// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // Rust JSON serialization library // Copyright (c) 2011 Google Inc. #![forbid(non_camel_case_types)] #![allow(missing_docs)] //! JSON parsing and serialization //! //! # What is JSON? //! //! JSON (JavaScript Object Notation) is a way to write data in Javascript. //! Like XML, it allows to encode structured data in a text format that can be easily read by humans //! Its simple syntax and native compatibility with JavaScript have made it a widely used format. //! //! Data types that can be encoded are JavaScript types (see the `Json` enum for more details): //! //! * `Boolean`: equivalent to rust's `bool` //! * `Number`: equivalent to rust's `f64` //! * `String`: equivalent to rust's `String` //! * `Array`: equivalent to rust's `Vec`, but also allowing objects of different types in the //! same array //! * `Object`: equivalent to rust's `BTreeMap` //! * `Null` //! //! An object is a series of string keys mapping to values, in `"key": value` format. //! Arrays are enclosed in square brackets ([ ... ]) and objects in curly brackets ({ ... }). //! A simple JSON document encoding a person, his/her age, address and phone numbers could look like //! //! ```ignore //! { //! "FirstName": "John", //! "LastName": "Doe", //! "Age": 43, //! "Address": { //! "Street": "Downing Street 10", //! "City": "London", //! "Country": "Great Britain" //! }, //! "PhoneNumbers": [ //! "+44 1234567", //! "+44 2345678" //! ] //! } //! ``` //! //! # Rust Type-based Encoding and Decoding //! //! Rust provides a mechanism for low boilerplate encoding & decoding of values to and from JSON via //! the serialization API. //! To be able to encode a piece of data, it must implement the `serialize::RustcEncodable` trait. //! To be able to decode a piece of data, it must implement the `serialize::RustcDecodable` trait. //! The Rust compiler provides an annotation to automatically generate the code for these traits: //! `#[derive(RustcDecodable, RustcEncodable)]` //! //! The JSON API provides an enum `json::Json` and a trait `ToJson` to encode objects. //! The `ToJson` trait provides a `to_json` method to convert an object into a `json::Json` value. //! A `json::Json` value can be encoded as a string or buffer using the functions described above. //! You can also use the `json::Encoder` object, which implements the `Encoder` trait. //! //! When using `ToJson` the `RustcEncodable` trait implementation is not mandatory. //! //! # Examples of use //! //! ## Using Autoserialization //! //! Create a struct called `TestStruct` and serialize and deserialize it to and from JSON using the //! serialization API, using the derived serialization code. //! //! ```notrust //! // FIXME(#19470): this cannot be ```rust``` because it fails orphan checking at the moment //! extern crate serialize; //! use serialize::json; //! //! // Automatically generate `Decodable` and `Encodable` trait implementations //! #[derive(RustcDecodable, RustcEncodable)] //! pub struct TestStruct { //! data_int: u8, //! data_str: String, //! data_vector: Vec, //! } //! //! fn main() { //! let object = TestStruct { //! data_int: 1, //! data_str: "homura".to_string(), //! data_vector: vec![2,3,4,5], //! }; //! //! // Serialize using `json::encode` //! let encoded = json::encode(&object); //! //! // Deserialize using `json::decode` //! let decoded: TestStruct = json::decode(encoded.as_slice()).unwrap(); //! } //! ``` //! //! ## Using the `ToJson` trait //! //! The examples above use the `ToJson` trait to generate the JSON string, which is required //! for custom mappings. //! //! ### Simple example of `ToJson` usage //! //! ```notrust //! // FIXME(#19470): this cannot be ```rust``` because it fails orphan checking at the moment //! extern crate serialize; //! use serialize::json::{self, ToJson, Json}; //! //! // A custom data structure //! struct ComplexNum { //! a: f64, //! b: f64, //! } //! //! // JSON value representation //! impl ToJson for ComplexNum { //! fn to_json(&self) -> Json { //! Json::String(format!("{}+{}i", self.a, self.b)) //! } //! } //! //! // Only generate `RustcEncodable` trait implementation //! #[derive(Encodable)] //! pub struct ComplexNumRecord { //! uid: u8, //! dsc: String, //! val: Json, //! } //! //! fn main() { //! let num = ComplexNum { a: 0.0001, b: 12.539 }; //! let data: String = json::encode(&ComplexNumRecord{ //! uid: 1, //! dsc: "test".to_string(), //! val: num.to_json(), //! }); //! println!("data: {}", data); //! // data: {"uid":1,"dsc":"test","val":"0.0001+12.539j"}; //! } //! ``` //! //! ### Verbose example of `ToJson` usage //! //! ```notrust //! // FIXME(#19470): this cannot be ```rust``` because it fails orphan checking at the moment //! extern crate serialize; //! use std::collections::BTreeMap; //! use serialize::json::{self, Json, ToJson}; //! //! // Only generate `Decodable` trait implementation //! #[derive(Decodable)] //! pub struct TestStruct { //! data_int: u8, //! data_str: String, //! data_vector: Vec, //! } //! //! // Specify encoding method manually //! impl ToJson for TestStruct { //! fn to_json(&self) -> Json { //! let mut d = BTreeMap::new(); //! // All standard types implement `to_json()`, so use it //! d.insert("data_int".to_string(), self.data_int.to_json()); //! d.insert("data_str".to_string(), self.data_str.to_json()); //! d.insert("data_vector".to_string(), self.data_vector.to_json()); //! Json::Object(d) //! } //! } //! //! fn main() { //! // Serialize using `ToJson` //! let input_data = TestStruct { //! data_int: 1, //! data_str: "madoka".to_string(), //! data_vector: vec![2,3,4,5], //! }; //! let json_obj: Json = input_data.to_json(); //! let json_str: String = json_obj.to_string(); //! //! // Deserialize like before //! let decoded: TestStruct = json::decode(json_str.as_slice()).unwrap(); //! } //! ``` use self::JsonEvent::*; use self::StackElement::*; use self::ErrorCode::*; use self::ParserError::*; use self::DecoderError::*; use self::ParserState::*; use self::InternalStackElement::*; use std; use std::collections::{HashMap, BTreeMap}; use std::{char, f64, fmt, io, num, str}; use std::mem::{swap, transmute}; use std::num::{Float, Int}; use std::num::FpCategory as Fp; use std::str::FromStr; use std::string; use std::ops; use unicode::str as unicode_str; use unicode::str::Utf16Item; use Encodable; /// Represents a json value #[derive(Clone, PartialEq, PartialOrd)] pub enum Json { I64(i64), U64(u64), F64(f64), String(string::String), Boolean(bool), Array(self::Array), Object(self::Object), Null, } pub type Array = Vec; pub type Object = BTreeMap; pub struct PrettyJson<'a> { inner: &'a Json } pub struct AsJson<'a, T: 'a> { inner: &'a T } pub struct AsPrettyJson<'a, T: 'a> { inner: &'a T, indent: Option } /// The errors that can arise while parsing a JSON stream. #[derive(Clone, Copy, PartialEq)] pub enum ErrorCode { InvalidSyntax, InvalidNumber, EOFWhileParsingObject, EOFWhileParsingArray, EOFWhileParsingValue, EOFWhileParsingString, KeyMustBeAString, ExpectedColon, TrailingCharacters, TrailingComma, InvalidEscape, InvalidUnicodeCodePoint, LoneLeadingSurrogateInHexEscape, UnexpectedEndOfHexEscape, UnrecognizedHex, NotFourDigit, NotUtf8, } #[derive(Clone, Copy, PartialEq, Show)] pub enum ParserError { /// msg, line, col SyntaxError(ErrorCode, uint, uint), IoError(io::IoErrorKind, &'static str), } // Builder and Parser have the same errors. pub type BuilderError = ParserError; #[derive(Clone, PartialEq, Show)] pub enum DecoderError { ParseError(ParserError), ExpectedError(string::String, string::String), MissingFieldError(string::String), UnknownVariantError(string::String), ApplicationError(string::String) } /// Returns a readable error string for a given error code. pub fn error_str(error: ErrorCode) -> &'static str { match error { InvalidSyntax => "invalid syntax", InvalidNumber => "invalid number", EOFWhileParsingObject => "EOF While parsing object", EOFWhileParsingArray => "EOF While parsing array", EOFWhileParsingValue => "EOF While parsing value", EOFWhileParsingString => "EOF While parsing string", KeyMustBeAString => "key must be a string", ExpectedColon => "expected `:`", TrailingCharacters => "trailing characters", TrailingComma => "trailing comma", InvalidEscape => "invalid escape", UnrecognizedHex => "invalid \\u{ esc}ape (unrecognized hex)", NotFourDigit => "invalid \\u{ esc}ape (not four digits)", NotUtf8 => "contents not utf-8", InvalidUnicodeCodePoint => "invalid Unicode code point", LoneLeadingSurrogateInHexEscape => "lone leading surrogate in hex escape", UnexpectedEndOfHexEscape => "unexpected end of hex escape", } } /// Shortcut function to decode a JSON `&str` into an object pub fn decode(s: &str) -> DecodeResult { let json = match from_str(s) { Ok(x) => x, Err(e) => return Err(ParseError(e)) }; let mut decoder = Decoder::new(json); ::Decodable::decode(&mut decoder) } /// Shortcut function to encode a `T` into a JSON `String` pub fn encode(object: &T) -> string::String { let mut s = String::new(); { let mut encoder = Encoder::new(&mut s); let _ = object.encode(&mut encoder); } s } impl fmt::Show for ErrorCode { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { error_str(*self).fmt(f) } } fn io_error_to_error(io: io::IoError) -> ParserError { IoError(io.kind, io.desc) } impl std::error::Error for DecoderError { fn description(&self) -> &str { "decoder error" } fn detail(&self) -> Option { Some(self.to_string()) } } pub type EncodeResult = fmt::Result; pub type DecodeResult = Result; fn escape_str(wr: &mut fmt::Writer, v: &str) -> fmt::Result { try!(wr.write_str("\"")); let mut start = 0; for (i, byte) in v.bytes().enumerate() { let escaped = match byte { b'"' => "\\\"", b'\\' => "\\\\", b'\x00' => "\\u0000", b'\x01' => "\\u0001", b'\x02' => "\\u0002", b'\x03' => "\\u0003", b'\x04' => "\\u0004", b'\x05' => "\\u0005", b'\x06' => "\\u0006", b'\x07' => "\\u0007", b'\x08' => "\\b", b'\t' => "\\t", b'\n' => "\\n", b'\x0b' => "\\u000b", b'\x0c' => "\\f", b'\r' => "\\r", b'\x0e' => "\\u000e", b'\x0f' => "\\u000f", b'\x10' => "\\u0010", b'\x11' => "\\u0011", b'\x12' => "\\u0012", b'\x13' => "\\u0013", b'\x14' => "\\u0014", b'\x15' => "\\u0015", b'\x16' => "\\u0016", b'\x17' => "\\u0017", b'\x18' => "\\u0018", b'\x19' => "\\u0019", b'\x1a' => "\\u001a", b'\x1b' => "\\u001b", b'\x1c' => "\\u001c", b'\x1d' => "\\u001d", b'\x1e' => "\\u001e", b'\x1f' => "\\u001f", b'\x7f' => "\\u007f", _ => { continue; } }; if start < i { try!(wr.write_str(v[start..i])); } try!(wr.write_str(escaped)); start = i + 1; } if start != v.len() { try!(wr.write_str(v[start..])); } wr.write_str("\"") } fn escape_char(writer: &mut fmt::Writer, v: char) -> fmt::Result { let mut buf = [0; 4]; let n = v.encode_utf8(&mut buf).unwrap(); let buf = unsafe { str::from_utf8_unchecked(buf[0..n]) }; escape_str(writer, buf) } fn spaces(wr: &mut fmt::Writer, mut n: uint) -> fmt::Result { const BUF: &'static str = " "; while n >= BUF.len() { try!(wr.write_str(BUF)); n -= BUF.len(); } if n > 0 { wr.write_str(BUF[..n]) } else { Ok(()) } } fn fmt_number_or_null(v: f64) -> string::String { match v.classify() { Fp::Nan | Fp::Infinite => string::String::from_str("null"), _ if v.fract() != 0f64 => f64::to_str_digits(v, 6u), _ => f64::to_str_digits(v, 6u) + ".0", } } /// A structure for implementing serialization to JSON. pub struct Encoder<'a> { writer: &'a mut (fmt::Writer+'a), } impl<'a> Encoder<'a> { /// Creates a new JSON encoder whose output will be written to the writer /// specified. pub fn new(writer: &'a mut fmt::Writer) -> Encoder<'a> { Encoder { writer: writer } } } impl<'a> ::Encoder for Encoder<'a> { type Error = fmt::Error; fn emit_nil(&mut self) -> EncodeResult { write!(self.writer, "null") } fn emit_uint(&mut self, v: uint) -> EncodeResult { write!(self.writer, "{}", v) } fn emit_u64(&mut self, v: u64) -> EncodeResult { write!(self.writer, "{}", v) } fn emit_u32(&mut self, v: u32) -> EncodeResult { write!(self.writer, "{}", v) } fn emit_u16(&mut self, v: u16) -> EncodeResult { write!(self.writer, "{}", v) } fn emit_u8(&mut self, v: u8) -> EncodeResult { write!(self.writer, "{}", v) } fn emit_int(&mut self, v: int) -> EncodeResult { write!(self.writer, "{}", v) } fn emit_i64(&mut self, v: i64) -> EncodeResult { write!(self.writer, "{}", v) } fn emit_i32(&mut self, v: i32) -> EncodeResult { write!(self.writer, "{}", v) } fn emit_i16(&mut self, v: i16) -> EncodeResult { write!(self.writer, "{}", v) } fn emit_i8(&mut self, v: i8) -> EncodeResult { write!(self.writer, "{}", v) } fn emit_bool(&mut self, v: bool) -> EncodeResult { if v { write!(self.writer, "true") } else { write!(self.writer, "false") } } fn emit_f64(&mut self, v: f64) -> EncodeResult { write!(self.writer, "{}", fmt_number_or_null(v)) } fn emit_f32(&mut self, v: f32) -> EncodeResult { self.emit_f64(v as f64) } fn emit_char(&mut self, v: char) -> EncodeResult { escape_char(self.writer, v) } fn emit_str(&mut self, v: &str) -> EncodeResult { escape_str(self.writer, v) } fn emit_enum(&mut self, _name: &str, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { f(self) } fn emit_enum_variant(&mut self, name: &str, _id: uint, cnt: uint, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { // enums are encoded as strings or objects // Bunny => "Bunny" // Kangaroo(34,"William") => {"variant": "Kangaroo", "fields": [34,"William"]} if cnt == 0 { escape_str(self.writer, name) } else { try!(write!(self.writer, "{{\"variant\":")); try!(escape_str(self.writer, name)); try!(write!(self.writer, ",\"fields\":[")); try!(f(self)); write!(self.writer, "]}}") } } fn emit_enum_variant_arg(&mut self, idx: uint, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { if idx != 0 { try!(write!(self.writer, ",")); } f(self) } fn emit_enum_struct_variant(&mut self, name: &str, id: uint, cnt: uint, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { self.emit_enum_variant(name, id, cnt, f) } fn emit_enum_struct_variant_field(&mut self, _: &str, idx: uint, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { self.emit_enum_variant_arg(idx, f) } fn emit_struct(&mut self, _: &str, _: uint, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { try!(write!(self.writer, "{{")); try!(f(self)); write!(self.writer, "}}") } fn emit_struct_field(&mut self, name: &str, idx: uint, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { if idx != 0 { try!(write!(self.writer, ",")); } try!(escape_str(self.writer, name)); try!(write!(self.writer, ":")); f(self) } fn emit_tuple(&mut self, len: uint, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { self.emit_seq(len, f) } fn emit_tuple_arg(&mut self, idx: uint, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { self.emit_seq_elt(idx, f) } fn emit_tuple_struct(&mut self, _name: &str, len: uint, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { self.emit_seq(len, f) } fn emit_tuple_struct_arg(&mut self, idx: uint, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { self.emit_seq_elt(idx, f) } fn emit_option(&mut self, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { f(self) } fn emit_option_none(&mut self) -> EncodeResult { self.emit_nil() } fn emit_option_some(&mut self, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { f(self) } fn emit_seq(&mut self, _len: uint, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { try!(write!(self.writer, "[")); try!(f(self)); write!(self.writer, "]") } fn emit_seq_elt(&mut self, idx: uint, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { if idx != 0 { try!(write!(self.writer, ",")); } f(self) } fn emit_map(&mut self, _len: uint, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { try!(write!(self.writer, "{{")); try!(f(self)); write!(self.writer, "}}") } fn emit_map_elt_key(&mut self, idx: uint, mut f: F) -> EncodeResult where F: FnMut(&mut Encoder<'a>) -> EncodeResult, { if idx != 0 { try!(write!(self.writer, ",")) } // ref #12967, make sure to wrap a key in double quotes, // in the event that its of a type that omits them (eg numbers) let mut buf = Vec::new(); // FIXME(14302) remove the transmute and unsafe block. unsafe { let mut check_encoder = Encoder::new(&mut buf); try!(f(transmute(&mut check_encoder))); } let out = str::from_utf8(buf[]).unwrap(); let needs_wrapping = out.char_at(0) != '"' && out.char_at_reverse(out.len()) != '"'; if needs_wrapping { try!(write!(self.writer, "\"")); } try!(f(self)); if needs_wrapping { try!(write!(self.writer, "\"")); } Ok(()) } fn emit_map_elt_val(&mut self, _idx: uint, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { try!(write!(self.writer, ":")); f(self) } } /// Another encoder for JSON, but prints out human-readable JSON instead of /// compact data pub struct PrettyEncoder<'a> { writer: &'a mut (fmt::Writer+'a), curr_indent: uint, indent: uint, } impl<'a> PrettyEncoder<'a> { /// Creates a new encoder whose output will be written to the specified writer pub fn new(writer: &'a mut fmt::Writer) -> PrettyEncoder<'a> { PrettyEncoder { writer: writer, curr_indent: 0, indent: 2, } } /// Set the number of spaces to indent for each level. /// This is safe to set during encoding. pub fn set_indent(&mut self, indent: uint) { // self.indent very well could be 0 so we need to use checked division. let level = self.curr_indent.checked_div(self.indent).unwrap_or(0); self.indent = indent; self.curr_indent = level * self.indent; } } impl<'a> ::Encoder for PrettyEncoder<'a> { type Error = fmt::Error; fn emit_nil(&mut self) -> EncodeResult { write!(self.writer, "null") } fn emit_uint(&mut self, v: uint) -> EncodeResult { write!(self.writer, "{}", v) } fn emit_u64(&mut self, v: u64) -> EncodeResult { write!(self.writer, "{}", v) } fn emit_u32(&mut self, v: u32) -> EncodeResult { write!(self.writer, "{}", v) } fn emit_u16(&mut self, v: u16) -> EncodeResult { write!(self.writer, "{}", v) } fn emit_u8(&mut self, v: u8) -> EncodeResult { write!(self.writer, "{}", v) } fn emit_int(&mut self, v: int) -> EncodeResult { write!(self.writer, "{}", v) } fn emit_i64(&mut self, v: i64) -> EncodeResult { write!(self.writer, "{}", v) } fn emit_i32(&mut self, v: i32) -> EncodeResult { write!(self.writer, "{}", v) } fn emit_i16(&mut self, v: i16) -> EncodeResult { write!(self.writer, "{}", v) } fn emit_i8(&mut self, v: i8) -> EncodeResult { write!(self.writer, "{}", v) } fn emit_bool(&mut self, v: bool) -> EncodeResult { if v { write!(self.writer, "true") } else { write!(self.writer, "false") } } fn emit_f64(&mut self, v: f64) -> EncodeResult { write!(self.writer, "{}", fmt_number_or_null(v)) } fn emit_f32(&mut self, v: f32) -> EncodeResult { self.emit_f64(v as f64) } fn emit_char(&mut self, v: char) -> EncodeResult { escape_char(self.writer, v) } fn emit_str(&mut self, v: &str) -> EncodeResult { escape_str(self.writer, v) } fn emit_enum(&mut self, _name: &str, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { f(self) } fn emit_enum_variant(&mut self, name: &str, _id: uint, cnt: uint, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if cnt == 0 { escape_str(self.writer, name) } else { try!(write!(self.writer, "{{\n")); self.curr_indent += self.indent; try!(spaces(self.writer, self.curr_indent)); try!(write!(self.writer, "\"variant\": ")); try!(escape_str(self.writer, name)); try!(write!(self.writer, ",\n")); try!(spaces(self.writer, self.curr_indent)); try!(write!(self.writer, "\"fields\": [\n")); self.curr_indent += self.indent; try!(f(self)); self.curr_indent -= self.indent; try!(write!(self.writer, "\n")); try!(spaces(self.writer, self.curr_indent)); self.curr_indent -= self.indent; try!(write!(self.writer, "]\n")); try!(spaces(self.writer, self.curr_indent)); write!(self.writer, "}}") } } fn emit_enum_variant_arg(&mut self, idx: uint, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if idx != 0 { try!(write!(self.writer, ",\n")); } try!(spaces(self.writer, self.curr_indent)); f(self) } fn emit_enum_struct_variant(&mut self, name: &str, id: uint, cnt: uint, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { self.emit_enum_variant(name, id, cnt, f) } fn emit_enum_struct_variant_field(&mut self, _: &str, idx: uint, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { self.emit_enum_variant_arg(idx, f) } fn emit_struct(&mut self, _: &str, len: uint, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if len == 0 { write!(self.writer, "{{}}") } else { try!(write!(self.writer, "{{")); self.curr_indent += self.indent; try!(f(self)); self.curr_indent -= self.indent; try!(write!(self.writer, "\n")); try!(spaces(self.writer, self.curr_indent)); write!(self.writer, "}}") } } fn emit_struct_field(&mut self, name: &str, idx: uint, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if idx == 0 { try!(write!(self.writer, "\n")); } else { try!(write!(self.writer, ",\n")); } try!(spaces(self.writer, self.curr_indent)); try!(escape_str(self.writer, name)); try!(write!(self.writer, ": ")); f(self) } fn emit_tuple(&mut self, len: uint, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { self.emit_seq(len, f) } fn emit_tuple_arg(&mut self, idx: uint, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { self.emit_seq_elt(idx, f) } fn emit_tuple_struct(&mut self, _: &str, len: uint, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { self.emit_seq(len, f) } fn emit_tuple_struct_arg(&mut self, idx: uint, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { self.emit_seq_elt(idx, f) } fn emit_option(&mut self, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { f(self) } fn emit_option_none(&mut self) -> EncodeResult { self.emit_nil() } fn emit_option_some(&mut self, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { f(self) } fn emit_seq(&mut self, len: uint, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if len == 0 { write!(self.writer, "[]") } else { try!(write!(self.writer, "[")); self.curr_indent += self.indent; try!(f(self)); self.curr_indent -= self.indent; try!(write!(self.writer, "\n")); try!(spaces(self.writer, self.curr_indent)); write!(self.writer, "]") } } fn emit_seq_elt(&mut self, idx: uint, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if idx == 0 { try!(write!(self.writer, "\n")); } else { try!(write!(self.writer, ",\n")); } try!(spaces(self.writer, self.curr_indent)); f(self) } fn emit_map(&mut self, len: uint, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if len == 0 { write!(self.writer, "{{}}") } else { try!(write!(self.writer, "{{")); self.curr_indent += self.indent; try!(f(self)); self.curr_indent -= self.indent; try!(write!(self.writer, "\n")); try!(spaces(self.writer, self.curr_indent)); write!(self.writer, "}}") } } fn emit_map_elt_key(&mut self, idx: uint, mut f: F) -> EncodeResult where F: FnMut(&mut PrettyEncoder<'a>) -> EncodeResult, { if idx == 0 { try!(write!(self.writer, "\n")); } else { try!(write!(self.writer, ",\n")); } try!(spaces(self.writer, self.curr_indent)); // ref #12967, make sure to wrap a key in double quotes, // in the event that its of a type that omits them (eg numbers) let mut buf = Vec::new(); // FIXME(14302) remove the transmute and unsafe block. unsafe { let mut check_encoder = PrettyEncoder::new(&mut buf); try!(f(transmute(&mut check_encoder))); } let out = str::from_utf8(buf[]).unwrap(); let needs_wrapping = out.char_at(0) != '"' && out.char_at_reverse(out.len()) != '"'; if needs_wrapping { try!(write!(self.writer, "\"")); } try!(f(self)); if needs_wrapping { try!(write!(self.writer, "\"")); } Ok(()) } fn emit_map_elt_val(&mut self, _idx: uint, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { try!(write!(self.writer, ": ")); f(self) } } impl Encodable for Json { fn encode(&self, e: &mut E) -> Result<(), E::Error> { match *self { Json::I64(v) => v.encode(e), Json::U64(v) => v.encode(e), Json::F64(v) => v.encode(e), Json::String(ref v) => v.encode(e), Json::Boolean(v) => v.encode(e), Json::Array(ref v) => v.encode(e), Json::Object(ref v) => v.encode(e), Json::Null => e.emit_nil(), } } } /// Create an `AsJson` wrapper which can be used to print a value as JSON /// on-the-fly via `write!` pub fn as_json(t: &T) -> AsJson { AsJson { inner: t } } /// Create an `AsPrettyJson` wrapper which can be used to print a value as JSON /// on-the-fly via `write!` pub fn as_pretty_json(t: &T) -> AsPrettyJson { AsPrettyJson { inner: t, indent: None } } impl Json { /// Borrow this json object as a pretty object to generate a pretty /// representation for it via `Show`. pub fn pretty(&self) -> PrettyJson { PrettyJson { inner: self } } /// If the Json value is an Object, returns the value associated with the provided key. /// Otherwise, returns None. pub fn find<'a>(&'a self, key: &str) -> Option<&'a Json>{ match self { &Json::Object(ref map) => map.get(key), _ => None } } /// Attempts to get a nested Json Object for each key in `keys`. /// If any key is found not to exist, find_path will return None. /// Otherwise, it will return the Json value associated with the final key. pub fn find_path<'a>(&'a self, keys: &[&str]) -> Option<&'a Json>{ let mut target = self; for key in keys.iter() { match target.find(*key) { Some(t) => { target = t; }, None => return None } } Some(target) } /// If the Json value is an Object, performs a depth-first search until /// a value associated with the provided key is found. If no value is found /// or the Json value is not an Object, returns None. pub fn search<'a>(&'a self, key: &str) -> Option<&'a Json> { match self { &Json::Object(ref map) => { match map.get(key) { Some(json_value) => Some(json_value), None => { for (_, v) in map.iter() { match v.search(key) { x if x.is_some() => return x, _ => () } } None } } }, _ => None } } /// Returns true if the Json value is an Object. Returns false otherwise. pub fn is_object<'a>(&'a self) -> bool { self.as_object().is_some() } /// If the Json value is an Object, returns the associated BTreeMap. /// Returns None otherwise. pub fn as_object<'a>(&'a self) -> Option<&'a Object> { match self { &Json::Object(ref map) => Some(map), _ => None } } /// Returns true if the Json value is an Array. Returns false otherwise. pub fn is_array<'a>(&'a self) -> bool { self.as_array().is_some() } /// If the Json value is an Array, returns the associated vector. /// Returns None otherwise. pub fn as_array<'a>(&'a self) -> Option<&'a Array> { match self { &Json::Array(ref array) => Some(&*array), _ => None } } /// Returns true if the Json value is a String. Returns false otherwise. pub fn is_string<'a>(&'a self) -> bool { self.as_string().is_some() } /// If the Json value is a String, returns the associated str. /// Returns None otherwise. pub fn as_string<'a>(&'a self) -> Option<&'a str> { match *self { Json::String(ref s) => Some(s[]), _ => None } } /// Returns true if the Json value is a Number. Returns false otherwise. pub fn is_number(&self) -> bool { match *self { Json::I64(_) | Json::U64(_) | Json::F64(_) => true, _ => false, } } /// Returns true if the Json value is a i64. Returns false otherwise. pub fn is_i64(&self) -> bool { match *self { Json::I64(_) => true, _ => false, } } /// Returns true if the Json value is a u64. Returns false otherwise. pub fn is_u64(&self) -> bool { match *self { Json::U64(_) => true, _ => false, } } /// Returns true if the Json value is a f64. Returns false otherwise. pub fn is_f64(&self) -> bool { match *self { Json::F64(_) => true, _ => false, } } /// If the Json value is a number, return or cast it to a i64. /// Returns None otherwise. pub fn as_i64(&self) -> Option { match *self { Json::I64(n) => Some(n), Json::U64(n) => num::cast(n), _ => None } } /// If the Json value is a number, return or cast it to a u64. /// Returns None otherwise. pub fn as_u64(&self) -> Option { match *self { Json::I64(n) => num::cast(n), Json::U64(n) => Some(n), _ => None } } /// If the Json value is a number, return or cast it to a f64. /// Returns None otherwise. pub fn as_f64(&self) -> Option { match *self { Json::I64(n) => num::cast(n), Json::U64(n) => num::cast(n), Json::F64(n) => Some(n), _ => None } } /// Returns true if the Json value is a Boolean. Returns false otherwise. pub fn is_boolean(&self) -> bool { self.as_boolean().is_some() } /// If the Json value is a Boolean, returns the associated bool. /// Returns None otherwise. pub fn as_boolean(&self) -> Option { match self { &Json::Boolean(b) => Some(b), _ => None } } /// Returns true if the Json value is a Null. Returns false otherwise. pub fn is_null(&self) -> bool { self.as_null().is_some() } /// If the Json value is a Null, returns (). /// Returns None otherwise. pub fn as_null(&self) -> Option<()> { match self { &Json::Null => Some(()), _ => None } } } impl<'a> ops::Index<&'a str> for Json { type Output = Json; fn index(&self, idx: & &str) -> &Json { self.find(*idx).unwrap() } } impl ops::Index for Json { type Output = Json; fn index<'a>(&'a self, idx: &uint) -> &'a Json { match self { &Json::Array(ref v) => v.index(idx), _ => panic!("can only index Json with uint if it is an array") } } } /// The output of the streaming parser. #[derive(PartialEq, Clone, Show)] pub enum JsonEvent { ObjectStart, ObjectEnd, ArrayStart, ArrayEnd, BooleanValue(bool), I64Value(i64), U64Value(u64), F64Value(f64), StringValue(string::String), NullValue, Error(ParserError), } #[derive(PartialEq, Show)] enum ParserState { // Parse a value in an array, true means first element. ParseArray(bool), // Parse ',' or ']' after an element in an array. ParseArrayComma, // Parse a key:value in an object, true means first element. ParseObject(bool), // Parse ',' or ']' after an element in an object. ParseObjectComma, // Initial state. ParseStart, // Expecting the stream to end. ParseBeforeFinish, // Parsing can't continue. ParseFinished, } /// A Stack represents the current position of the parser in the logical /// structure of the JSON stream. /// For example foo.bar[3].x pub struct Stack { stack: Vec, str_buffer: Vec, } /// StackElements compose a Stack. /// For example, Key("foo"), Key("bar"), Index(3) and Key("x") are the /// StackElements compositing the stack that represents foo.bar[3].x #[derive(PartialEq, Clone, Show)] pub enum StackElement<'l> { Index(u32), Key(&'l str), } // Internally, Key elements are stored as indices in a buffer to avoid // allocating a string for every member of an object. #[derive(PartialEq, Clone, Show)] enum InternalStackElement { InternalIndex(u32), InternalKey(u16, u16), // start, size } impl Stack { pub fn new() -> Stack { Stack { stack: Vec::new(), str_buffer: Vec::new() } } /// Returns The number of elements in the Stack. pub fn len(&self) -> uint { self.stack.len() } /// Returns true if the stack is empty. pub fn is_empty(&self) -> bool { self.stack.is_empty() } /// Provides access to the StackElement at a given index. /// lower indices are at the bottom of the stack while higher indices are /// at the top. pub fn get<'l>(&'l self, idx: uint) -> StackElement<'l> { match self.stack[idx] { InternalIndex(i) => Index(i), InternalKey(start, size) => { Key(str::from_utf8( self.str_buffer[start as uint .. start as uint + size as uint]).unwrap()) } } } /// Compares this stack with an array of StackElements. pub fn is_equal_to(&self, rhs: &[StackElement]) -> bool { if self.stack.len() != rhs.len() { return false; } for i in range(0, rhs.len()) { if self.get(i) != rhs[i] { return false; } } return true; } /// Returns true if the bottom-most elements of this stack are the same as /// the ones passed as parameter. pub fn starts_with(&self, rhs: &[StackElement]) -> bool { if self.stack.len() < rhs.len() { return false; } for i in range(0, rhs.len()) { if self.get(i) != rhs[i] { return false; } } return true; } /// Returns true if the top-most elements of this stack are the same as /// the ones passed as parameter. pub fn ends_with(&self, rhs: &[StackElement]) -> bool { if self.stack.len() < rhs.len() { return false; } let offset = self.stack.len() - rhs.len(); for i in range(0, rhs.len()) { if self.get(i + offset) != rhs[i] { return false; } } return true; } /// Returns the top-most element (if any). pub fn top<'l>(&'l self) -> Option> { return match self.stack.last() { None => None, Some(&InternalIndex(i)) => Some(Index(i)), Some(&InternalKey(start, size)) => { Some(Key(str::from_utf8( self.str_buffer[start as uint .. (start+size) as uint] ).unwrap())) } } } // Used by Parser to insert Key elements at the top of the stack. fn push_key(&mut self, key: string::String) { self.stack.push(InternalKey(self.str_buffer.len() as u16, key.len() as u16)); for c in key.as_bytes().iter() { self.str_buffer.push(*c); } } // Used by Parser to insert Index elements at the top of the stack. fn push_index(&mut self, index: u32) { self.stack.push(InternalIndex(index)); } // Used by Parser to remove the top-most element of the stack. fn pop(&mut self) { assert!(!self.is_empty()); match *self.stack.last().unwrap() { InternalKey(_, sz) => { let new_size = self.str_buffer.len() - sz as uint; self.str_buffer.truncate(new_size); } InternalIndex(_) => {} } self.stack.pop(); } // Used by Parser to test whether the top-most element is an index. fn last_is_index(&self) -> bool { if self.is_empty() { return false; } return match *self.stack.last().unwrap() { InternalIndex(_) => true, _ => false, } } // Used by Parser to increment the index of the top-most element. fn bump_index(&mut self) { let len = self.stack.len(); let idx = match *self.stack.last().unwrap() { InternalIndex(i) => { i + 1 } _ => { panic!(); } }; self.stack[len - 1] = InternalIndex(idx); } } /// A streaming JSON parser implemented as an iterator of JsonEvent, consuming /// an iterator of char. pub struct Parser { rdr: T, ch: Option, line: uint, col: uint, // We maintain a stack representing where we are in the logical structure // of the JSON stream. stack: Stack, // A state machine is kept to make it possible to interrupt and resume parsing. state: ParserState, } impl> Iterator for Parser { type Item = JsonEvent; fn next(&mut self) -> Option { if self.state == ParseFinished { return None; } if self.state == ParseBeforeFinish { self.parse_whitespace(); // Make sure there is no trailing characters. if self.eof() { self.state = ParseFinished; return None; } else { return Some(self.error_event(TrailingCharacters)); } } return Some(self.parse()); } } impl> Parser { /// Creates the JSON parser. pub fn new(rdr: T) -> Parser { let mut p = Parser { rdr: rdr, ch: Some('\x00'), line: 1, col: 0, stack: Stack::new(), state: ParseStart, }; p.bump(); return p; } /// Provides access to the current position in the logical structure of the /// JSON stream. pub fn stack<'l>(&'l self) -> &'l Stack { return &self.stack; } fn eof(&self) -> bool { self.ch.is_none() } fn ch_or_null(&self) -> char { self.ch.unwrap_or('\x00') } fn bump(&mut self) { self.ch = self.rdr.next(); if self.ch_is('\n') { self.line += 1u; self.col = 1u; } else { self.col += 1u; } } fn next_char(&mut self) -> Option { self.bump(); self.ch } fn ch_is(&self, c: char) -> bool { self.ch == Some(c) } fn error(&self, reason: ErrorCode) -> Result { Err(SyntaxError(reason, self.line, self.col)) } fn parse_whitespace(&mut self) { while self.ch_is(' ') || self.ch_is('\n') || self.ch_is('\t') || self.ch_is('\r') { self.bump(); } } fn parse_number(&mut self) -> JsonEvent { let mut neg = false; if self.ch_is('-') { self.bump(); neg = true; } let res = match self.parse_u64() { Ok(res) => res, Err(e) => { return Error(e); } }; if self.ch_is('.') || self.ch_is('e') || self.ch_is('E') { let mut res = res as f64; if self.ch_is('.') { res = match self.parse_decimal(res) { Ok(res) => res, Err(e) => { return Error(e); } }; } if self.ch_is('e') || self.ch_is('E') { res = match self.parse_exponent(res) { Ok(res) => res, Err(e) => { return Error(e); } }; } if neg { res *= -1.0; } F64Value(res) } else { if neg { let res = -(res as i64); // Make sure we didn't underflow. if res > 0 { Error(SyntaxError(InvalidNumber, self.line, self.col)) } else { I64Value(res) } } else { U64Value(res) } } } fn parse_u64(&mut self) -> Result { let mut accum = 0; let last_accum = 0; // necessary to detect overflow. match self.ch_or_null() { '0' => { self.bump(); // A leading '0' must be the only digit before the decimal point. match self.ch_or_null() { '0' ... '9' => return self.error(InvalidNumber), _ => () } }, '1' ... '9' => { while !self.eof() { match self.ch_or_null() { c @ '0' ... '9' => { accum *= 10; accum += (c as u64) - ('0' as u64); // Detect overflow by comparing to the last value. if accum <= last_accum { return self.error(InvalidNumber); } self.bump(); } _ => break, } } } _ => return self.error(InvalidNumber), } Ok(accum) } fn parse_decimal(&mut self, mut res: f64) -> Result { self.bump(); // Make sure a digit follows the decimal place. match self.ch_or_null() { '0' ... '9' => (), _ => return self.error(InvalidNumber) } let mut dec = 1.0; while !self.eof() { match self.ch_or_null() { c @ '0' ... '9' => { dec /= 10.0; res += (((c as int) - ('0' as int)) as f64) * dec; self.bump(); } _ => break, } } Ok(res) } fn parse_exponent(&mut self, mut res: f64) -> Result { self.bump(); let mut exp = 0u; let mut neg_exp = false; if self.ch_is('+') { self.bump(); } else if self.ch_is('-') { self.bump(); neg_exp = true; } // Make sure a digit follows the exponent place. match self.ch_or_null() { '0' ... '9' => (), _ => return self.error(InvalidNumber) } while !self.eof() { match self.ch_or_null() { c @ '0' ... '9' => { exp *= 10; exp += (c as uint) - ('0' as uint); self.bump(); } _ => break } } let exp = 10_f64.powi(exp as i32); if neg_exp { res /= exp; } else { res *= exp; } Ok(res) } fn decode_hex_escape(&mut self) -> Result { let mut i = 0u; let mut n = 0u16; while i < 4 && !self.eof() { self.bump(); n = match self.ch_or_null() { c @ '0' ... '9' => n * 16 + ((c as u16) - ('0' as u16)), 'a' | 'A' => n * 16 + 10, 'b' | 'B' => n * 16 + 11, 'c' | 'C' => n * 16 + 12, 'd' | 'D' => n * 16 + 13, 'e' | 'E' => n * 16 + 14, 'f' | 'F' => n * 16 + 15, _ => return self.error(InvalidEscape) }; i += 1u; } // Error out if we didn't parse 4 digits. if i != 4 { return self.error(InvalidEscape); } Ok(n) } fn parse_str(&mut self) -> Result { let mut escape = false; let mut res = string::String::new(); loop { self.bump(); if self.eof() { return self.error(EOFWhileParsingString); } if escape { match self.ch_or_null() { '"' => res.push('"'), '\\' => res.push('\\'), '/' => res.push('/'), 'b' => res.push('\x08'), 'f' => res.push('\x0c'), 'n' => res.push('\n'), 'r' => res.push('\r'), 't' => res.push('\t'), 'u' => match try!(self.decode_hex_escape()) { 0xDC00 ... 0xDFFF => { return self.error(LoneLeadingSurrogateInHexEscape) } // Non-BMP characters are encoded as a sequence of // two hex escapes, representing UTF-16 surrogates. n1 @ 0xD800 ... 0xDBFF => { match (self.next_char(), self.next_char()) { (Some('\\'), Some('u')) => (), _ => return self.error(UnexpectedEndOfHexEscape), } let buf = [n1, try!(self.decode_hex_escape())]; match unicode_str::utf16_items(&buf).next() { Some(Utf16Item::ScalarValue(c)) => res.push(c), _ => return self.error(LoneLeadingSurrogateInHexEscape), } } n => match char::from_u32(n as u32) { Some(c) => res.push(c), None => return self.error(InvalidUnicodeCodePoint), }, }, _ => return self.error(InvalidEscape), } escape = false; } else if self.ch_is('\\') { escape = true; } else { match self.ch { Some('"') => { self.bump(); return Ok(res); }, Some(c) => res.push(c), None => unreachable!() } } } } // Invoked at each iteration, consumes the stream until it has enough // information to return a JsonEvent. // Manages an internal state so that parsing can be interrupted and resumed. // Also keeps track of the position in the logical structure of the json // stream int the form of a stack that can be queried by the user using the // stack() method. fn parse(&mut self) -> JsonEvent { loop { // The only paths where the loop can spin a new iteration // are in the cases ParseArrayComma and ParseObjectComma if ',' // is parsed. In these cases the state is set to (respectively) // ParseArray(false) and ParseObject(false), which always return, // so there is no risk of getting stuck in an infinite loop. // All other paths return before the end of the loop's iteration. self.parse_whitespace(); match self.state { ParseStart => { return self.parse_start(); } ParseArray(first) => { return self.parse_array(first); } ParseArrayComma => { match self.parse_array_comma_or_end() { Some(evt) => { return evt; } None => {} } } ParseObject(first) => { return self.parse_object(first); } ParseObjectComma => { self.stack.pop(); if self.ch_is(',') { self.state = ParseObject(false); self.bump(); } else { return self.parse_object_end(); } } _ => { return self.error_event(InvalidSyntax); } } } } fn parse_start(&mut self) -> JsonEvent { let val = self.parse_value(); self.state = match val { Error(_) => ParseFinished, ArrayStart => ParseArray(true), ObjectStart => ParseObject(true), _ => ParseBeforeFinish, }; return val; } fn parse_array(&mut self, first: bool) -> JsonEvent { if self.ch_is(']') { if !first { self.error_event(InvalidSyntax) } else { self.state = if self.stack.is_empty() { ParseBeforeFinish } else if self.stack.last_is_index() { ParseArrayComma } else { ParseObjectComma }; self.bump(); ArrayEnd } } else { if first { self.stack.push_index(0); } let val = self.parse_value(); self.state = match val { Error(_) => ParseFinished, ArrayStart => ParseArray(true), ObjectStart => ParseObject(true), _ => ParseArrayComma, }; val } } fn parse_array_comma_or_end(&mut self) -> Option { if self.ch_is(',') { self.stack.bump_index(); self.state = ParseArray(false); self.bump(); None } else if self.ch_is(']') { self.stack.pop(); self.state = if self.stack.is_empty() { ParseBeforeFinish } else if self.stack.last_is_index() { ParseArrayComma } else { ParseObjectComma }; self.bump(); Some(ArrayEnd) } else if self.eof() { Some(self.error_event(EOFWhileParsingArray)) } else { Some(self.error_event(InvalidSyntax)) } } fn parse_object(&mut self, first: bool) -> JsonEvent { if self.ch_is('}') { if !first { if self.stack.is_empty() { return self.error_event(TrailingComma); } else { self.stack.pop(); } } self.state = if self.stack.is_empty() { ParseBeforeFinish } else if self.stack.last_is_index() { ParseArrayComma } else { ParseObjectComma }; self.bump(); return ObjectEnd; } if self.eof() { return self.error_event(EOFWhileParsingObject); } if !self.ch_is('"') { return self.error_event(KeyMustBeAString); } let s = match self.parse_str() { Ok(s) => s, Err(e) => { self.state = ParseFinished; return Error(e); } }; self.parse_whitespace(); if self.eof() { return self.error_event(EOFWhileParsingObject); } else if self.ch_or_null() != ':' { return self.error_event(ExpectedColon); } self.stack.push_key(s); self.bump(); self.parse_whitespace(); let val = self.parse_value(); self.state = match val { Error(_) => ParseFinished, ArrayStart => ParseArray(true), ObjectStart => ParseObject(true), _ => ParseObjectComma, }; return val; } fn parse_object_end(&mut self) -> JsonEvent { if self.ch_is('}') { self.state = if self.stack.is_empty() { ParseBeforeFinish } else if self.stack.last_is_index() { ParseArrayComma } else { ParseObjectComma }; self.bump(); ObjectEnd } else if self.eof() { self.error_event(EOFWhileParsingObject) } else { self.error_event(InvalidSyntax) } } fn parse_value(&mut self) -> JsonEvent { if self.eof() { return self.error_event(EOFWhileParsingValue); } match self.ch_or_null() { 'n' => { self.parse_ident("ull", NullValue) } 't' => { self.parse_ident("rue", BooleanValue(true)) } 'f' => { self.parse_ident("alse", BooleanValue(false)) } '0' ... '9' | '-' => self.parse_number(), '"' => match self.parse_str() { Ok(s) => StringValue(s), Err(e) => Error(e), }, '[' => { self.bump(); ArrayStart } '{' => { self.bump(); ObjectStart } _ => { self.error_event(InvalidSyntax) } } } fn parse_ident(&mut self, ident: &str, value: JsonEvent) -> JsonEvent { if ident.chars().all(|c| Some(c) == self.next_char()) { self.bump(); value } else { Error(SyntaxError(InvalidSyntax, self.line, self.col)) } } fn error_event(&mut self, reason: ErrorCode) -> JsonEvent { self.state = ParseFinished; Error(SyntaxError(reason, self.line, self.col)) } } /// A Builder consumes a json::Parser to create a generic Json structure. pub struct Builder { parser: Parser, token: Option, } impl> Builder { /// Create a JSON Builder. pub fn new(src: T) -> Builder { Builder { parser: Parser::new(src), token: None, } } // Decode a Json value from a Parser. pub fn build(&mut self) -> Result { self.bump(); let result = self.build_value(); self.bump(); match self.token { None => {} Some(Error(e)) => { return Err(e); } ref tok => { panic!("unexpected token {}", tok.clone()); } } result } fn bump(&mut self) { self.token = self.parser.next(); } fn build_value(&mut self) -> Result { return match self.token { Some(NullValue) => Ok(Json::Null), Some(I64Value(n)) => Ok(Json::I64(n)), Some(U64Value(n)) => Ok(Json::U64(n)), Some(F64Value(n)) => Ok(Json::F64(n)), Some(BooleanValue(b)) => Ok(Json::Boolean(b)), Some(StringValue(ref mut s)) => { let mut temp = string::String::new(); swap(s, &mut temp); Ok(Json::String(temp)) } Some(Error(e)) => Err(e), Some(ArrayStart) => self.build_array(), Some(ObjectStart) => self.build_object(), Some(ObjectEnd) => self.parser.error(InvalidSyntax), Some(ArrayEnd) => self.parser.error(InvalidSyntax), None => self.parser.error(EOFWhileParsingValue), } } fn build_array(&mut self) -> Result { self.bump(); let mut values = Vec::new(); loop { if self.token == Some(ArrayEnd) { return Ok(Json::Array(values.into_iter().collect())); } match self.build_value() { Ok(v) => values.push(v), Err(e) => { return Err(e) } } self.bump(); } } fn build_object(&mut self) -> Result { self.bump(); let mut values = BTreeMap::new(); loop { match self.token { Some(ObjectEnd) => { return Ok(Json::Object(values)); } Some(Error(e)) => { return Err(e); } None => { break; } _ => {} } let key = match self.parser.stack().top() { Some(Key(k)) => { k.to_string() } _ => { panic!("invalid state"); } }; match self.build_value() { Ok(value) => { values.insert(key, value); } Err(e) => { return Err(e); } } self.bump(); } return self.parser.error(EOFWhileParsingObject); } } /// Decodes a json value from an `&mut io::Reader` pub fn from_reader(rdr: &mut io::Reader) -> Result { let contents = match rdr.read_to_end() { Ok(c) => c, Err(e) => return Err(io_error_to_error(e)) }; let s = match str::from_utf8(contents.as_slice()).ok() { Some(s) => s, _ => return Err(SyntaxError(NotUtf8, 0, 0)) }; let mut builder = Builder::new(s.chars()); builder.build() } /// Decodes a json value from a string pub fn from_str(s: &str) -> Result { let mut builder = Builder::new(s.chars()); builder.build() } /// A structure to decode JSON to values in rust. pub struct Decoder { stack: Vec, } impl Decoder { /// Creates a new decoder instance for decoding the specified JSON value. pub fn new(json: Json) -> Decoder { Decoder { stack: vec![json] } } } impl Decoder { fn pop(&mut self) -> Json { self.stack.pop().unwrap() } } macro_rules! expect { ($e:expr, Null) => ({ match $e { Json::Null => Ok(()), other => Err(ExpectedError("Null".to_string(), format!("{}", other))) } }); ($e:expr, $t:ident) => ({ match $e { Json::$t(v) => Ok(v), other => { Err(ExpectedError(stringify!($t).to_string(), format!("{}", other))) } } }) } macro_rules! read_primitive { ($name:ident, $ty:ty) => { fn $name(&mut self) -> DecodeResult<$ty> { match self.pop() { Json::I64(f) => match num::cast(f) { Some(f) => Ok(f), None => Err(ExpectedError("Number".to_string(), format!("{}", f))), }, Json::U64(f) => match num::cast(f) { Some(f) => Ok(f), None => Err(ExpectedError("Number".to_string(), format!("{}", f))), }, Json::F64(f) => Err(ExpectedError("Integer".to_string(), format!("{}", f))), // re: #12967.. a type w/ numeric keys (ie HashMap etc) // is going to have a string here, as per JSON spec. Json::String(s) => match s.parse() { Some(f) => Ok(f), None => Err(ExpectedError("Number".to_string(), s)), }, value => Err(ExpectedError("Number".to_string(), format!("{}", value))), } } } } impl ::Decoder for Decoder { type Error = DecoderError; fn read_nil(&mut self) -> DecodeResult<()> { expect!(self.pop(), Null) } read_primitive! { read_uint, uint } read_primitive! { read_u8, u8 } read_primitive! { read_u16, u16 } read_primitive! { read_u32, u32 } read_primitive! { read_u64, u64 } read_primitive! { read_int, int } read_primitive! { read_i8, i8 } read_primitive! { read_i16, i16 } read_primitive! { read_i32, i32 } read_primitive! { read_i64, i64 } fn read_f32(&mut self) -> DecodeResult { self.read_f64().map(|x| x as f32) } fn read_f64(&mut self) -> DecodeResult { match self.pop() { Json::I64(f) => Ok(f as f64), Json::U64(f) => Ok(f as f64), Json::F64(f) => Ok(f), Json::String(s) => { // re: #12967.. a type w/ numeric keys (ie HashMap etc) // is going to have a string here, as per JSON spec. match s.parse() { Some(f) => Ok(f), None => Err(ExpectedError("Number".to_string(), s)), } }, Json::Null => Ok(f64::NAN), value => Err(ExpectedError("Number".to_string(), format!("{}", value))) } } fn read_bool(&mut self) -> DecodeResult { expect!(self.pop(), Boolean) } fn read_char(&mut self) -> DecodeResult { let s = try!(self.read_str()); { let mut it = s.chars(); match (it.next(), it.next()) { // exactly one character (Some(c), None) => return Ok(c), _ => () } } Err(ExpectedError("single character string".to_string(), format!("{}", s))) } fn read_str(&mut self) -> DecodeResult { expect!(self.pop(), String) } fn read_enum(&mut self, _name: &str, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { f(self) } fn read_enum_variant(&mut self, names: &[&str], mut f: F) -> DecodeResult where F: FnMut(&mut Decoder, uint) -> DecodeResult, { let name = match self.pop() { Json::String(s) => s, Json::Object(mut o) => { let n = match o.remove(&"variant".to_string()) { Some(Json::String(s)) => s, Some(val) => { return Err(ExpectedError("String".to_string(), format!("{}", val))) } None => { return Err(MissingFieldError("variant".to_string())) } }; match o.remove(&"fields".to_string()) { Some(Json::Array(l)) => { for field in l.into_iter().rev() { self.stack.push(field); } }, Some(val) => { return Err(ExpectedError("Array".to_string(), format!("{}", val))) } None => { return Err(MissingFieldError("fields".to_string())) } } n } json => { return Err(ExpectedError("String or Object".to_string(), format!("{}", json))) } }; let idx = match names.iter().position(|n| *n == name[]) { Some(idx) => idx, None => return Err(UnknownVariantError(name)) }; f(self, idx) } fn read_enum_variant_arg(&mut self, _idx: uint, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { f(self) } fn read_enum_struct_variant(&mut self, names: &[&str], f: F) -> DecodeResult where F: FnMut(&mut Decoder, uint) -> DecodeResult, { self.read_enum_variant(names, f) } fn read_enum_struct_variant_field(&mut self, _name: &str, idx: uint, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { self.read_enum_variant_arg(idx, f) } fn read_struct(&mut self, _name: &str, _len: uint, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { let value = try!(f(self)); self.pop(); Ok(value) } fn read_struct_field(&mut self, name: &str, _idx: uint, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { let mut obj = try!(expect!(self.pop(), Object)); let value = match obj.remove(&name.to_string()) { None => { // Add a Null and try to parse it as an Option<_> // to get None as a default value. self.stack.push(Json::Null); match f(self) { Ok(x) => x, Err(_) => return Err(MissingFieldError(name.to_string())), } }, Some(json) => { self.stack.push(json); try!(f(self)) } }; self.stack.push(Json::Object(obj)); Ok(value) } fn read_tuple(&mut self, tuple_len: uint, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { self.read_seq(move |d, len| { if len == tuple_len { f(d) } else { Err(ExpectedError(format!("Tuple{}", tuple_len), format!("Tuple{}", len))) } }) } fn read_tuple_arg(&mut self, idx: uint, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { self.read_seq_elt(idx, f) } fn read_tuple_struct(&mut self, _name: &str, len: uint, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { self.read_tuple(len, f) } fn read_tuple_struct_arg(&mut self, idx: uint, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { self.read_tuple_arg(idx, f) } fn read_option(&mut self, mut f: F) -> DecodeResult where F: FnMut(&mut Decoder, bool) -> DecodeResult, { match self.pop() { Json::Null => f(self, false), value => { self.stack.push(value); f(self, true) } } } fn read_seq(&mut self, f: F) -> DecodeResult where F: FnOnce(&mut Decoder, uint) -> DecodeResult, { let array = try!(expect!(self.pop(), Array)); let len = array.len(); for v in array.into_iter().rev() { self.stack.push(v); } f(self, len) } fn read_seq_elt(&mut self, _idx: uint, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { f(self) } fn read_map(&mut self, f: F) -> DecodeResult where F: FnOnce(&mut Decoder, uint) -> DecodeResult, { let obj = try!(expect!(self.pop(), Object)); let len = obj.len(); for (key, value) in obj.into_iter() { self.stack.push(value); self.stack.push(Json::String(key)); } f(self, len) } fn read_map_elt_key(&mut self, _idx: uint, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { f(self) } fn read_map_elt_val(&mut self, _idx: uint, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { f(self) } fn error(&mut self, err: &str) -> DecoderError { ApplicationError(err.to_string()) } } /// A trait for converting values to JSON pub trait ToJson { /// Converts the value of `self` to an instance of JSON fn to_json(&self) -> Json; } macro_rules! to_json_impl_i64 { ($($t:ty), +) => ( $(impl ToJson for $t { fn to_json(&self) -> Json { Json::I64(*self as i64) } })+ ) } to_json_impl_i64! { int, i8, i16, i32, i64 } macro_rules! to_json_impl_u64 { ($($t:ty), +) => ( $(impl ToJson for $t { fn to_json(&self) -> Json { Json::U64(*self as u64) } })+ ) } to_json_impl_u64! { uint, u8, u16, u32, u64 } impl ToJson for Json { fn to_json(&self) -> Json { self.clone() } } impl ToJson for f32 { fn to_json(&self) -> Json { (*self as f64).to_json() } } impl ToJson for f64 { fn to_json(&self) -> Json { match self.classify() { Fp::Nan | Fp::Infinite => Json::Null, _ => Json::F64(*self) } } } impl ToJson for () { fn to_json(&self) -> Json { Json::Null } } impl ToJson for bool { fn to_json(&self) -> Json { Json::Boolean(*self) } } impl ToJson for str { fn to_json(&self) -> Json { Json::String(self.to_string()) } } impl ToJson for string::String { fn to_json(&self) -> Json { Json::String((*self).clone()) } } macro_rules! tuple_impl { // use variables to indicate the arity of the tuple ($($tyvar:ident),* ) => { // the trailing commas are for the 1 tuple impl< $( $tyvar : ToJson ),* > ToJson for ( $( $tyvar ),* , ) { #[inline] #[allow(non_snake_case)] fn to_json(&self) -> Json { match *self { ($(ref $tyvar),*,) => Json::Array(vec![$($tyvar.to_json()),*]) } } } } } tuple_impl!{A} tuple_impl!{A, B} tuple_impl!{A, B, C} tuple_impl!{A, B, C, D} tuple_impl!{A, B, C, D, E} tuple_impl!{A, B, C, D, E, F} tuple_impl!{A, B, C, D, E, F, G} tuple_impl!{A, B, C, D, E, F, G, H} tuple_impl!{A, B, C, D, E, F, G, H, I} tuple_impl!{A, B, C, D, E, F, G, H, I, J} tuple_impl!{A, B, C, D, E, F, G, H, I, J, K} tuple_impl!{A, B, C, D, E, F, G, H, I, J, K, L} impl ToJson for [A] { fn to_json(&self) -> Json { Json::Array(self.iter().map(|elt| elt.to_json()).collect()) } } impl ToJson for Vec { fn to_json(&self) -> Json { Json::Array(self.iter().map(|elt| elt.to_json()).collect()) } } impl ToJson for BTreeMap { fn to_json(&self) -> Json { let mut d = BTreeMap::new(); for (key, value) in self.iter() { d.insert((*key).clone(), value.to_json()); } Json::Object(d) } } impl ToJson for HashMap { fn to_json(&self) -> Json { let mut d = BTreeMap::new(); for (key, value) in self.iter() { d.insert((*key).clone(), value.to_json()); } Json::Object(d) } } impl ToJson for Option { fn to_json(&self) -> Json { match *self { None => Json::Null, Some(ref value) => value.to_json() } } } struct FormatShim<'a, 'b: 'a> { inner: &'a mut fmt::Formatter<'b>, } impl<'a, 'b> fmt::Writer for FormatShim<'a, 'b> { fn write_str(&mut self, s: &str) -> fmt::Result { self.inner.write_str(s) } } impl fmt::Show for Json { /// Encodes a json value into a string fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let mut shim = FormatShim { inner: f }; let mut encoder = Encoder::new(&mut shim); self.encode(&mut encoder) } } impl<'a> fmt::Show for PrettyJson<'a> { /// Encodes a json value into a string fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let mut shim = FormatShim { inner: f }; let mut encoder = PrettyEncoder::new(&mut shim); self.inner.encode(&mut encoder) } } impl<'a, T: Encodable> fmt::Show for AsJson<'a, T> { /// Encodes a json value into a string fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let mut shim = FormatShim { inner: f }; let mut encoder = Encoder::new(&mut shim); self.inner.encode(&mut encoder) } } impl<'a, T> AsPrettyJson<'a, T> { /// Set the indentation level for the emitted JSON pub fn indent(mut self, indent: uint) -> AsPrettyJson<'a, T> { self.indent = Some(indent); self } } impl<'a, T: Encodable> fmt::Show for AsPrettyJson<'a, T> { /// Encodes a json value into a string fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let mut shim = FormatShim { inner: f }; let mut encoder = PrettyEncoder::new(&mut shim); match self.indent { Some(n) => encoder.set_indent(n), None => {} } self.inner.encode(&mut encoder) } } impl FromStr for Json { fn from_str(s: &str) -> Option { from_str(s).ok() } } #[cfg(test)] mod tests { extern crate test; use self::Animal::*; use self::DecodeEnum::*; use self::test::Bencher; use {Encodable, Decodable}; use super::Json::*; use super::ErrorCode::*; use super::ParserError::*; use super::DecoderError::*; use super::JsonEvent::*; use super::StackElement::*; use super::{Json, from_str, DecodeResult, DecoderError, JsonEvent, Parser, StackElement, Stack, Decoder}; use std::{i64, u64, f32, f64}; use std::collections::BTreeMap; use std::num::Float; use std::string; #[derive(RustcDecodable, Eq, PartialEq, Show)] struct OptionData { opt: Option, } #[test] fn test_decode_option_none() { let s ="{}"; let obj: OptionData = super::decode(s).unwrap(); assert_eq!(obj, OptionData { opt: None }); } #[test] fn test_decode_option_some() { let s = "{ \"opt\": 10 }"; let obj: OptionData = super::decode(s).unwrap(); assert_eq!(obj, OptionData { opt: Some(10u) }); } #[test] fn test_decode_option_malformed() { check_err::("{ \"opt\": [] }", ExpectedError("Number".to_string(), "[]".to_string())); check_err::("{ \"opt\": false }", ExpectedError("Number".to_string(), "false".to_string())); } #[derive(PartialEq, RustcEncodable, RustcDecodable, Show)] enum Animal { Dog, Frog(string::String, int) } #[derive(PartialEq, RustcEncodable, RustcDecodable, Show)] struct Inner { a: (), b: uint, c: Vec, } #[derive(PartialEq, RustcEncodable, RustcDecodable, Show)] struct Outer { inner: Vec, } fn mk_object(items: &[(string::String, Json)]) -> Json { let mut d = BTreeMap::new(); for item in items.iter() { match *item { (ref key, ref value) => { d.insert((*key).clone(), (*value).clone()); }, } }; Object(d) } #[test] fn test_from_str_trait() { let s = "null"; assert!(s.parse::().unwrap() == s.parse().unwrap()); } #[test] fn test_write_null() { assert_eq!(Null.to_string(), "null"); assert_eq!(Null.pretty().to_string(), "null"); } #[test] fn test_write_i64() { assert_eq!(U64(0).to_string(), "0"); assert_eq!(U64(0).pretty().to_string(), "0"); assert_eq!(U64(1234).to_string(), "1234"); assert_eq!(U64(1234).pretty().to_string(), "1234"); assert_eq!(I64(-5678).to_string(), "-5678"); assert_eq!(I64(-5678).pretty().to_string(), "-5678"); assert_eq!(U64(7650007200025252000).to_string(), "7650007200025252000"); assert_eq!(U64(7650007200025252000).pretty().to_string(), "7650007200025252000"); } #[test] fn test_write_f64() { assert_eq!(F64(3.0).to_string(), "3.0"); assert_eq!(F64(3.0).pretty().to_string(), "3.0"); assert_eq!(F64(3.1).to_string(), "3.1"); assert_eq!(F64(3.1).pretty().to_string(), "3.1"); assert_eq!(F64(-1.5).to_string(), "-1.5"); assert_eq!(F64(-1.5).pretty().to_string(), "-1.5"); assert_eq!(F64(0.5).to_string(), "0.5"); assert_eq!(F64(0.5).pretty().to_string(), "0.5"); assert_eq!(F64(f64::NAN).to_string(), "null"); assert_eq!(F64(f64::NAN).pretty().to_string(), "null"); assert_eq!(F64(f64::INFINITY).to_string(), "null"); assert_eq!(F64(f64::INFINITY).pretty().to_string(), "null"); assert_eq!(F64(f64::NEG_INFINITY).to_string(), "null"); assert_eq!(F64(f64::NEG_INFINITY).pretty().to_string(), "null"); } #[test] fn test_write_str() { assert_eq!(String("".to_string()).to_string(), "\"\""); assert_eq!(String("".to_string()).pretty().to_string(), "\"\""); assert_eq!(String("homura".to_string()).to_string(), "\"homura\""); assert_eq!(String("madoka".to_string()).pretty().to_string(), "\"madoka\""); } #[test] fn test_write_bool() { assert_eq!(Boolean(true).to_string(), "true"); assert_eq!(Boolean(true).pretty().to_string(), "true"); assert_eq!(Boolean(false).to_string(), "false"); assert_eq!(Boolean(false).pretty().to_string(), "false"); } #[test] fn test_write_array() { assert_eq!(Array(vec![]).to_string(), "[]"); assert_eq!(Array(vec![]).pretty().to_string(), "[]"); assert_eq!(Array(vec![Boolean(true)]).to_string(), "[true]"); assert_eq!( Array(vec![Boolean(true)]).pretty().to_string(), "\ [\n \ true\n\ ]" ); let long_test_array = Array(vec![ Boolean(false), Null, Array(vec![String("foo\nbar".to_string()), F64(3.5)])]); assert_eq!(long_test_array.to_string(), "[false,null,[\"foo\\nbar\",3.5]]"); assert_eq!( long_test_array.pretty().to_string(), "\ [\n \ false,\n \ null,\n \ [\n \ \"foo\\nbar\",\n \ 3.5\n \ ]\n\ ]" ); } #[test] fn test_write_object() { assert_eq!(mk_object(&[]).to_string(), "{}"); assert_eq!(mk_object(&[]).pretty().to_string(), "{}"); assert_eq!( mk_object(&[ ("a".to_string(), Boolean(true)) ]).to_string(), "{\"a\":true}" ); assert_eq!( mk_object(&[("a".to_string(), Boolean(true))]).pretty().to_string(), "\ {\n \ \"a\": true\n\ }" ); let complex_obj = mk_object(&[ ("b".to_string(), Array(vec![ mk_object(&[("c".to_string(), String("\x0c\r".to_string()))]), mk_object(&[("d".to_string(), String("".to_string()))]) ])) ]); assert_eq!( complex_obj.to_string(), "{\ \"b\":[\ {\"c\":\"\\f\\r\"},\ {\"d\":\"\"}\ ]\ }" ); assert_eq!( complex_obj.pretty().to_string(), "\ {\n \ \"b\": [\n \ {\n \ \"c\": \"\\f\\r\"\n \ },\n \ {\n \ \"d\": \"\"\n \ }\n \ ]\n\ }" ); let a = mk_object(&[ ("a".to_string(), Boolean(true)), ("b".to_string(), Array(vec![ mk_object(&[("c".to_string(), String("\x0c\r".to_string()))]), mk_object(&[("d".to_string(), String("".to_string()))]) ])) ]); // We can't compare the strings directly because the object fields be // printed in a different order. assert_eq!(a.clone(), a.to_string().parse().unwrap()); assert_eq!(a.clone(), a.pretty().to_string().parse().unwrap()); } #[test] fn test_write_enum() { let animal = Dog; assert_eq!( format!("{}", super::as_json(&animal)), "\"Dog\"" ); assert_eq!( format!("{}", super::as_pretty_json(&animal)), "\"Dog\"" ); let animal = Frog("Henry".to_string(), 349); assert_eq!( format!("{}", super::as_json(&animal)), "{\"variant\":\"Frog\",\"fields\":[\"Henry\",349]}" ); assert_eq!( format!("{}", super::as_pretty_json(&animal)), "{\n \ \"variant\": \"Frog\",\n \ \"fields\": [\n \ \"Henry\",\n \ 349\n \ ]\n\ }" ); } macro_rules! check_encoder_for_simple { ($value:expr, $expected:expr) => ({ let s = format!("{}", super::as_json(&$value)); assert_eq!(s, $expected); let s = format!("{}", super::as_pretty_json(&$value)); assert_eq!(s, $expected); }) } #[test] fn test_write_some() { check_encoder_for_simple!(Some("jodhpurs".to_string()), "\"jodhpurs\""); } #[test] fn test_write_none() { check_encoder_for_simple!(None::, "null"); } #[test] fn test_write_char() { check_encoder_for_simple!('a', "\"a\""); check_encoder_for_simple!('\t', "\"\\t\""); check_encoder_for_simple!('\u{0000}', "\"\\u0000\""); check_encoder_for_simple!('\u{001b}', "\"\\u001b\""); check_encoder_for_simple!('\u{007f}', "\"\\u007f\""); check_encoder_for_simple!('\u{00a0}', "\"\u{00a0}\""); check_encoder_for_simple!('\u{abcd}', "\"\u{abcd}\""); check_encoder_for_simple!('\u{10ffff}', "\"\u{10ffff}\""); } #[test] fn test_trailing_characters() { assert_eq!(from_str("nulla"), Err(SyntaxError(TrailingCharacters, 1, 5))); assert_eq!(from_str("truea"), Err(SyntaxError(TrailingCharacters, 1, 5))); assert_eq!(from_str("falsea"), Err(SyntaxError(TrailingCharacters, 1, 6))); assert_eq!(from_str("1a"), Err(SyntaxError(TrailingCharacters, 1, 2))); assert_eq!(from_str("[]a"), Err(SyntaxError(TrailingCharacters, 1, 3))); assert_eq!(from_str("{}a"), Err(SyntaxError(TrailingCharacters, 1, 3))); } #[test] fn test_read_identifiers() { assert_eq!(from_str("n"), Err(SyntaxError(InvalidSyntax, 1, 2))); assert_eq!(from_str("nul"), Err(SyntaxError(InvalidSyntax, 1, 4))); assert_eq!(from_str("t"), Err(SyntaxError(InvalidSyntax, 1, 2))); assert_eq!(from_str("truz"), Err(SyntaxError(InvalidSyntax, 1, 4))); assert_eq!(from_str("f"), Err(SyntaxError(InvalidSyntax, 1, 2))); assert_eq!(from_str("faz"), Err(SyntaxError(InvalidSyntax, 1, 3))); assert_eq!(from_str("null"), Ok(Null)); assert_eq!(from_str("true"), Ok(Boolean(true))); assert_eq!(from_str("false"), Ok(Boolean(false))); assert_eq!(from_str(" null "), Ok(Null)); assert_eq!(from_str(" true "), Ok(Boolean(true))); assert_eq!(from_str(" false "), Ok(Boolean(false))); } #[test] fn test_decode_identifiers() { let v: () = super::decode("null").unwrap(); assert_eq!(v, ()); let v: bool = super::decode("true").unwrap(); assert_eq!(v, true); let v: bool = super::decode("false").unwrap(); assert_eq!(v, false); } #[test] fn test_read_number() { assert_eq!(from_str("+"), Err(SyntaxError(InvalidSyntax, 1, 1))); assert_eq!(from_str("."), Err(SyntaxError(InvalidSyntax, 1, 1))); assert_eq!(from_str("NaN"), Err(SyntaxError(InvalidSyntax, 1, 1))); assert_eq!(from_str("-"), Err(SyntaxError(InvalidNumber, 1, 2))); assert_eq!(from_str("00"), Err(SyntaxError(InvalidNumber, 1, 2))); assert_eq!(from_str("1."), Err(SyntaxError(InvalidNumber, 1, 3))); assert_eq!(from_str("1e"), Err(SyntaxError(InvalidNumber, 1, 3))); assert_eq!(from_str("1e+"), Err(SyntaxError(InvalidNumber, 1, 4))); assert_eq!(from_str("18446744073709551616"), Err(SyntaxError(InvalidNumber, 1, 20))); assert_eq!(from_str("-9223372036854775809"), Err(SyntaxError(InvalidNumber, 1, 21))); assert_eq!(from_str("3"), Ok(U64(3))); assert_eq!(from_str("3.1"), Ok(F64(3.1))); assert_eq!(from_str("-1.2"), Ok(F64(-1.2))); assert_eq!(from_str("0.4"), Ok(F64(0.4))); assert_eq!(from_str("0.4e5"), Ok(F64(0.4e5))); assert_eq!(from_str("0.4e+15"), Ok(F64(0.4e15))); assert_eq!(from_str("0.4e-01"), Ok(F64(0.4e-01))); assert_eq!(from_str(" 3 "), Ok(U64(3))); assert_eq!(from_str("-9223372036854775808"), Ok(I64(i64::MIN))); assert_eq!(from_str("9223372036854775807"), Ok(U64(i64::MAX as u64))); assert_eq!(from_str("18446744073709551615"), Ok(U64(u64::MAX))); } #[test] fn test_decode_numbers() { let v: f64 = super::decode("3").unwrap(); assert_eq!(v, 3.0); let v: f64 = super::decode("3.1").unwrap(); assert_eq!(v, 3.1); let v: f64 = super::decode("-1.2").unwrap(); assert_eq!(v, -1.2); let v: f64 = super::decode("0.4").unwrap(); assert_eq!(v, 0.4); let v: f64 = super::decode("0.4e5").unwrap(); assert_eq!(v, 0.4e5); let v: f64 = super::decode("0.4e15").unwrap(); assert_eq!(v, 0.4e15); let v: f64 = super::decode("0.4e-01").unwrap(); assert_eq!(v, 0.4e-01); let v: u64 = super::decode("0").unwrap(); assert_eq!(v, 0); let v: u64 = super::decode("18446744073709551615").unwrap(); assert_eq!(v, u64::MAX); let v: i64 = super::decode("-9223372036854775808").unwrap(); assert_eq!(v, i64::MIN); let v: i64 = super::decode("9223372036854775807").unwrap(); assert_eq!(v, i64::MAX); let res: DecodeResult = super::decode("765.25252"); assert_eq!(res, Err(ExpectedError("Integer".to_string(), "765.25252".to_string()))); } #[test] fn test_read_str() { assert_eq!(from_str("\""), Err(SyntaxError(EOFWhileParsingString, 1, 2))); assert_eq!(from_str("\"lol"), Err(SyntaxError(EOFWhileParsingString, 1, 5))); assert_eq!(from_str("\"\""), Ok(String("".to_string()))); assert_eq!(from_str("\"foo\""), Ok(String("foo".to_string()))); assert_eq!(from_str("\"\\\"\""), Ok(String("\"".to_string()))); assert_eq!(from_str("\"\\b\""), Ok(String("\x08".to_string()))); assert_eq!(from_str("\"\\n\""), Ok(String("\n".to_string()))); assert_eq!(from_str("\"\\r\""), Ok(String("\r".to_string()))); assert_eq!(from_str("\"\\t\""), Ok(String("\t".to_string()))); assert_eq!(from_str(" \"foo\" "), Ok(String("foo".to_string()))); assert_eq!(from_str("\"\\u12ab\""), Ok(String("\u{12ab}".to_string()))); assert_eq!(from_str("\"\\uAB12\""), Ok(String("\u{AB12}".to_string()))); } #[test] fn test_decode_str() { let s = [("\"\"", ""), ("\"foo\"", "foo"), ("\"\\\"\"", "\""), ("\"\\b\"", "\x08"), ("\"\\n\"", "\n"), ("\"\\r\"", "\r"), ("\"\\t\"", "\t"), ("\"\\u12ab\"", "\u{12ab}"), ("\"\\uAB12\"", "\u{AB12}")]; for &(i, o) in s.iter() { let v: string::String = super::decode(i).unwrap(); assert_eq!(v, o); } } #[test] fn test_read_array() { assert_eq!(from_str("["), Err(SyntaxError(EOFWhileParsingValue, 1, 2))); assert_eq!(from_str("[1"), Err(SyntaxError(EOFWhileParsingArray, 1, 3))); assert_eq!(from_str("[1,"), Err(SyntaxError(EOFWhileParsingValue, 1, 4))); assert_eq!(from_str("[1,]"), Err(SyntaxError(InvalidSyntax, 1, 4))); assert_eq!(from_str("[6 7]"), Err(SyntaxError(InvalidSyntax, 1, 4))); assert_eq!(from_str("[]"), Ok(Array(vec![]))); assert_eq!(from_str("[ ]"), Ok(Array(vec![]))); assert_eq!(from_str("[true]"), Ok(Array(vec![Boolean(true)]))); assert_eq!(from_str("[ false ]"), Ok(Array(vec![Boolean(false)]))); assert_eq!(from_str("[null]"), Ok(Array(vec![Null]))); assert_eq!(from_str("[3, 1]"), Ok(Array(vec![U64(3), U64(1)]))); assert_eq!(from_str("\n[3, 2]\n"), Ok(Array(vec![U64(3), U64(2)]))); assert_eq!(from_str("[2, [4, 1]]"), Ok(Array(vec![U64(2), Array(vec![U64(4), U64(1)])]))); } #[test] fn test_decode_array() { let v: Vec<()> = super::decode("[]").unwrap(); assert_eq!(v, vec![]); let v: Vec<()> = super::decode("[null]").unwrap(); assert_eq!(v, vec![()]); let v: Vec = super::decode("[true]").unwrap(); assert_eq!(v, vec![true]); let v: Vec = super::decode("[3, 1]").unwrap(); assert_eq!(v, vec![3, 1]); let v: Vec> = super::decode("[[3], [1, 2]]").unwrap(); assert_eq!(v, vec![vec![3], vec![1, 2]]); } #[test] fn test_decode_tuple() { let t: (uint, uint, uint) = super::decode("[1, 2, 3]").unwrap(); assert_eq!(t, (1u, 2, 3)); let t: (uint, string::String) = super::decode("[1, \"two\"]").unwrap(); assert_eq!(t, (1u, "two".to_string())); } #[test] fn test_decode_tuple_malformed_types() { assert!(super::decode::<(uint, string::String)>("[1, 2]").is_err()); } #[test] fn test_decode_tuple_malformed_length() { assert!(super::decode::<(uint, uint)>("[1, 2, 3]").is_err()); } #[test] fn test_read_object() { assert_eq!(from_str("{"), Err(SyntaxError(EOFWhileParsingObject, 1, 2))); assert_eq!(from_str("{ "), Err(SyntaxError(EOFWhileParsingObject, 1, 3))); assert_eq!(from_str("{1"), Err(SyntaxError(KeyMustBeAString, 1, 2))); assert_eq!(from_str("{ \"a\""), Err(SyntaxError(EOFWhileParsingObject, 1, 6))); assert_eq!(from_str("{\"a\""), Err(SyntaxError(EOFWhileParsingObject, 1, 5))); assert_eq!(from_str("{\"a\" "), Err(SyntaxError(EOFWhileParsingObject, 1, 6))); assert_eq!(from_str("{\"a\" 1"), Err(SyntaxError(ExpectedColon, 1, 6))); assert_eq!(from_str("{\"a\":"), Err(SyntaxError(EOFWhileParsingValue, 1, 6))); assert_eq!(from_str("{\"a\":1"), Err(SyntaxError(EOFWhileParsingObject, 1, 7))); assert_eq!(from_str("{\"a\":1 1"), Err(SyntaxError(InvalidSyntax, 1, 8))); assert_eq!(from_str("{\"a\":1,"), Err(SyntaxError(EOFWhileParsingObject, 1, 8))); assert_eq!(from_str("{}").unwrap(), mk_object(&[])); assert_eq!(from_str("{\"a\": 3}").unwrap(), mk_object(&[("a".to_string(), U64(3))])); assert_eq!(from_str( "{ \"a\": null, \"b\" : true }").unwrap(), mk_object(&[ ("a".to_string(), Null), ("b".to_string(), Boolean(true))])); assert_eq!(from_str("\n{ \"a\": null, \"b\" : true }\n").unwrap(), mk_object(&[ ("a".to_string(), Null), ("b".to_string(), Boolean(true))])); assert_eq!(from_str( "{\"a\" : 1.0 ,\"b\": [ true ]}").unwrap(), mk_object(&[ ("a".to_string(), F64(1.0)), ("b".to_string(), Array(vec![Boolean(true)])) ])); assert_eq!(from_str( "{\ \"a\": 1.0, \ \"b\": [\ true,\ \"foo\\nbar\", \ { \"c\": {\"d\": null} } \ ]\ }").unwrap(), mk_object(&[ ("a".to_string(), F64(1.0)), ("b".to_string(), Array(vec![ Boolean(true), String("foo\nbar".to_string()), mk_object(&[ ("c".to_string(), mk_object(&[("d".to_string(), Null)])) ]) ])) ])); } #[test] fn test_decode_struct() { let s = "{ \"inner\": [ { \"a\": null, \"b\": 2, \"c\": [\"abc\", \"xyz\"] } ] }"; let v: Outer = super::decode(s).unwrap(); assert_eq!( v, Outer { inner: vec![ Inner { a: (), b: 2, c: vec!["abc".to_string(), "xyz".to_string()] } ] } ); } #[derive(RustcDecodable)] struct FloatStruct { f: f64, a: Vec } #[test] fn test_decode_struct_with_nan() { let s = "{\"f\":null,\"a\":[null,123]}"; let obj: FloatStruct = super::decode(s).unwrap(); assert!(obj.f.is_nan()); assert!(obj.a[0].is_nan()); assert_eq!(obj.a[1], 123f64); } #[test] fn test_decode_option() { let value: Option = super::decode("null").unwrap(); assert_eq!(value, None); let value: Option = super::decode("\"jodhpurs\"").unwrap(); assert_eq!(value, Some("jodhpurs".to_string())); } #[test] fn test_decode_enum() { let value: Animal = super::decode("\"Dog\"").unwrap(); assert_eq!(value, Dog); let s = "{\"variant\":\"Frog\",\"fields\":[\"Henry\",349]}"; let value: Animal = super::decode(s).unwrap(); assert_eq!(value, Frog("Henry".to_string(), 349)); } #[test] fn test_decode_map() { let s = "{\"a\": \"Dog\", \"b\": {\"variant\":\"Frog\",\ \"fields\":[\"Henry\", 349]}}"; let mut map: BTreeMap = super::decode(s).unwrap(); assert_eq!(map.remove(&"a".to_string()), Some(Dog)); assert_eq!(map.remove(&"b".to_string()), Some(Frog("Henry".to_string(), 349))); } #[test] fn test_multiline_errors() { assert_eq!(from_str("{\n \"foo\":\n \"bar\""), Err(SyntaxError(EOFWhileParsingObject, 3u, 8u))); } #[derive(RustcDecodable)] #[allow(dead_code)] struct DecodeStruct { x: f64, y: bool, z: string::String, w: Vec } #[derive(RustcDecodable)] enum DecodeEnum { A(f64), B(string::String) } fn check_err(to_parse: &'static str, expected: DecoderError) { let res: DecodeResult = match from_str(to_parse) { Err(e) => Err(ParseError(e)), Ok(json) => Decodable::decode(&mut Decoder::new(json)) }; match res { Ok(_) => panic!("`{}` parsed & decoded ok, expecting error `{}`", to_parse, expected), Err(ParseError(e)) => panic!("`{}` is not valid json: {}", to_parse, e), Err(e) => { assert_eq!(e, expected); } } } #[test] fn test_decode_errors_struct() { check_err::("[]", ExpectedError("Object".to_string(), "[]".to_string())); check_err::("{\"x\": true, \"y\": true, \"z\": \"\", \"w\": []}", ExpectedError("Number".to_string(), "true".to_string())); check_err::("{\"x\": 1, \"y\": [], \"z\": \"\", \"w\": []}", ExpectedError("Boolean".to_string(), "[]".to_string())); check_err::("{\"x\": 1, \"y\": true, \"z\": {}, \"w\": []}", ExpectedError("String".to_string(), "{}".to_string())); check_err::("{\"x\": 1, \"y\": true, \"z\": \"\", \"w\": null}", ExpectedError("Array".to_string(), "null".to_string())); check_err::("{\"x\": 1, \"y\": true, \"z\": \"\"}", MissingFieldError("w".to_string())); } #[test] fn test_decode_errors_enum() { check_err::("{}", MissingFieldError("variant".to_string())); check_err::("{\"variant\": 1}", ExpectedError("String".to_string(), "1".to_string())); check_err::("{\"variant\": \"A\"}", MissingFieldError("fields".to_string())); check_err::("{\"variant\": \"A\", \"fields\": null}", ExpectedError("Array".to_string(), "null".to_string())); check_err::("{\"variant\": \"C\", \"fields\": []}", UnknownVariantError("C".to_string())); } #[test] fn test_find(){ let json_value = from_str("{\"dog\" : \"cat\"}").unwrap(); let found_str = json_value.find("dog"); assert!(found_str.unwrap().as_string().unwrap() == "cat"); } #[test] fn test_find_path(){ let json_value = from_str("{\"dog\":{\"cat\": {\"mouse\" : \"cheese\"}}}").unwrap(); let found_str = json_value.find_path(&["dog", "cat", "mouse"]); assert!(found_str.unwrap().as_string().unwrap() == "cheese"); } #[test] fn test_search(){ let json_value = from_str("{\"dog\":{\"cat\": {\"mouse\" : \"cheese\"}}}").unwrap(); let found_str = json_value.search("mouse").and_then(|j| j.as_string()); assert!(found_str.unwrap() == "cheese"); } #[test] fn test_index(){ let json_value = from_str("{\"animals\":[\"dog\",\"cat\",\"mouse\"]}").unwrap(); let ref array = json_value["animals"]; assert_eq!(array[0].as_string().unwrap(), "dog"); assert_eq!(array[1].as_string().unwrap(), "cat"); assert_eq!(array[2].as_string().unwrap(), "mouse"); } #[test] fn test_is_object(){ let json_value = from_str("{}").unwrap(); assert!(json_value.is_object()); } #[test] fn test_as_object(){ let json_value = from_str("{}").unwrap(); let json_object = json_value.as_object(); assert!(json_object.is_some()); } #[test] fn test_is_array(){ let json_value = from_str("[1, 2, 3]").unwrap(); assert!(json_value.is_array()); } #[test] fn test_as_array(){ let json_value = from_str("[1, 2, 3]").unwrap(); let json_array = json_value.as_array(); let expected_length = 3; assert!(json_array.is_some() && json_array.unwrap().len() == expected_length); } #[test] fn test_is_string(){ let json_value = from_str("\"dog\"").unwrap(); assert!(json_value.is_string()); } #[test] fn test_as_string(){ let json_value = from_str("\"dog\"").unwrap(); let json_str = json_value.as_string(); let expected_str = "dog"; assert_eq!(json_str, Some(expected_str)); } #[test] fn test_is_number(){ let json_value = from_str("12").unwrap(); assert!(json_value.is_number()); } #[test] fn test_is_i64(){ let json_value = from_str("-12").unwrap(); assert!(json_value.is_i64()); let json_value = from_str("12").unwrap(); assert!(!json_value.is_i64()); let json_value = from_str("12.0").unwrap(); assert!(!json_value.is_i64()); } #[test] fn test_is_u64(){ let json_value = from_str("12").unwrap(); assert!(json_value.is_u64()); let json_value = from_str("-12").unwrap(); assert!(!json_value.is_u64()); let json_value = from_str("12.0").unwrap(); assert!(!json_value.is_u64()); } #[test] fn test_is_f64(){ let json_value = from_str("12").unwrap(); assert!(!json_value.is_f64()); let json_value = from_str("-12").unwrap(); assert!(!json_value.is_f64()); let json_value = from_str("12.0").unwrap(); assert!(json_value.is_f64()); let json_value = from_str("-12.0").unwrap(); assert!(json_value.is_f64()); } #[test] fn test_as_i64(){ let json_value = from_str("-12").unwrap(); let json_num = json_value.as_i64(); assert_eq!(json_num, Some(-12)); } #[test] fn test_as_u64(){ let json_value = from_str("12").unwrap(); let json_num = json_value.as_u64(); assert_eq!(json_num, Some(12)); } #[test] fn test_as_f64(){ let json_value = from_str("12.0").unwrap(); let json_num = json_value.as_f64(); assert_eq!(json_num, Some(12f64)); } #[test] fn test_is_boolean(){ let json_value = from_str("false").unwrap(); assert!(json_value.is_boolean()); } #[test] fn test_as_boolean(){ let json_value = from_str("false").unwrap(); let json_bool = json_value.as_boolean(); let expected_bool = false; assert!(json_bool.is_some() && json_bool.unwrap() == expected_bool); } #[test] fn test_is_null(){ let json_value = from_str("null").unwrap(); assert!(json_value.is_null()); } #[test] fn test_as_null(){ let json_value = from_str("null").unwrap(); let json_null = json_value.as_null(); let expected_null = (); assert!(json_null.is_some() && json_null.unwrap() == expected_null); } #[test] fn test_encode_hashmap_with_numeric_key() { use std::str::from_utf8; use std::io::Writer; use std::collections::HashMap; let mut hm: HashMap = HashMap::new(); hm.insert(1, true); let mut mem_buf = Vec::new(); write!(&mut mem_buf, "{}", super::as_pretty_json(&hm)).unwrap(); let json_str = from_utf8(mem_buf[]).unwrap(); match from_str(json_str) { Err(_) => panic!("Unable to parse json_str: {}", json_str), _ => {} // it parsed and we are good to go } } #[test] fn test_prettyencode_hashmap_with_numeric_key() { use std::str::from_utf8; use std::io::Writer; use std::collections::HashMap; let mut hm: HashMap = HashMap::new(); hm.insert(1, true); let mut mem_buf = Vec::new(); write!(&mut mem_buf, "{}", super::as_pretty_json(&hm)).unwrap(); let json_str = from_utf8(mem_buf[]).unwrap(); match from_str(json_str) { Err(_) => panic!("Unable to parse json_str: {}", json_str), _ => {} // it parsed and we are good to go } } #[test] fn test_prettyencoder_indent_level_param() { use std::str::from_utf8; use std::collections::BTreeMap; let mut tree = BTreeMap::new(); tree.insert("hello".to_string(), String("guten tag".to_string())); tree.insert("goodbye".to_string(), String("sayonara".to_string())); let json = Array( // The following layout below should look a lot like // the pretty-printed JSON (indent * x) vec! ( // 0x String("greetings".to_string()), // 1x Object(tree), // 1x + 2x + 2x + 1x ) // 0x // End JSON array (7 lines) ); // Helper function for counting indents fn indents(source: &str) -> uint { let trimmed = source.trim_left_matches(' '); source.len() - trimmed.len() } // Test up to 4 spaces of indents (more?) for i in range(0, 4u) { let mut writer = Vec::new(); write!(&mut writer, "{}", super::as_pretty_json(&json).indent(i)).unwrap(); let printed = from_utf8(writer[]).unwrap(); // Check for indents at each line let lines: Vec<&str> = printed.lines().collect(); assert_eq!(lines.len(), 7); // JSON should be 7 lines assert_eq!(indents(lines[0]), 0 * i); // [ assert_eq!(indents(lines[1]), 1 * i); // "greetings", assert_eq!(indents(lines[2]), 1 * i); // { assert_eq!(indents(lines[3]), 2 * i); // "hello": "guten tag", assert_eq!(indents(lines[4]), 2 * i); // "goodbye": "sayonara" assert_eq!(indents(lines[5]), 1 * i); // }, assert_eq!(indents(lines[6]), 0 * i); // ] // Finally, test that the pretty-printed JSON is valid from_str(printed).ok().expect("Pretty-printed JSON is invalid!"); } } #[test] fn test_hashmap_with_numeric_key_can_handle_double_quote_delimited_key() { use std::collections::HashMap; use Decodable; let json_str = "{\"1\":true}"; let json_obj = match from_str(json_str) { Err(_) => panic!("Unable to parse json_str: {}", json_str), Ok(o) => o }; let mut decoder = Decoder::new(json_obj); let _hm: HashMap = Decodable::decode(&mut decoder).unwrap(); } #[test] fn test_hashmap_with_numeric_key_will_error_with_string_keys() { use std::collections::HashMap; use Decodable; let json_str = "{\"a\":true}"; let json_obj = match from_str(json_str) { Err(_) => panic!("Unable to parse json_str: {}", json_str), Ok(o) => o }; let mut decoder = Decoder::new(json_obj); let result: Result, DecoderError> = Decodable::decode(&mut decoder); assert_eq!(result, Err(ExpectedError("Number".to_string(), "a".to_string()))); } fn assert_stream_equal(src: &str, expected: Vec<(JsonEvent, Vec)>) { let mut parser = Parser::new(src.chars()); let mut i = 0; loop { let evt = match parser.next() { Some(e) => e, None => { break; } }; let (ref expected_evt, ref expected_stack) = expected[i]; if !parser.stack().is_equal_to(expected_stack.as_slice()) { panic!("Parser stack is not equal to {}", expected_stack); } assert_eq!(&evt, expected_evt); i+=1; } } #[test] #[cfg_attr(target_word_size = "32", ignore)] // FIXME(#14064) fn test_streaming_parser() { assert_stream_equal( r#"{ "foo":"bar", "array" : [0, 1, 2, 3, 4, 5], "idents":[null,true,false]}"#, vec![ (ObjectStart, vec![]), (StringValue("bar".to_string()), vec![Key("foo")]), (ArrayStart, vec![Key("array")]), (U64Value(0), vec![Key("array"), Index(0)]), (U64Value(1), vec![Key("array"), Index(1)]), (U64Value(2), vec![Key("array"), Index(2)]), (U64Value(3), vec![Key("array"), Index(3)]), (U64Value(4), vec![Key("array"), Index(4)]), (U64Value(5), vec![Key("array"), Index(5)]), (ArrayEnd, vec![Key("array")]), (ArrayStart, vec![Key("idents")]), (NullValue, vec![Key("idents"), Index(0)]), (BooleanValue(true), vec![Key("idents"), Index(1)]), (BooleanValue(false), vec![Key("idents"), Index(2)]), (ArrayEnd, vec![Key("idents")]), (ObjectEnd, vec![]), ] ); } fn last_event(src: &str) -> JsonEvent { let mut parser = Parser::new(src.chars()); let mut evt = NullValue; loop { evt = match parser.next() { Some(e) => e, None => return evt, } } } #[test] #[cfg_attr(target_word_size = "32", ignore)] // FIXME(#14064) fn test_read_object_streaming() { assert_eq!(last_event("{ "), Error(SyntaxError(EOFWhileParsingObject, 1, 3))); assert_eq!(last_event("{1"), Error(SyntaxError(KeyMustBeAString, 1, 2))); assert_eq!(last_event("{ \"a\""), Error(SyntaxError(EOFWhileParsingObject, 1, 6))); assert_eq!(last_event("{\"a\""), Error(SyntaxError(EOFWhileParsingObject, 1, 5))); assert_eq!(last_event("{\"a\" "), Error(SyntaxError(EOFWhileParsingObject, 1, 6))); assert_eq!(last_event("{\"a\" 1"), Error(SyntaxError(ExpectedColon, 1, 6))); assert_eq!(last_event("{\"a\":"), Error(SyntaxError(EOFWhileParsingValue, 1, 6))); assert_eq!(last_event("{\"a\":1"), Error(SyntaxError(EOFWhileParsingObject, 1, 7))); assert_eq!(last_event("{\"a\":1 1"), Error(SyntaxError(InvalidSyntax, 1, 8))); assert_eq!(last_event("{\"a\":1,"), Error(SyntaxError(EOFWhileParsingObject, 1, 8))); assert_eq!(last_event("{\"a\":1,}"), Error(SyntaxError(TrailingComma, 1, 8))); assert_stream_equal( "{}", vec![(ObjectStart, vec![]), (ObjectEnd, vec![])] ); assert_stream_equal( "{\"a\": 3}", vec![ (ObjectStart, vec![]), (U64Value(3), vec![Key("a")]), (ObjectEnd, vec![]), ] ); assert_stream_equal( "{ \"a\": null, \"b\" : true }", vec![ (ObjectStart, vec![]), (NullValue, vec![Key("a")]), (BooleanValue(true), vec![Key("b")]), (ObjectEnd, vec![]), ] ); assert_stream_equal( "{\"a\" : 1.0 ,\"b\": [ true ]}", vec![ (ObjectStart, vec![]), (F64Value(1.0), vec![Key("a")]), (ArrayStart, vec![Key("b")]), (BooleanValue(true),vec![Key("b"), Index(0)]), (ArrayEnd, vec![Key("b")]), (ObjectEnd, vec![]), ] ); assert_stream_equal( r#"{ "a": 1.0, "b": [ true, "foo\nbar", { "c": {"d": null} } ] }"#, vec![ (ObjectStart, vec![]), (F64Value(1.0), vec![Key("a")]), (ArrayStart, vec![Key("b")]), (BooleanValue(true), vec![Key("b"), Index(0)]), (StringValue("foo\nbar".to_string()), vec![Key("b"), Index(1)]), (ObjectStart, vec![Key("b"), Index(2)]), (ObjectStart, vec![Key("b"), Index(2), Key("c")]), (NullValue, vec![Key("b"), Index(2), Key("c"), Key("d")]), (ObjectEnd, vec![Key("b"), Index(2), Key("c")]), (ObjectEnd, vec![Key("b"), Index(2)]), (ArrayEnd, vec![Key("b")]), (ObjectEnd, vec![]), ] ); } #[test] #[cfg_attr(target_word_size = "32", ignore)] // FIXME(#14064) fn test_read_array_streaming() { assert_stream_equal( "[]", vec![ (ArrayStart, vec![]), (ArrayEnd, vec![]), ] ); assert_stream_equal( "[ ]", vec![ (ArrayStart, vec![]), (ArrayEnd, vec![]), ] ); assert_stream_equal( "[true]", vec![ (ArrayStart, vec![]), (BooleanValue(true), vec![Index(0)]), (ArrayEnd, vec![]), ] ); assert_stream_equal( "[ false ]", vec![ (ArrayStart, vec![]), (BooleanValue(false), vec![Index(0)]), (ArrayEnd, vec![]), ] ); assert_stream_equal( "[null]", vec![ (ArrayStart, vec![]), (NullValue, vec![Index(0)]), (ArrayEnd, vec![]), ] ); assert_stream_equal( "[3, 1]", vec![ (ArrayStart, vec![]), (U64Value(3), vec![Index(0)]), (U64Value(1), vec![Index(1)]), (ArrayEnd, vec![]), ] ); assert_stream_equal( "\n[3, 2]\n", vec![ (ArrayStart, vec![]), (U64Value(3), vec![Index(0)]), (U64Value(2), vec![Index(1)]), (ArrayEnd, vec![]), ] ); assert_stream_equal( "[2, [4, 1]]", vec![ (ArrayStart, vec![]), (U64Value(2), vec![Index(0)]), (ArrayStart, vec![Index(1)]), (U64Value(4), vec![Index(1), Index(0)]), (U64Value(1), vec![Index(1), Index(1)]), (ArrayEnd, vec![Index(1)]), (ArrayEnd, vec![]), ] ); assert_eq!(last_event("["), Error(SyntaxError(EOFWhileParsingValue, 1, 2))); assert_eq!(from_str("["), Err(SyntaxError(EOFWhileParsingValue, 1, 2))); assert_eq!(from_str("[1"), Err(SyntaxError(EOFWhileParsingArray, 1, 3))); assert_eq!(from_str("[1,"), Err(SyntaxError(EOFWhileParsingValue, 1, 4))); assert_eq!(from_str("[1,]"), Err(SyntaxError(InvalidSyntax, 1, 4))); assert_eq!(from_str("[6 7]"), Err(SyntaxError(InvalidSyntax, 1, 4))); } #[test] fn test_trailing_characters_streaming() { assert_eq!(last_event("nulla"), Error(SyntaxError(TrailingCharacters, 1, 5))); assert_eq!(last_event("truea"), Error(SyntaxError(TrailingCharacters, 1, 5))); assert_eq!(last_event("falsea"), Error(SyntaxError(TrailingCharacters, 1, 6))); assert_eq!(last_event("1a"), Error(SyntaxError(TrailingCharacters, 1, 2))); assert_eq!(last_event("[]a"), Error(SyntaxError(TrailingCharacters, 1, 3))); assert_eq!(last_event("{}a"), Error(SyntaxError(TrailingCharacters, 1, 3))); } #[test] fn test_read_identifiers_streaming() { assert_eq!(Parser::new("null".chars()).next(), Some(NullValue)); assert_eq!(Parser::new("true".chars()).next(), Some(BooleanValue(true))); assert_eq!(Parser::new("false".chars()).next(), Some(BooleanValue(false))); assert_eq!(last_event("n"), Error(SyntaxError(InvalidSyntax, 1, 2))); assert_eq!(last_event("nul"), Error(SyntaxError(InvalidSyntax, 1, 4))); assert_eq!(last_event("t"), Error(SyntaxError(InvalidSyntax, 1, 2))); assert_eq!(last_event("truz"), Error(SyntaxError(InvalidSyntax, 1, 4))); assert_eq!(last_event("f"), Error(SyntaxError(InvalidSyntax, 1, 2))); assert_eq!(last_event("faz"), Error(SyntaxError(InvalidSyntax, 1, 3))); } #[test] fn test_stack() { let mut stack = Stack::new(); assert!(stack.is_empty()); assert!(stack.len() == 0); assert!(!stack.last_is_index()); stack.push_index(0); stack.bump_index(); assert!(stack.len() == 1); assert!(stack.is_equal_to(&[Index(1)])); assert!(stack.starts_with(&[Index(1)])); assert!(stack.ends_with(&[Index(1)])); assert!(stack.last_is_index()); assert!(stack.get(0) == Index(1)); stack.push_key("foo".to_string()); assert!(stack.len() == 2); assert!(stack.is_equal_to(&[Index(1), Key("foo")])); assert!(stack.starts_with(&[Index(1), Key("foo")])); assert!(stack.starts_with(&[Index(1)])); assert!(stack.ends_with(&[Index(1), Key("foo")])); assert!(stack.ends_with(&[Key("foo")])); assert!(!stack.last_is_index()); assert!(stack.get(0) == Index(1)); assert!(stack.get(1) == Key("foo")); stack.push_key("bar".to_string()); assert!(stack.len() == 3); assert!(stack.is_equal_to(&[Index(1), Key("foo"), Key("bar")])); assert!(stack.starts_with(&[Index(1)])); assert!(stack.starts_with(&[Index(1), Key("foo")])); assert!(stack.starts_with(&[Index(1), Key("foo"), Key("bar")])); assert!(stack.ends_with(&[Key("bar")])); assert!(stack.ends_with(&[Key("foo"), Key("bar")])); assert!(stack.ends_with(&[Index(1), Key("foo"), Key("bar")])); assert!(!stack.last_is_index()); assert!(stack.get(0) == Index(1)); assert!(stack.get(1) == Key("foo")); assert!(stack.get(2) == Key("bar")); stack.pop(); assert!(stack.len() == 2); assert!(stack.is_equal_to(&[Index(1), Key("foo")])); assert!(stack.starts_with(&[Index(1), Key("foo")])); assert!(stack.starts_with(&[Index(1)])); assert!(stack.ends_with(&[Index(1), Key("foo")])); assert!(stack.ends_with(&[Key("foo")])); assert!(!stack.last_is_index()); assert!(stack.get(0) == Index(1)); assert!(stack.get(1) == Key("foo")); } #[test] fn test_to_json() { use std::collections::{HashMap,BTreeMap}; use super::ToJson; let array2 = Array(vec!(U64(1), U64(2))); let array3 = Array(vec!(U64(1), U64(2), U64(3))); let object = { let mut tree_map = BTreeMap::new(); tree_map.insert("a".to_string(), U64(1)); tree_map.insert("b".to_string(), U64(2)); Object(tree_map) }; assert_eq!(array2.to_json(), array2); assert_eq!(object.to_json(), object); assert_eq!(3_i.to_json(), I64(3)); assert_eq!(4_i8.to_json(), I64(4)); assert_eq!(5_i16.to_json(), I64(5)); assert_eq!(6_i32.to_json(), I64(6)); assert_eq!(7_i64.to_json(), I64(7)); assert_eq!(8_u.to_json(), U64(8)); assert_eq!(9_u8.to_json(), U64(9)); assert_eq!(10_u16.to_json(), U64(10)); assert_eq!(11_u32.to_json(), U64(11)); assert_eq!(12_u64.to_json(), U64(12)); assert_eq!(13.0_f32.to_json(), F64(13.0_f64)); assert_eq!(14.0_f64.to_json(), F64(14.0_f64)); assert_eq!(().to_json(), Null); assert_eq!(f32::INFINITY.to_json(), Null); assert_eq!(f64::NAN.to_json(), Null); assert_eq!(true.to_json(), Boolean(true)); assert_eq!(false.to_json(), Boolean(false)); assert_eq!("abc".to_json(), String("abc".to_string())); assert_eq!("abc".to_string().to_json(), String("abc".to_string())); assert_eq!((1u, 2u).to_json(), array2); assert_eq!((1u, 2u, 3u).to_json(), array3); assert_eq!([1u, 2].to_json(), array2); assert_eq!((&[1u, 2, 3]).to_json(), array3); assert_eq!((vec![1u, 2]).to_json(), array2); assert_eq!(vec!(1u, 2, 3).to_json(), array3); let mut tree_map = BTreeMap::new(); tree_map.insert("a".to_string(), 1u); tree_map.insert("b".to_string(), 2); assert_eq!(tree_map.to_json(), object); let mut hash_map = HashMap::new(); hash_map.insert("a".to_string(), 1u); hash_map.insert("b".to_string(), 2); assert_eq!(hash_map.to_json(), object); assert_eq!(Some(15i).to_json(), I64(15)); assert_eq!(Some(15u).to_json(), U64(15)); assert_eq!(None::.to_json(), Null); } #[bench] fn bench_streaming_small(b: &mut Bencher) { b.iter( || { let mut parser = Parser::new( r#"{ "a": 1.0, "b": [ true, "foo\nbar", { "c": {"d": null} } ] }"#.chars() ); loop { match parser.next() { None => return, _ => {} } } }); } #[bench] fn bench_small(b: &mut Bencher) { b.iter( || { let _ = from_str(r#"{ "a": 1.0, "b": [ true, "foo\nbar", { "c": {"d": null} } ] }"#); }); } fn big_json() -> string::String { let mut src = "[\n".to_string(); for _ in range(0i, 500) { src.push_str(r#"{ "a": true, "b": null, "c":3.1415, "d": "Hello world", "e": \ [1,2,3]},"#); } src.push_str("{}]"); return src; } #[bench] fn bench_streaming_large(b: &mut Bencher) { let src = big_json(); b.iter( || { let mut parser = Parser::new(src.chars()); loop { match parser.next() { None => return, _ => {} } } }); } #[bench] fn bench_large(b: &mut Bencher) { let src = big_json(); b.iter( || { let _ = from_str(src.as_slice()); }); } }