bool(true), _}) => { cx.span_lint(while_true, e.span, "denote infinite loops with \ loop { ... }"); } _ => () } } _ => () } visit::walk_expr(self, e, cx); } } macro_rules! outer_lint_boilerplate_impl( ($Visitor:ident) => ( impl OuterLint for $Visitor { fn process_item(@mut self, i:@ast::item, e:@mut Context) { self.visit_item_action(i, e); } fn process_fn(@mut self, fk:&visit::fn_kind, fd:&ast::fn_decl, b:&ast::Block, s:Span, n:ast::NodeId, e:@mut Context) { self.visit_fn_action(fk, fd, b, s, n, e); } fn inner_variant(@mut self) -> @mut InnerLint { @mut $Visitor { stopping_on_items: true } as @mut InnerLint } } )) outer_lint_boilerplate_impl!(WhileTrueLintVisitor) fn lint_while_true() -> @mut OuterLint { @mut WhileTrueLintVisitor{ stopping_on_items: false } as @mut OuterLint } struct TypeLimitsLintVisitor { stopping_on_items: bool } impl SubitemStoppableVisitor for TypeLimitsLintVisitor { fn is_running_on_items(&mut self) -> bool { !self.stopping_on_items } } impl TypeLimitsLintVisitor { fn is_valid(&mut self, binop: ast::BinOp, v: T, min: T, max: T) -> bool { match binop { ast::BiLt => v <= max, ast::BiLe => v < max, ast::BiGt => v >= min, ast::BiGe => v > min, ast::BiEq | ast::BiNe => v >= min && v <= max, _ => fail!() } } fn rev_binop(&mut self, binop: ast::BinOp) -> ast::BinOp { match binop { ast::BiLt => ast::BiGt, ast::BiLe => ast::BiGe, ast::BiGt => ast::BiLt, ast::BiGe => ast::BiLe, _ => binop } } // for int & uint, be conservative with the warnings, so that the // warnings are consistent between 32- and 64-bit platforms fn int_ty_range(&mut self, int_ty: ast::int_ty) -> (i64, i64) { match int_ty { ast::ty_i => (i64::min_value, i64::max_value), ast::ty_i8 => (i8::min_value as i64, i8::max_value as i64), ast::ty_i16 => (i16::min_value as i64, i16::max_value as i64), ast::ty_i32 => (i32::min_value as i64, i32::max_value as i64), ast::ty_i64 => (i64::min_value, i64::max_value) } } fn uint_ty_range(&mut self, uint_ty: ast::uint_ty) -> (u64, u64) { match uint_ty { ast::ty_u => (u64::min_value, u64::max_value), ast::ty_u8 => (u8::min_value as u64, u8::max_value as u64), ast::ty_u16 => (u16::min_value as u64, u16::max_value as u64), ast::ty_u32 => (u32::min_value as u64, u32::max_value as u64), ast::ty_u64 => (u64::min_value, u64::max_value) } } fn check_limits(&mut self, cx: &Context, binop: ast::BinOp, l: @ast::Expr, r: @ast::Expr) -> bool { let (lit, expr, swap) = match (&l.node, &r.node) { (&ast::ExprLit(_), _) => (l, r, true), (_, &ast::ExprLit(_)) => (r, l, false), _ => return true }; // Normalize the binop so that the literal is always on the RHS in // the comparison let norm_binop = if swap { self.rev_binop(binop) } else { binop }; match ty::get(ty::expr_ty(cx.tcx, expr)).sty { ty::ty_int(int_ty) => { let (min, max) = self.int_ty_range(int_ty); let lit_val: i64 = match lit.node { ast::ExprLit(@li) => match li.node { ast::lit_int(v, _) => v, ast::lit_uint(v, _) => v as i64, ast::lit_int_unsuffixed(v) => v, _ => return true }, _ => fail!() }; self.is_valid(norm_binop, lit_val, min, max) } ty::ty_uint(uint_ty) => { let (min, max): (u64, u64) = self.uint_ty_range(uint_ty); let lit_val: u64 = match lit.node { ast::ExprLit(@li) => match li.node { ast::lit_int(v, _) => v as u64, ast::lit_uint(v, _) => v, ast::lit_int_unsuffixed(v) => v as u64, _ => return true }, _ => fail!() }; self.is_valid(norm_binop, lit_val, min, max) } _ => true } } fn is_comparison(&mut self, binop: ast::BinOp) -> bool { match binop { ast::BiEq | ast::BiLt | ast::BiLe | ast::BiNe | ast::BiGe | ast::BiGt => true, _ => false } } } impl Visitor<@mut Context> for TypeLimitsLintVisitor { fn visit_item(&mut self, i:@ast::item, e:@mut Context) { self.OVERRIDE_visit_item(i, e); } fn visit_fn(&mut self, fk:&visit::fn_kind, fd:&ast::fn_decl, b:&ast::Block, s:Span, n:ast::NodeId, e:@mut Context) { self.OVERRIDE_visit_fn(fk, fd, b, s, n, e); } fn visit_expr(&mut self, e:@ast::Expr, cx:@mut Context) { match e.node { ast::ExprBinary(_, ref binop, l, r) => { if self.is_comparison(*binop) && !self.check_limits(cx, *binop, l, r) { cx.span_lint(type_limits, e.span, "comparison is useless due to type limits"); } } _ => () } visit::walk_expr(self, e, cx); } } outer_lint_boilerplate_impl!(TypeLimitsLintVisitor) fn lint_type_limits() -> @mut OuterLint { @mut TypeLimitsLintVisitor{ stopping_on_items: false } as @mut OuterLint } fn check_item_ctypes(cx: &Context, it: &ast::item) { fn check_ty(cx: &Context, ty: &ast::Ty) { match ty.node { ast::ty_path(_, _, id) => { match cx.tcx.def_map.get_copy(&id) { ast::DefPrimTy(ast::ty_int(ast::ty_i)) => { cx.span_lint(ctypes, ty.span, "found rust type `int` in foreign module, while \ libc::c_int or libc::c_long should be used"); } ast::DefPrimTy(ast::ty_uint(ast::ty_u)) => { cx.span_lint(ctypes, ty.span, "found rust type `uint` in foreign module, while \ libc::c_uint or libc::c_ulong should be used"); } _ => () } } ast::ty_ptr(ref mt) => { check_ty(cx, mt.ty) } _ => () } } fn check_foreign_fn(cx: &Context, decl: &ast::fn_decl) { for input in decl.inputs.iter() { check_ty(cx, &input.ty); } check_ty(cx, &decl.output) } match it.node { ast::item_foreign_mod(ref nmod) if !nmod.abis.is_intrinsic() => { for ni in nmod.items.iter() { match ni.node { ast::foreign_item_fn(ref decl, _) => { check_foreign_fn(cx, decl); } ast::foreign_item_static(ref t, _) => { check_ty(cx, t); } } } } _ => {/* nothing to do */ } } } fn check_type_for_lint(cx: &Context, lint: lint, span: Span, ty: ty::t) { if cx.get_level(lint) == allow { return } let mut n_box = 0; let mut n_uniq = 0; ty::fold_ty(cx.tcx, ty, |t| { match ty::get(t).sty { ty::ty_box(_) => n_box += 1, ty::ty_uniq(_) => n_uniq += 1, _ => () }; t }); if n_uniq > 0 && lint != managed_heap_memory { let s = ty_to_str(cx.tcx, ty); let m = ~"type uses owned (~ type) pointers: " + s; cx.span_lint(lint, span, m); } if n_box > 0 && lint != owned_heap_memory { let s = ty_to_str(cx.tcx, ty); let m = ~"type uses managed (@ type) pointers: " + s; cx.span_lint(lint, span, m); } } fn check_type(cx: &Context, span: Span, ty: ty::t) { let xs = [managed_heap_memory, owned_heap_memory, heap_memory]; for lint in xs.iter() { check_type_for_lint(cx, *lint, span, ty); } } fn check_item_heap(cx: &Context, it: &ast::item) { match it.node { ast::item_fn(*) | ast::item_ty(*) | ast::item_enum(*) | ast::item_struct(*) => check_type(cx, it.span, ty::node_id_to_type(cx.tcx, it.id)), _ => () } // If it's a struct, we also have to check the fields' types match it.node { ast::item_struct(struct_def, _) => { for struct_field in struct_def.fields.iter() { check_type(cx, struct_field.span, ty::node_id_to_type(cx.tcx, struct_field.node.id)); } } _ => () } } struct HeapLintVisitor { stopping_on_items: bool } impl SubitemStoppableVisitor for HeapLintVisitor { fn is_running_on_items(&mut self) -> bool { !self.stopping_on_items } } impl Visitor<@mut Context> for HeapLintVisitor { fn visit_item(&mut self, i:@ast::item, e:@mut Context) { self.OVERRIDE_visit_item(i, e); } fn visit_fn(&mut self, fk:&visit::fn_kind, fd:&ast::fn_decl, b:&ast::Block, s:Span, n:ast::NodeId, e:@mut Context) { self.OVERRIDE_visit_fn(fk, fd, b, s, n, e); } fn visit_expr(&mut self, e:@ast::Expr, cx:@mut Context) { let ty = ty::expr_ty(cx.tcx, e); check_type(cx, e.span, ty); visit::walk_expr(self, e, cx); } } outer_lint_boilerplate_impl!(HeapLintVisitor) fn lint_heap() -> @mut OuterLint { @mut HeapLintVisitor { stopping_on_items: false } as @mut OuterLint } struct PathStatementLintVisitor { stopping_on_items: bool } impl SubitemStoppableVisitor for PathStatementLintVisitor { fn is_running_on_items(&mut self) -> bool { !self.stopping_on_items } } impl Visitor<@mut Context> for PathStatementLintVisitor { fn visit_item(&mut self, i:@ast::item, e:@mut Context) { self.OVERRIDE_visit_item(i, e); } fn visit_fn(&mut self, fk:&visit::fn_kind, fd:&ast::fn_decl, b:&ast::Block, s:Span, n:ast::NodeId, e:@mut Context) { self.OVERRIDE_visit_fn(fk, fd, b, s, n, e); } fn visit_stmt(&mut self, s:@ast::Stmt, cx:@mut Context) { match s.node { ast::StmtSemi( @ast::Expr { node: ast::ExprPath(_), _ }, _ ) => { cx.span_lint(path_statement, s.span, "path statement with no effect"); } _ => () } visit::walk_stmt(self, s, cx); } } outer_lint_boilerplate_impl!(PathStatementLintVisitor) fn lint_path_statement() -> @mut OuterLint { @mut PathStatementLintVisitor{ stopping_on_items: false } as @mut OuterLint } fn check_item_non_camel_case_types(cx: &Context, it: &ast::item) { fn is_camel_case(cx: ty::ctxt, ident: ast::Ident) -> bool { let ident = cx.sess.str_of(ident); assert!(!ident.is_empty()); let ident = ident.trim_chars(&'_'); // start with a non-lowercase letter rather than non-uppercase // ones (some scripts don't have a concept of upper/lowercase) !ident.char_at(0).is_lowercase() && !ident.contains_char('_') } fn check_case(cx: &Context, sort: &str, ident: ast::Ident, span: Span) { if !is_camel_case(cx.tcx, ident) { cx.span_lint( non_camel_case_types, span, fmt!("%s `%s` should have a camel case identifier", sort, cx.tcx.sess.str_of(ident))); } } match it.node { ast::item_ty(*) | ast::item_struct(*) => { check_case(cx, "type", it.ident, it.span) } ast::item_trait(*) => { check_case(cx, "trait", it.ident, it.span) } ast::item_enum(ref enum_definition, _) => { check_case(cx, "type", it.ident, it.span); for variant in enum_definition.variants.iter() { check_case(cx, "variant", variant.node.name, variant.span); } } _ => () } } fn check_item_non_uppercase_statics(cx: &Context, it: &ast::item) { match it.node { // only check static constants ast::item_static(_, ast::MutImmutable, _) => { let s = cx.tcx.sess.str_of(it.ident); // check for lowercase letters rather than non-uppercase // ones (some scripts don't have a concept of // upper/lowercase) if s.iter().any(|c| c.is_lowercase()) { cx.span_lint(non_uppercase_statics, it.span, "static constant should have an uppercase identifier"); } } _ => {} } } struct UnusedUnsafeLintVisitor { stopping_on_items: bool } impl SubitemStoppableVisitor for UnusedUnsafeLintVisitor { fn is_running_on_items(&mut self) -> bool { !self.stopping_on_items } } impl Visitor<@mut Context> for UnusedUnsafeLintVisitor { fn visit_item(&mut self, i:@ast::item, e:@mut Context) { self.OVERRIDE_visit_item(i, e); } fn visit_fn(&mut self, fk:&visit::fn_kind, fd:&ast::fn_decl, b:&ast::Block, s:Span, n:ast::NodeId, e:@mut Context) { self.OVERRIDE_visit_fn(fk, fd, b, s, n, e); } fn visit_expr(&mut self, e:@ast::Expr, cx:@mut Context) { match e.node { // Don't warn about generated blocks, that'll just pollute the // output. ast::ExprBlock(ref blk) => { if blk.rules == ast::UnsafeBlock(ast::UserProvided) && !cx.tcx.used_unsafe.contains(&blk.id) { cx.span_lint(unused_unsafe, blk.span, "unnecessary `unsafe` block"); } } _ => () } visit::walk_expr(self, e, cx); } } outer_lint_boilerplate_impl!(UnusedUnsafeLintVisitor) fn lint_unused_unsafe() -> @mut OuterLint { @mut UnusedUnsafeLintVisitor{ stopping_on_items: false } as @mut OuterLint } struct UnusedMutLintVisitor { stopping_on_items: bool } impl UnusedMutLintVisitor { fn check_pat(&mut self, cx: &Context, p: @ast::Pat) { let mut used = false; let mut bindings = 0; do pat_util::pat_bindings(cx.tcx.def_map, p) |_, id, _, _| { used = used || cx.tcx.used_mut_nodes.contains(&id); bindings += 1; } if !used { let msg = if bindings == 1 { "variable does not need to be mutable" } else { "variables do not need to be mutable" }; cx.span_lint(unused_mut, p.span, msg); } } fn visit_fn_decl(&mut self, cx: &Context, fd: &ast::fn_decl) { for arg in fd.inputs.iter() { if arg.is_mutbl { self.check_pat(cx, arg.pat); } } } } impl SubitemStoppableVisitor for UnusedMutLintVisitor { fn is_running_on_items(&mut self) -> bool { !self.stopping_on_items } fn visit_fn_action(&mut self, _a:&visit::fn_kind, fd:&ast::fn_decl, _b:&ast::Block, _c:Span, _d:ast::NodeId, cx:@mut Context) { self.visit_fn_decl(cx, fd); } } impl Visitor<@mut Context> for UnusedMutLintVisitor { fn visit_item(&mut self, i:@ast::item, e:@mut Context) { self.OVERRIDE_visit_item(i, e); } fn visit_fn(&mut self, fk:&visit::fn_kind, fd:&ast::fn_decl, b:&ast::Block, s:Span, n:ast::NodeId, e:@mut Context) { self.OVERRIDE_visit_fn(fk, fd, b, s, n, e); } fn visit_local(&mut self, l:@ast::Local, cx:@mut Context) { if l.is_mutbl { self.check_pat(cx, l.pat); } visit::walk_local(self, l, cx); } fn visit_ty_method(&mut self, tm:&ast::TypeMethod, cx:@mut Context) { self.visit_fn_decl(cx, &tm.decl); visit::walk_ty_method(self, tm, cx); } fn visit_trait_method(&mut self, tm:&ast::trait_method, cx:@mut Context) { match *tm { ast::required(ref tm) => self.visit_fn_decl(cx, &tm.decl), ast::provided(m) => self.visit_fn_decl(cx, &m.decl) } visit::walk_trait_method(self, tm, cx); } } outer_lint_boilerplate_impl!(UnusedMutLintVisitor) fn lint_unused_mut() -> @mut OuterLint { @mut UnusedMutLintVisitor{ stopping_on_items: false } as @mut OuterLint } struct LintReportingIdVisitor { cx: @mut Context, } impl ast_util::IdVisitingOperation for LintReportingIdVisitor { fn visit_id(&self, id: ast::NodeId) { match self.cx.tcx.sess.lints.pop(&id) { None => {} Some(l) => { for (lint, span, msg) in l.move_iter() { self.cx.span_lint(lint, span, msg) } } } } } fn lint_session(cx: @mut Context) -> @mut visit::Visitor<()> { ast_util::id_visitor(@LintReportingIdVisitor { cx: cx, } as @ast_util::IdVisitingOperation, false) } struct UnnecessaryAllocationLintVisitor { stopping_on_items: bool } impl SubitemStoppableVisitor for UnnecessaryAllocationLintVisitor { fn is_running_on_items(&mut self) -> bool { !self.stopping_on_items } } impl Visitor<@mut Context> for UnnecessaryAllocationLintVisitor { fn visit_item(&mut self, i:@ast::item, e:@mut Context) { self.OVERRIDE_visit_item(i, e); } fn visit_fn(&mut self, fk:&visit::fn_kind, fd:&ast::fn_decl, b:&ast::Block, s:Span, n:ast::NodeId, e:@mut Context) { self.OVERRIDE_visit_fn(fk, fd, b, s, n, e); } fn visit_expr(&mut self, e:@ast::Expr, cx:@mut Context) { self.check(cx, e); visit::walk_expr(self, e, cx); } } impl UnnecessaryAllocationLintVisitor { // Warn if string and vector literals with sigils are immediately borrowed. // Those can have the sigil removed. fn check(&mut self, cx: &Context, e: &ast::Expr) { match e.node { ast::ExprVstore(e2, ast::ExprVstoreUniq) | ast::ExprVstore(e2, ast::ExprVstoreBox) => { match e2.node { ast::ExprLit(@codemap::Spanned{ node: ast::lit_str(*), _}) | ast::ExprVec(*) => {} _ => return } } _ => return } match cx.tcx.adjustments.find_copy(&e.id) { Some(@ty::AutoDerefRef(ty::AutoDerefRef { autoref: Some(ty::AutoBorrowVec(*)), _ })) => { cx.span_lint(unnecessary_allocation, e.span, "unnecessary allocation, the sigil can be \ removed"); } _ => () } } } outer_lint_boilerplate_impl!(UnnecessaryAllocationLintVisitor) fn lint_unnecessary_allocations() -> @mut OuterLint { @mut UnnecessaryAllocationLintVisitor{ stopping_on_items: false } as @mut OuterLint } struct MissingDocLintVisitor { stopping_on_items: bool } impl MissingDocLintVisitor { fn check_attrs(&mut self, cx: @mut Context, attrs: &[ast::Attribute], sp: Span, msg: &str) { // If we're building a test harness, then warning about documentation is // probably not really relevant right now if cx.tcx.sess.opts.test { return } // If we have doc(hidden), nothing to do if cx.doc_hidden { return } // If we're documented, nothing to do if attrs.iter().any(|a| a.node.is_sugared_doc) { return } // otherwise, warn! cx.span_lint(missing_doc, sp, msg); } } impl Visitor<@mut Context> for MissingDocLintVisitor { fn visit_item(&mut self, i:@ast::item, e:@mut Context) { self.OVERRIDE_visit_item(i, e); } fn visit_fn(&mut self, fk:&visit::fn_kind, fd:&ast::fn_decl, b:&ast::Block, s:Span, n:ast::NodeId, e:@mut Context) { self.OVERRIDE_visit_fn(fk, fd, b, s, n, e); } fn visit_ty_method(&mut self, m:&ast::TypeMethod, cx:@mut Context) { // All ty_method objects are linted about because they're part of a // trait (no visibility) self.check_attrs(cx, m.attrs, m.span, "missing documentation for a method"); visit::walk_ty_method(self, m, cx); } } impl SubitemStoppableVisitor for MissingDocLintVisitor { fn is_running_on_items(&mut self) -> bool { !self.stopping_on_items } fn visit_fn_action(&mut self, fk:&visit::fn_kind, _d:&ast::fn_decl, _b:&ast::Block, sp:Span, _id:ast::NodeId, cx:@mut Context) { // Only warn about explicitly public methods. Soon implicit // public-ness will hopefully be going away. match *fk { visit::fk_method(_, _, m) if m.vis == ast::public => { // If we're in a trait implementation, no need to duplicate // documentation if !cx.in_trait_impl { self.check_attrs(cx, m.attrs, sp, "missing documentation for a method"); } } _ => {} } } fn visit_item_action(&mut self, it:@ast::item, cx:@mut Context) { match it.node { // Go ahead and match the fields here instead of using // visit_struct_field while we have access to the enclosing // struct's visibility ast::item_struct(sdef, _) if it.vis == ast::public => { self.check_attrs(cx, it.attrs, it.span, "missing documentation for a struct"); for field in sdef.fields.iter() { match field.node.kind { ast::named_field(_, vis) if vis != ast::private => { self.check_attrs(cx, field.node.attrs, field.span, "missing documentation for a field"); } ast::unnamed_field | ast::named_field(*) => {} } } } ast::item_trait(*) if it.vis == ast::public => { self.check_attrs(cx, it.attrs, it.span, "missing documentation for a trait"); } ast::item_fn(*) if it.vis == ast::public => { self.check_attrs(cx, it.attrs, it.span, "missing documentation for a function"); } _ => {} } } } outer_lint_boilerplate_impl!(MissingDocLintVisitor) fn lint_missing_doc() -> @mut OuterLint { @mut MissingDocLintVisitor { stopping_on_items: false } as @mut OuterLint } /// Checks for use of items with #[deprecated], #[experimental] and /// #[unstable] (or none of them) attributes. struct StabilityLintVisitor { stopping_on_items: bool } impl StabilityLintVisitor { fn handle_def(&mut self, sp: Span, def: &ast::Def, cx: @mut Context) { let id = ast_util::def_id_of_def(*def); let stability = if ast_util::is_local(id) { // this crate match cx.tcx.items.find(&id.node) { Some(ast_node) => { let s = do ast_node.with_attrs |attrs| { do attrs.map_move |a| { attr::find_stability(a.iter().map(|a| a.meta())) } }; match s { Some(s) => s, // no possibility of having attributes // (e.g. it's a local variable), so just // ignore it. None => return } } _ => cx.tcx.sess.bug(fmt!("handle_def: %? not found", id)) } } else { // cross-crate let mut s = None; // run through all the attributes and take the first // stability one. do csearch::get_item_attrs(cx.tcx.cstore, id) |meta_items| { if s.is_none() { s = attr::find_stability(meta_items.move_iter()) } } s }; let (lint, label) = match stability { // no stability attributes == Unstable None => (unstable, "unmarked"), Some(attr::Stability { level: attr::Unstable, _ }) => (unstable, "unstable"), Some(attr::Stability { level: attr::Experimental, _ }) => { (experimental, "experimental") } Some(attr::Stability { level: attr::Deprecated, _ }) => (deprecated, "deprecated"), _ => return }; let msg = match stability { Some(attr::Stability { text: Some(ref s), _ }) => { fmt!("use of %s item: %s", label, *s) } _ => fmt!("use of %s item", label) }; cx.span_lint(lint, sp, msg); } } impl SubitemStoppableVisitor for StabilityLintVisitor { fn is_running_on_items(&mut self) -> bool { !self.stopping_on_items } } impl Visitor<@mut Context> for StabilityLintVisitor { fn visit_item(&mut self, i:@ast::item, e:@mut Context) { self.OVERRIDE_visit_item(i, e); } fn visit_fn(&mut self, fk:&visit::fn_kind, fd:&ast::fn_decl, b:&ast::Block, s:Span, n:ast::NodeId, e:@mut Context) { self.OVERRIDE_visit_fn(fk, fd, b, s, n, e); } fn visit_expr(&mut self, ex: @ast::Expr, cx: @mut Context) { match ex.node { ast::ExprMethodCall(*) | ast::ExprPath(*) | ast::ExprStruct(*) => { match cx.tcx.def_map.find(&ex.id) { Some(def) => self.handle_def(ex.span, def, cx), None => {} } } _ => {} } visit::walk_expr(self, ex, cx) } } outer_lint_boilerplate_impl!(StabilityLintVisitor) fn lint_stability() -> @mut OuterLint { @mut StabilityLintVisitor { stopping_on_items: false } as @mut OuterLint } struct LintCheckVisitor; impl Visitor<@mut Context> for LintCheckVisitor { fn visit_item(&mut self, it:@ast::item, cx: @mut Context) { do cx.with_lint_attrs(it.attrs) { match it.node { ast::item_impl(_, Some(*), _, _) => { cx.in_trait_impl = true; } _ => {} } check_item_ctypes(cx, it); check_item_non_camel_case_types(cx, it); check_item_non_uppercase_statics(cx, it); check_item_heap(cx, it); cx.process(Item(it)); visit::walk_item(self, it, cx); cx.in_trait_impl = false; } } fn visit_fn(&mut self, fk:&visit::fn_kind, decl:&ast::fn_decl, body:&ast::Block, span:Span, id:ast::NodeId, cx:@mut Context) { match *fk { visit::fk_method(_, _, m) => { do cx.with_lint_attrs(m.attrs) { cx.process(Method(m)); visit::walk_fn(self, fk, decl, body, span, id, cx); } } _ => { visit::walk_fn(self, fk, decl, body, span, id, cx); } } } } pub fn check_crate(tcx: ty::ctxt, crate: &ast::Crate) { let cx = @mut Context { dict: @get_lint_dict(), curr: SmallIntMap::new(), tcx: tcx, lint_stack: ~[], visitors: ~[], in_trait_impl: false, doc_hidden: false, }; // Install defaults. for (_, spec) in cx.dict.iter() { cx.set_level(spec.lint, spec.default, Default); } // Install command-line options, overriding defaults. for &(lint, level) in tcx.sess.opts.lint_opts.iter() { cx.set_level(lint, level, CommandLine); } // Register each of the lint passes with the context cx.add_old_lint(lint_while_true()); cx.add_old_lint(lint_path_statement()); cx.add_old_lint(lint_heap()); cx.add_old_lint(lint_type_limits()); cx.add_old_lint(lint_unused_unsafe()); cx.add_old_lint(lint_unused_mut()); cx.add_old_lint(lint_unnecessary_allocations()); cx.add_old_lint(lint_missing_doc()); cx.add_old_lint(lint_stability()); cx.add_lint(lint_session(cx)); // Actually perform the lint checks (iterating the ast) do cx.with_lint_attrs(crate.attrs) { cx.process(Crate(crate)); let mut visitor = LintCheckVisitor; visit::walk_crate(&mut visitor, crate, cx); } // If we missed any lints added to the session, then there's a bug somewhere // in the iteration code. for (id, v) in tcx.sess.lints.iter() { for t in v.iter() { match *t { (lint, span, ref msg) => tcx.sess.span_bug(span, fmt!("unprocessed lint %? at %s: \ %s", lint, ast_map::node_id_to_str( tcx.items, *id, token::get_ident_interner()), *msg)) } } } tcx.sess.abort_if_errors(); }