use crate::rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt; use rustc_hir as hir; use rustc_infer::infer::{InferOk, TyCtxtInferExt}; use rustc_infer::traits; use rustc_middle::ty::subst::Subst; use rustc_middle::ty::{ToPredicate, WithConstness}; use rustc_span::DUMMY_SP; use super::*; crate struct BlanketImplFinder<'a, 'tcx> { crate cx: &'a mut core::DocContext<'tcx>, } impl<'a, 'tcx> BlanketImplFinder<'a, 'tcx> { crate fn get_blanket_impls(&mut self, item_def_id: DefId) -> Vec { let param_env = self.cx.tcx.param_env(item_def_id); let ty = self.cx.tcx.type_of(item_def_id); trace!("get_blanket_impls({:?})", ty); let mut impls = Vec::new(); for &trait_def_id in self.cx.tcx.all_traits(()).iter() { if !self.cx.cache.access_levels.is_public(trait_def_id) || self.cx.generated_synthetics.get(&(ty, trait_def_id)).is_some() { continue; } // NOTE: doesn't use `for_each_relevant_impl` to avoid looking at anything besides blanket impls let trait_impls = self.cx.tcx.trait_impls_of(trait_def_id); for &impl_def_id in trait_impls.blanket_impls() { trace!( "get_blanket_impls: Considering impl for trait '{:?}' {:?}", trait_def_id, impl_def_id ); let trait_ref = self.cx.tcx.impl_trait_ref(impl_def_id).unwrap(); let is_param = matches!(trait_ref.self_ty().kind(), ty::Param(_)); let may_apply = is_param && self.cx.tcx.infer_ctxt().enter(|infcx| { let substs = infcx.fresh_substs_for_item(DUMMY_SP, item_def_id); let ty = ty.subst(infcx.tcx, substs); let param_env = param_env.subst(infcx.tcx, substs); let impl_substs = infcx.fresh_substs_for_item(DUMMY_SP, impl_def_id); let trait_ref = trait_ref.subst(infcx.tcx, impl_substs); // Require the type the impl is implemented on to match // our type, and ignore the impl if there was a mismatch. let cause = traits::ObligationCause::dummy(); let eq_result = infcx.at(&cause, param_env).eq(trait_ref.self_ty(), ty); if let Ok(InferOk { value: (), obligations }) = eq_result { // FIXME(eddyb) ignoring `obligations` might cause false positives. drop(obligations); trace!( "invoking predicate_may_hold: param_env={:?}, trait_ref={:?}, ty={:?}", param_env, trait_ref, ty ); let predicates = self .cx .tcx .predicates_of(impl_def_id) .instantiate(self.cx.tcx, impl_substs) .predicates .into_iter() .chain(Some( ty::Binder::dummy(trait_ref) .without_const() .to_predicate(infcx.tcx), )); for predicate in predicates { debug!("testing predicate {:?}", predicate); let obligation = traits::Obligation::new( traits::ObligationCause::dummy(), param_env, predicate, ); match infcx.evaluate_obligation(&obligation) { Ok(eval_result) if eval_result.may_apply() => {} Err(traits::OverflowError) => {} _ => { return false; } } } true } else { false } }); debug!( "get_blanket_impls: found applicable impl: {} for trait_ref={:?}, ty={:?}", may_apply, trait_ref, ty ); if !may_apply { continue; } self.cx.generated_synthetics.insert((ty, trait_def_id)); impls.push(Item { name: None, attrs: Default::default(), visibility: Inherited, def_id: ItemId::Blanket { impl_id: impl_def_id, for_: item_def_id }, kind: box ImplItem(Impl { span: Span::new(self.cx.tcx.def_span(impl_def_id)), unsafety: hir::Unsafety::Normal, generics: ( self.cx.tcx.generics_of(impl_def_id), self.cx.tcx.explicit_predicates_of(impl_def_id), ) .clean(self.cx), // FIXME(eddyb) compute both `trait_` and `for_` from // the post-inference `trait_ref`, as it's more accurate. trait_: Some(trait_ref.clean(self.cx).get_trait_path().unwrap()), for_: ty.clean(self.cx), items: self .cx .tcx .associated_items(impl_def_id) .in_definition_order() .collect::>() .clean(self.cx), negative_polarity: false, synthetic: false, blanket_impl: Some(box trait_ref.self_ty().clean(self.cx)), }), cfg: None, }); } } impls } }