// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use abi::AbiSet; use ast::*; use ast; use codemap::Span; use parse; use opt_vec; use opt_vec::OptVec; // Context-passing AST walker. Each overridden visit method has full control // over what happens with its node, it can do its own traversal of the node's // children (potentially passing in different contexts to each), call // visit::visit_* to apply the default traversal algorithm (again, it can // override the context), or prevent deeper traversal by doing nothing. // // Note: it is an important invariant that the default visitor walks the body // of a function in "execution order" (more concretely, reverse post-order // with respect to the CFG implied by the AST), meaning that if AST node A may // execute before AST node B, then A is visited first. The borrow checker in // particular relies on this property. pub enum fn_kind<'self> { // fn foo() or extern "Abi" fn foo() fk_item_fn(Ident, &'self Generics, purity, AbiSet), // fn foo(&self) fk_method(Ident, &'self Generics, &'self method), // @fn(x, y) { ... } fk_anon(ast::Sigil), // |x, y| ... fk_fn_block, } pub fn name_of_fn(fk: &fn_kind) -> Ident { match *fk { fk_item_fn(name, _, _, _) | fk_method(name, _, _) => { name } fk_anon(*) | fk_fn_block(*) => parse::token::special_idents::anon, } } pub fn generics_of_fn(fk: &fn_kind) -> Generics { match *fk { fk_item_fn(_, generics, _, _) | fk_method(_, generics, _) => { (*generics).clone() } fk_anon(*) | fk_fn_block(*) => { Generics { lifetimes: opt_vec::Empty, ty_params: opt_vec::Empty, } } } } pub trait Visitor { fn visit_mod(&mut self, m:&_mod, _s:Span, _n:NodeId, e:E) { walk_mod(self, m, e) } fn visit_view_item(&mut self, i:&view_item, e:E) { walk_view_item(self, i, e) } fn visit_foreign_item(&mut self, i:@foreign_item, e:E) { walk_foreign_item(self, i, e) } fn visit_item(&mut self, i:@item, e:E) { walk_item(self, i, e) } fn visit_local(&mut self, l:@Local, e:E) { walk_local(self, l, e) } fn visit_block(&mut self, b:&Block, e:E) { walk_block(self, b, e) } fn visit_stmt(&mut self, s:@Stmt, e:E) { walk_stmt(self, s, e) } fn visit_arm(&mut self, a:&Arm, e:E) { walk_arm(self, a, e) } fn visit_pat(&mut self, p:@Pat, e:E) { walk_pat(self, p, e) } fn visit_decl(&mut self, d:@Decl, e:E) { walk_decl(self, d, e) } fn visit_expr(&mut self, ex:@Expr, e:E) { walk_expr(self, ex, e) } fn visit_expr_post(&mut self, _ex:@Expr, _e:E) { } fn visit_ty(&mut self, _t:&Ty, _e:E) { } fn visit_generics(&mut self, g:&Generics, e:E) { walk_generics(self, g, e) } fn visit_fn(&mut self, fk:&fn_kind, fd:&fn_decl, b:&Block, s:Span, n:NodeId, e:E) { walk_fn(self, fk, fd, b, s, n , e) } fn visit_ty_method(&mut self, t:&TypeMethod, e:E) { walk_ty_method(self, t, e) } fn visit_trait_method(&mut self, t:&trait_method, e:E) { walk_trait_method(self, t, e) } fn visit_struct_def(&mut self, s:@struct_def, i:Ident, g:&Generics, n:NodeId, e:E) { walk_struct_def(self, s, i, g, n, e) } fn visit_struct_field(&mut self, s:@struct_field, e:E) { walk_struct_field(self, s, e) } fn visit_opt_lifetime_ref(&mut self, _span: Span, opt_lifetime: &Option, env: E) { /*! * Visits an optional reference to a lifetime. The `span` is * the span of some surrounding reference should opt_lifetime * be None. */ match *opt_lifetime { Some(ref l) => self.visit_lifetime_ref(l, env), None => () } } fn visit_lifetime_ref(&mut self, _lifetime: &Lifetime, _e: E) { /*! Visits a reference to a lifetime */ } fn visit_lifetime_decl(&mut self, _lifetime: &Lifetime, _e: E) { /*! Visits a declaration of a lifetime */ } fn visit_explicit_self(&mut self, es: &explicit_self, e: E) { walk_explicit_self(self, es, e) } fn visit_mac(&mut self, macro:&mac, e:E) { walk_mac(self, macro, e) } } pub fn walk_crate>(visitor: &mut V, crate: &Crate, env: E) { visitor.visit_mod(&crate.module, crate.span, CRATE_NODE_ID, env) } pub fn walk_mod>(visitor: &mut V, module: &_mod, env: E) { for view_item in module.view_items.iter() { visitor.visit_view_item(view_item, env.clone()) } for item in module.items.iter() { visitor.visit_item(*item, env.clone()) } } pub fn walk_view_item>(_: &mut V, _: &view_item, _: E) { // Empty! } pub fn walk_local>(visitor: &mut V, local: &Local, env: E) { visitor.visit_pat(local.pat, env.clone()); visitor.visit_ty(&local.ty, env.clone()); match local.init { None => {} Some(initializer) => visitor.visit_expr(initializer, env), } } fn walk_explicit_self>(visitor: &mut V, explicit_self: &explicit_self, env: E) { match explicit_self.node { sty_static | sty_value(_) | sty_box(_) | sty_uniq(_) => { } sty_region(ref lifetime, _) => { visitor.visit_opt_lifetime_ref(explicit_self.span, lifetime, env) } } } fn walk_trait_ref>(visitor: &mut V, trait_ref: &ast::trait_ref, env: E) { walk_path(visitor, &trait_ref.path, env) } pub fn walk_item>(visitor: &mut V, item: &item, env: E) { match item.node { item_static(ref typ, _, expr) => { visitor.visit_ty(typ, env.clone()); visitor.visit_expr(expr, env); } item_fn(ref declaration, purity, abi, ref generics, ref body) => { visitor.visit_fn(&fk_item_fn(item.ident, generics, purity, abi), declaration, body, item.span, item.id, env) } item_mod(ref module) => { visitor.visit_mod(module, item.span, item.id, env) } item_foreign_mod(ref foreign_module) => { for view_item in foreign_module.view_items.iter() { visitor.visit_view_item(view_item, env.clone()) } for foreign_item in foreign_module.items.iter() { visitor.visit_foreign_item(*foreign_item, env.clone()) } } item_ty(ref typ, ref type_parameters) => { visitor.visit_ty(typ, env.clone()); visitor.visit_generics(type_parameters, env) } item_enum(ref enum_definition, ref type_parameters) => { visitor.visit_generics(type_parameters, env.clone()); walk_enum_def(visitor, enum_definition, type_parameters, env) } item_impl(ref type_parameters, ref trait_references, ref typ, ref methods) => { visitor.visit_generics(type_parameters, env.clone()); for trait_reference in trait_references.iter() { walk_trait_ref(visitor, trait_reference, env.clone()) } visitor.visit_ty(typ, env.clone()); for method in methods.iter() { walk_method_helper(visitor, *method, env.clone()) } } item_struct(struct_definition, ref generics) => { visitor.visit_generics(generics, env.clone()); visitor.visit_struct_def(struct_definition, item.ident, generics, item.id, env) } item_trait(ref generics, ref trait_paths, ref methods) => { visitor.visit_generics(generics, env.clone()); for trait_path in trait_paths.iter() { walk_path(visitor, &trait_path.path, env.clone()) } for method in methods.iter() { visitor.visit_trait_method(method, env.clone()) } } item_mac(ref macro) => visitor.visit_mac(macro, env), } } pub fn walk_enum_def>(visitor: &mut V, enum_definition: &ast::enum_def, generics: &Generics, env: E) { for variant in enum_definition.variants.iter() { match variant.node.kind { tuple_variant_kind(ref variant_arguments) => { for variant_argument in variant_arguments.iter() { visitor.visit_ty(&variant_argument.ty, env.clone()) } } struct_variant_kind(struct_definition) => { visitor.visit_struct_def(struct_definition, variant.node.name, generics, variant.node.id, env.clone()) } } } } pub fn skip_ty>(_: &mut V, _: &Ty, _: E) { // Empty! } pub fn walk_ty>(visitor: &mut V, typ: &Ty, env: E) { match typ.node { ty_box(ref mutable_type) | ty_uniq(ref mutable_type) | ty_vec(ref mutable_type) | ty_ptr(ref mutable_type) => { visitor.visit_ty(mutable_type.ty, env) } ty_rptr(ref lifetime, ref mutable_type) => { visitor.visit_opt_lifetime_ref(typ.span, lifetime, env.clone()); visitor.visit_ty(mutable_type.ty, env) } ty_tup(ref tuple_element_types) => { for tuple_element_type in tuple_element_types.iter() { visitor.visit_ty(tuple_element_type, env.clone()) } } ty_closure(ref function_declaration) => { for argument in function_declaration.decl.inputs.iter() { visitor.visit_ty(&argument.ty, env.clone()) } visitor.visit_ty(&function_declaration.decl.output, env.clone()); for bounds in function_declaration.bounds.iter() { walk_ty_param_bounds(visitor, bounds, env.clone()) } visitor.visit_opt_lifetime_ref( typ.span, &function_declaration.region, env.clone()); walk_lifetime_decls(visitor, &function_declaration.lifetimes, env.clone()); } ty_bare_fn(ref function_declaration) => { for argument in function_declaration.decl.inputs.iter() { visitor.visit_ty(&argument.ty, env.clone()) } visitor.visit_ty(&function_declaration.decl.output, env.clone()); walk_lifetime_decls(visitor, &function_declaration.lifetimes, env.clone()); } ty_path(ref path, ref bounds, _) => { walk_path(visitor, path, env.clone()); for bounds in bounds.iter() { walk_ty_param_bounds(visitor, bounds, env.clone()) } } ty_fixed_length_vec(ref mutable_type, expression) => { visitor.visit_ty(mutable_type.ty, env.clone()); visitor.visit_expr(expression, env) } ty_typeof(expression) => { visitor.visit_expr(expression, env) } ty_nil | ty_bot | ty_mac(_) | ty_infer => () } } fn walk_lifetime_decls>(visitor: &mut V, lifetimes: &OptVec, env: E) { for l in lifetimes.iter() { visitor.visit_lifetime_decl(l, env.clone()); } } pub fn walk_path>(visitor: &mut V, path: &Path, env: E) { for segment in path.segments.iter() { for typ in segment.types.iter() { visitor.visit_ty(typ, env.clone()); } for lifetime in segment.lifetimes.iter() { visitor.visit_lifetime_ref(lifetime, env.clone()); } } } pub fn walk_pat>(visitor: &mut V, pattern: &Pat, env: E) { match pattern.node { PatEnum(ref path, ref children) => { walk_path(visitor, path, env.clone()); for children in children.iter() { for child in children.iter() { visitor.visit_pat(*child, env.clone()) } } } PatStruct(ref path, ref fields, _) => { walk_path(visitor, path, env.clone()); for field in fields.iter() { visitor.visit_pat(field.pat, env.clone()) } } PatTup(ref tuple_elements) => { for tuple_element in tuple_elements.iter() { visitor.visit_pat(*tuple_element, env.clone()) } } PatBox(subpattern) | PatUniq(subpattern) | PatRegion(subpattern) => { visitor.visit_pat(subpattern, env) } PatIdent(_, ref path, ref optional_subpattern) => { walk_path(visitor, path, env.clone()); match *optional_subpattern { None => {} Some(subpattern) => visitor.visit_pat(subpattern, env), } } PatLit(expression) => visitor.visit_expr(expression, env), PatRange(lower_bound, upper_bound) => { visitor.visit_expr(lower_bound, env.clone()); visitor.visit_expr(upper_bound, env) } PatWild => (), PatVec(ref prepattern, ref slice_pattern, ref postpatterns) => { for prepattern in prepattern.iter() { visitor.visit_pat(*prepattern, env.clone()) } for slice_pattern in slice_pattern.iter() { visitor.visit_pat(*slice_pattern, env.clone()) } for postpattern in postpatterns.iter() { visitor.visit_pat(*postpattern, env.clone()) } } } } pub fn walk_foreign_item>(visitor: &mut V, foreign_item: &foreign_item, env: E) { match foreign_item.node { foreign_item_fn(ref function_declaration, ref generics) => { walk_fn_decl(visitor, function_declaration, env.clone()); visitor.visit_generics(generics, env) } foreign_item_static(ref typ, _) => visitor.visit_ty(typ, env), } } pub fn walk_ty_param_bounds>(visitor: &mut V, bounds: &OptVec, env: E) { for bound in bounds.iter() { match *bound { TraitTyParamBound(ref typ) => { walk_trait_ref(visitor, typ, env.clone()) } RegionTyParamBound => {} } } } pub fn walk_generics>(visitor: &mut V, generics: &Generics, env: E) { for type_parameter in generics.ty_params.iter() { walk_ty_param_bounds(visitor, &type_parameter.bounds, env.clone()) } walk_lifetime_decls(visitor, &generics.lifetimes, env); } pub fn walk_fn_decl>(visitor: &mut V, function_declaration: &fn_decl, env: E) { for argument in function_declaration.inputs.iter() { visitor.visit_pat(argument.pat, env.clone()); visitor.visit_ty(&argument.ty, env.clone()) } visitor.visit_ty(&function_declaration.output, env) } // Note: there is no visit_method() method in the visitor, instead override // visit_fn() and check for fk_method(). I named this visit_method_helper() // because it is not a default impl of any method, though I doubt that really // clarifies anything. - Niko pub fn walk_method_helper>(visitor: &mut V, method: &method, env: E) { visitor.visit_fn(&fk_method(method.ident, &method.generics, method), &method.decl, &method.body, method.span, method.id, env) } pub fn walk_fn>(visitor: &mut V, function_kind: &fn_kind, function_declaration: &fn_decl, function_body: &Block, _span: Span, _: NodeId, env: E) { walk_fn_decl(visitor, function_declaration, env.clone()); match *function_kind { fk_item_fn(_, generics, _, _) => { visitor.visit_generics(generics, env.clone()); } fk_method(_, generics, method) => { visitor.visit_generics(generics, env.clone()); visitor.visit_explicit_self(&method.explicit_self, env.clone()); } fk_anon(*) | fk_fn_block(*) => { } } visitor.visit_block(function_body, env) } pub fn walk_ty_method>(visitor: &mut V, method_type: &TypeMethod, env: E) { visitor.visit_explicit_self(&method_type.explicit_self, env.clone()); for argument_type in method_type.decl.inputs.iter() { visitor.visit_ty(&argument_type.ty, env.clone()) } visitor.visit_generics(&method_type.generics, env.clone()); visitor.visit_ty(&method_type.decl.output, env.clone()) } pub fn walk_trait_method>(visitor: &mut V, trait_method: &trait_method, env: E) { match *trait_method { required(ref method_type) => { visitor.visit_ty_method(method_type, env) } provided(method) => walk_method_helper(visitor, method, env), } } pub fn walk_struct_def>(visitor: &mut V, struct_definition: @struct_def, _: ast::Ident, _: &Generics, _: NodeId, env: E) { for field in struct_definition.fields.iter() { visitor.visit_struct_field(*field, env.clone()) } } pub fn walk_struct_field>(visitor: &mut V, struct_field: &struct_field, env: E) { visitor.visit_ty(&struct_field.node.ty, env) } pub fn walk_block>(visitor: &mut V, block: &Block, env: E) { for view_item in block.view_items.iter() { visitor.visit_view_item(view_item, env.clone()) } for statement in block.stmts.iter() { visitor.visit_stmt(*statement, env.clone()) } walk_expr_opt(visitor, block.expr, env) } pub fn walk_stmt>(visitor: &mut V, statement: &Stmt, env: E) { match statement.node { StmtDecl(declaration, _) => visitor.visit_decl(declaration, env), StmtExpr(expression, _) | StmtSemi(expression, _) => { visitor.visit_expr(expression, env) } StmtMac(ref macro, _) => visitor.visit_mac(macro, env), } } pub fn walk_decl>(visitor: &mut V, declaration: &Decl, env: E) { match declaration.node { DeclLocal(ref local) => visitor.visit_local(*local, env), DeclItem(item) => visitor.visit_item(item, env), } } pub fn walk_expr_opt>(visitor: &mut V, optional_expression: Option<@Expr>, env: E) { match optional_expression { None => {} Some(expression) => visitor.visit_expr(expression, env), } } pub fn walk_exprs>(visitor: &mut V, expressions: &[@Expr], env: E) { for expression in expressions.iter() { visitor.visit_expr(*expression, env.clone()) } } pub fn walk_mac>(_: &mut V, _: &mac, _: E) { // Empty! } pub fn walk_expr>(visitor: &mut V, expression: @Expr, env: E) { match expression.node { ExprVstore(subexpression, _) => { visitor.visit_expr(subexpression, env.clone()) } ExprVec(ref subexpressions, _) => { walk_exprs(visitor, *subexpressions, env.clone()) } ExprRepeat(element, count, _) => { visitor.visit_expr(element, env.clone()); visitor.visit_expr(count, env.clone()) } ExprStruct(ref path, ref fields, optional_base) => { walk_path(visitor, path, env.clone()); for field in fields.iter() { visitor.visit_expr(field.expr, env.clone()) } walk_expr_opt(visitor, optional_base, env.clone()) } ExprTup(ref subexpressions) => { for subexpression in subexpressions.iter() { visitor.visit_expr(*subexpression, env.clone()) } } ExprCall(callee_expression, ref arguments, _) => { for argument in arguments.iter() { visitor.visit_expr(*argument, env.clone()) } visitor.visit_expr(callee_expression, env.clone()) } ExprMethodCall(_, callee, _, ref types, ref arguments, _) => { walk_exprs(visitor, *arguments, env.clone()); for typ in types.iter() { visitor.visit_ty(typ, env.clone()) } visitor.visit_expr(callee, env.clone()) } ExprBinary(_, _, left_expression, right_expression) => { visitor.visit_expr(left_expression, env.clone()); visitor.visit_expr(right_expression, env.clone()) } ExprAddrOf(_, subexpression) | ExprUnary(_, _, subexpression) | ExprDoBody(subexpression) => { visitor.visit_expr(subexpression, env.clone()) } ExprLit(_) => {} ExprCast(subexpression, ref typ) => { visitor.visit_expr(subexpression, env.clone()); visitor.visit_ty(typ, env.clone()) } ExprIf(head_expression, ref if_block, optional_else) => { visitor.visit_expr(head_expression, env.clone()); visitor.visit_block(if_block, env.clone()); walk_expr_opt(visitor, optional_else, env.clone()) } ExprWhile(subexpression, ref block) => { visitor.visit_expr(subexpression, env.clone()); visitor.visit_block(block, env.clone()) } ExprForLoop(pattern, subexpression, ref block, _) => { visitor.visit_pat(pattern, env.clone()); visitor.visit_expr(subexpression, env.clone()); visitor.visit_block(block, env.clone()) } ExprLoop(ref block, _) => visitor.visit_block(block, env.clone()), ExprMatch(subexpression, ref arms) => { visitor.visit_expr(subexpression, env.clone()); for arm in arms.iter() { visitor.visit_arm(arm, env.clone()) } } ExprFnBlock(ref function_declaration, ref body) => { visitor.visit_fn(&fk_fn_block, function_declaration, body, expression.span, expression.id, env.clone()) } ExprProc(ref function_declaration, ref body) => { visitor.visit_fn(&fk_fn_block, function_declaration, body, expression.span, expression.id, env.clone()) } ExprBlock(ref block) => visitor.visit_block(block, env.clone()), ExprAssign(left_hand_expression, right_hand_expression) => { visitor.visit_expr(right_hand_expression, env.clone()); visitor.visit_expr(left_hand_expression, env.clone()) } ExprAssignOp(_, _, left_expression, right_expression) => { visitor.visit_expr(right_expression, env.clone()); visitor.visit_expr(left_expression, env.clone()) } ExprField(subexpression, _, ref types) => { visitor.visit_expr(subexpression, env.clone()); for typ in types.iter() { visitor.visit_ty(typ, env.clone()) } } ExprIndex(_, main_expression, index_expression) => { visitor.visit_expr(main_expression, env.clone()); visitor.visit_expr(index_expression, env.clone()) } ExprPath(ref path) => walk_path(visitor, path, env.clone()), ExprSelf | ExprBreak(_) | ExprAgain(_) => {} ExprRet(optional_expression) => { walk_expr_opt(visitor, optional_expression, env.clone()) } ExprLogLevel => {} ExprMac(ref macro) => visitor.visit_mac(macro, env.clone()), ExprParen(subexpression) => { visitor.visit_expr(subexpression, env.clone()) } ExprInlineAsm(ref assembler) => { for &(_, input) in assembler.inputs.iter() { visitor.visit_expr(input, env.clone()) } for &(_, output) in assembler.outputs.iter() { visitor.visit_expr(output, env.clone()) } } } visitor.visit_expr_post(expression, env.clone()) } pub fn walk_arm>(visitor: &mut V, arm: &Arm, env: E) { for pattern in arm.pats.iter() { visitor.visit_pat(*pattern, env.clone()) } walk_expr_opt(visitor, arm.guard, env.clone()); visitor.visit_block(&arm.body, env) }