use ArgumentType::*; use Position::*; use rustc_ast::ast; use rustc_ast::ptr::P; use rustc_ast::token; use rustc_ast::tokenstream::TokenStream; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_errors::{pluralize, Applicability, DiagnosticBuilder}; use rustc_expand::base::{self, *}; use rustc_parse_format as parse; use rustc_span::symbol::{sym, Ident, Symbol}; use rustc_span::{MultiSpan, Span}; use std::borrow::Cow; use std::collections::hash_map::Entry; #[derive(PartialEq)] enum ArgumentType { Placeholder(&'static str), Count, } enum Position { Exact(usize), Named(Symbol), } struct Context<'a, 'b> { ecx: &'a mut ExtCtxt<'b>, /// The macro's call site. References to unstable formatting internals must /// use this span to pass the stability checker. macsp: Span, /// The span of the format string literal. fmtsp: Span, /// List of parsed argument expressions. /// Named expressions are resolved early, and are appended to the end of /// argument expressions. /// /// Example showing the various data structures in motion: /// /// * Original: `"{foo:o} {:o} {foo:x} {0:x} {1:o} {:x} {1:x} {0:o}"` /// * Implicit argument resolution: `"{foo:o} {0:o} {foo:x} {0:x} {1:o} {1:x} {1:x} {0:o}"` /// * Name resolution: `"{2:o} {0:o} {2:x} {0:x} {1:o} {1:x} {1:x} {0:o}"` /// * `arg_types` (in JSON): `[[0, 1, 0], [0, 1, 1], [0, 1]]` /// * `arg_unique_types` (in simplified JSON): `[["o", "x"], ["o", "x"], ["o", "x"]]` /// * `names` (in JSON): `{"foo": 2}` args: Vec>, /// Placeholder slot numbers indexed by argument. arg_types: Vec>, /// Unique format specs seen for each argument. arg_unique_types: Vec>, /// Map from named arguments to their resolved indices. names: FxHashMap, /// The latest consecutive literal strings, or empty if there weren't any. literal: String, /// Collection of the compiled `rt::Argument` structures pieces: Vec>, /// Collection of string literals str_pieces: Vec>, /// Stays `true` if all formatting parameters are default (as in "{}{}"). all_pieces_simple: bool, /// Mapping between positional argument references and indices into the /// final generated static argument array. We record the starting indices /// corresponding to each positional argument, and number of references /// consumed so far for each argument, to facilitate correct `Position` /// mapping in `build_piece`. In effect this can be seen as a "flattened" /// version of `arg_unique_types`. /// /// Again with the example described above in docstring for `args`: /// /// * `arg_index_map` (in JSON): `[[0, 1, 0], [2, 3, 3], [4, 5]]` arg_index_map: Vec>, /// Starting offset of count argument slots. count_args_index_offset: usize, /// Count argument slots and tracking data structures. /// Count arguments are separately tracked for de-duplication in case /// multiple references are made to one argument. For example, in this /// format string: /// /// * Original: `"{:.*} {:.foo$} {1:.*} {:.0$}"` /// * Implicit argument resolution: `"{1:.0$} {2:.foo$} {1:.3$} {4:.0$}"` /// * Name resolution: `"{1:.0$} {2:.5$} {1:.3$} {4:.0$}"` /// * `count_positions` (in JSON): `{0: 0, 5: 1, 3: 2}` /// * `count_args`: `vec![Exact(0), Exact(5), Exact(3)]` count_args: Vec, /// Relative slot numbers for count arguments. count_positions: FxHashMap, /// Number of count slots assigned. count_positions_count: usize, /// Current position of the implicit positional arg pointer, as if it /// still existed in this phase of processing. /// Used only for `all_pieces_simple` tracking in `build_piece`. curarg: usize, /// Current piece being evaluated, used for error reporting. curpiece: usize, /// Keep track of invalid references to positional arguments. invalid_refs: Vec<(usize, usize)>, /// Spans of all the formatting arguments, in order. arg_spans: Vec, /// All the formatting arguments that have formatting flags set, in order for diagnostics. arg_with_formatting: Vec>, /// Whether this format string came from a string literal, as opposed to a macro. is_literal: bool, } /// Parses the arguments from the given list of tokens, returning the diagnostic /// if there's a parse error so we can continue parsing other format! /// expressions. /// /// If parsing succeeds, the return value is: /// /// ```text /// Some((fmtstr, parsed arguments, index map for named arguments)) /// ``` fn parse_args<'a>( ecx: &mut ExtCtxt<'a>, sp: Span, tts: TokenStream, ) -> Result<(P, Vec>, FxHashMap), DiagnosticBuilder<'a>> { let mut args = Vec::>::new(); let mut names = FxHashMap::::default(); let mut p = ecx.new_parser_from_tts(tts); if p.token == token::Eof { return Err(ecx.struct_span_err(sp, "requires at least a format string argument")); } let fmtstr = p.parse_expr()?; let mut first = true; let mut named = false; while p.token != token::Eof { if !p.eat(&token::Comma) { if first { // After `format!(""` we always expect *only* a comma... let mut err = ecx.struct_span_err(p.token.span, "expected token: `,`"); err.span_label(p.token.span, "expected `,`"); p.maybe_annotate_with_ascription(&mut err, false); return Err(err); } else { // ...after that delegate to `expect` to also include the other expected tokens. return Err(p.expect(&token::Comma).err().unwrap()); } } first = false; if p.token == token::Eof { break; } // accept trailing commas match p.token.ident() { Some((ident, _)) if p.look_ahead(1, |t| *t == token::Eq) => { named = true; p.bump(); p.expect(&token::Eq)?; let e = p.parse_expr()?; if let Some(prev) = names.get(&ident.name) { ecx.struct_span_err(e.span, &format!("duplicate argument named `{}`", ident)) .span_label(args[*prev].span, "previously here") .span_label(e.span, "duplicate argument") .emit(); continue; } // Resolve names into slots early. // Since all the positional args are already seen at this point // if the input is valid, we can simply append to the positional // args. And remember the names. let slot = args.len(); names.insert(ident.name, slot); args.push(e); } _ => { let e = p.parse_expr()?; if named { let mut err = ecx.struct_span_err( e.span, "positional arguments cannot follow named arguments", ); err.span_label(e.span, "positional arguments must be before named arguments"); for pos in names.values() { err.span_label(args[*pos].span, "named argument"); } err.emit(); } args.push(e); } } } Ok((fmtstr, args, names)) } impl<'a, 'b> Context<'a, 'b> { fn resolve_name_inplace(&self, p: &mut parse::Piece<'_>) { // NOTE: the `unwrap_or` branch is needed in case of invalid format // arguments, e.g., `format_args!("{foo}")`. let lookup = |s: Symbol| *self.names.get(&s).unwrap_or(&0); match *p { parse::String(_) => {} parse::NextArgument(ref mut arg) => { if let parse::ArgumentNamed(s) = arg.position { arg.position = parse::ArgumentIs(lookup(s)); } if let parse::CountIsName(s) = arg.format.width { arg.format.width = parse::CountIsParam(lookup(s)); } if let parse::CountIsName(s) = arg.format.precision { arg.format.precision = parse::CountIsParam(lookup(s)); } } } } /// Verifies one piece of a parse string, and remembers it if valid. /// All errors are not emitted as fatal so we can continue giving errors /// about this and possibly other format strings. fn verify_piece(&mut self, p: &parse::Piece<'_>) { match *p { parse::String(..) => {} parse::NextArgument(ref arg) => { // width/precision first, if they have implicit positional // parameters it makes more sense to consume them first. self.verify_count(arg.format.width); self.verify_count(arg.format.precision); // argument second, if it's an implicit positional parameter // it's written second, so it should come after width/precision. let pos = match arg.position { parse::ArgumentIs(i) | parse::ArgumentImplicitlyIs(i) => Exact(i), parse::ArgumentNamed(s) => Named(s), }; let ty = Placeholder(match &arg.format.ty[..] { "" => "Display", "?" => "Debug", "e" => "LowerExp", "E" => "UpperExp", "o" => "Octal", "p" => "Pointer", "b" => "Binary", "x" => "LowerHex", "X" => "UpperHex", _ => { let fmtsp = self.fmtsp; let sp = arg.format.ty_span.map(|sp| fmtsp.from_inner(sp)); let mut err = self.ecx.struct_span_err( sp.unwrap_or(fmtsp), &format!("unknown format trait `{}`", arg.format.ty), ); err.note( "the only appropriate formatting traits are:\n\ - ``, which uses the `Display` trait\n\ - `?`, which uses the `Debug` trait\n\ - `e`, which uses the `LowerExp` trait\n\ - `E`, which uses the `UpperExp` trait\n\ - `o`, which uses the `Octal` trait\n\ - `p`, which uses the `Pointer` trait\n\ - `b`, which uses the `Binary` trait\n\ - `x`, which uses the `LowerHex` trait\n\ - `X`, which uses the `UpperHex` trait", ); if let Some(sp) = sp { for (fmt, name) in &[ ("", "Display"), ("?", "Debug"), ("e", "LowerExp"), ("E", "UpperExp"), ("o", "Octal"), ("p", "Pointer"), ("b", "Binary"), ("x", "LowerHex"), ("X", "UpperHex"), ] { // FIXME: rustfix (`run-rustfix`) fails to apply suggestions. // > "Cannot replace slice of data that was already replaced" err.tool_only_span_suggestion( sp, &format!("use the `{}` trait", name), (*fmt).to_string(), Applicability::MaybeIncorrect, ); } } err.emit(); "" } }); self.verify_arg_type(pos, ty); self.curpiece += 1; } } } fn verify_count(&mut self, c: parse::Count) { match c { parse::CountImplied | parse::CountIs(..) => {} parse::CountIsParam(i) => { self.verify_arg_type(Exact(i), Count); } parse::CountIsName(s) => { self.verify_arg_type(Named(s), Count); } } } fn describe_num_args(&self) -> Cow<'_, str> { match self.args.len() { 0 => "no arguments were given".into(), 1 => "there is 1 argument".into(), x => format!("there are {} arguments", x).into(), } } /// Handle invalid references to positional arguments. Output different /// errors for the case where all arguments are positional and for when /// there are named arguments or numbered positional arguments in the /// format string. fn report_invalid_references(&self, numbered_position_args: bool) { let mut e; let sp = if !self.arg_spans.is_empty() { // Point at the formatting arguments. MultiSpan::from_spans(self.arg_spans.clone()) } else { MultiSpan::from_span(self.fmtsp) }; let refs = self.invalid_refs.iter().map(|(r, pos)| (r.to_string(), self.arg_spans.get(*pos))); let mut zero_based_note = false; let count = self.pieces.len() + self.arg_with_formatting.iter().filter(|fmt| fmt.precision_span.is_some()).count(); if self.names.is_empty() && !numbered_position_args && count != self.args.len() { e = self.ecx.struct_span_err( sp, &format!( "{} positional argument{} in format string, but {}", count, pluralize!(count), self.describe_num_args(), ), ); for arg in &self.args { // Point at the arguments that will be formatted. e.span_label(arg.span, ""); } } else { let (mut refs, spans): (Vec<_>, Vec<_>) = refs.unzip(); // Avoid `invalid reference to positional arguments 7 and 7 (there is 1 argument)` // for `println!("{7:7$}", 1);` refs.sort(); refs.dedup(); let (arg_list, mut sp) = if refs.len() == 1 { let spans: Vec<_> = spans.into_iter().filter_map(|sp| sp.copied()).collect(); ( format!("argument {}", refs[0]), if spans.is_empty() { MultiSpan::from_span(self.fmtsp) } else { MultiSpan::from_spans(spans) }, ) } else { let pos = MultiSpan::from_spans(spans.into_iter().map(|s| *s.unwrap()).collect()); let reg = refs.pop().unwrap(); (format!("arguments {head} and {tail}", head = refs.join(", "), tail = reg,), pos) }; if self.arg_spans.is_empty() { sp = MultiSpan::from_span(self.fmtsp); } e = self.ecx.struct_span_err( sp, &format!( "invalid reference to positional {} ({})", arg_list, self.describe_num_args() ), ); zero_based_note = true; }; for fmt in &self.arg_with_formatting { if let Some(span) = fmt.precision_span { let span = self.fmtsp.from_inner(span); match fmt.precision { parse::CountIsParam(pos) if pos > self.args.len() => { e.span_label( span, &format!( "this precision flag expects an `usize` argument at position {}, \ but {}", pos, self.describe_num_args(), ), ); zero_based_note = true; } parse::CountIsParam(pos) => { let count = self.pieces.len() + self .arg_with_formatting .iter() .filter(|fmt| fmt.precision_span.is_some()) .count(); e.span_label(span, &format!( "this precision flag adds an extra required argument at position {}, \ which is why there {} expected", pos, if count == 1 { "is 1 argument".to_string() } else { format!("are {} arguments", count) }, )); if let Some(arg) = self.args.get(pos) { e.span_label( arg.span, "this parameter corresponds to the precision flag", ); } zero_based_note = true; } _ => {} } } if let Some(span) = fmt.width_span { let span = self.fmtsp.from_inner(span); match fmt.width { parse::CountIsParam(pos) if pos > self.args.len() => { e.span_label( span, &format!( "this width flag expects an `usize` argument at position {}, \ but {}", pos, self.describe_num_args(), ), ); zero_based_note = true; } _ => {} } } } if zero_based_note { e.note("positional arguments are zero-based"); } if !self.arg_with_formatting.is_empty() { e.note( "for information about formatting flags, visit \ https://doc.rust-lang.org/std/fmt/index.html", ); } e.emit(); } /// Actually verifies and tracks a given format placeholder /// (a.k.a. argument). fn verify_arg_type(&mut self, arg: Position, ty: ArgumentType) { match arg { Exact(arg) => { if self.args.len() <= arg { self.invalid_refs.push((arg, self.curpiece)); return; } match ty { Placeholder(_) => { // record every (position, type) combination only once let seen_ty = &mut self.arg_unique_types[arg]; let i = seen_ty.iter().position(|x| *x == ty).unwrap_or_else(|| { let i = seen_ty.len(); seen_ty.push(ty); i }); self.arg_types[arg].push(i); } Count => { if let Entry::Vacant(e) = self.count_positions.entry(arg) { let i = self.count_positions_count; e.insert(i); self.count_args.push(Exact(arg)); self.count_positions_count += 1; } } } } Named(name) => { match self.names.get(&name) { Some(&idx) => { // Treat as positional arg. self.verify_arg_type(Exact(idx), ty) } None => { let capture_feature_enabled = self .ecx .ecfg .features .map_or(false, |features| features.format_args_capture); // For the moment capturing variables from format strings expanded from macros is // disabled (see RFC #2795) let can_capture = capture_feature_enabled && self.is_literal; if can_capture { // Treat this name as a variable to capture from the surrounding scope let idx = self.args.len(); self.arg_types.push(Vec::new()); self.arg_unique_types.push(Vec::new()); self.args.push( self.ecx.expr_ident(self.fmtsp, Ident::new(name, self.fmtsp)), ); self.names.insert(name, idx); self.verify_arg_type(Exact(idx), ty) } else { let msg = format!("there is no argument named `{}`", name); let sp = if self.is_literal { *self.arg_spans.get(self.curpiece).unwrap_or(&self.fmtsp) } else { self.fmtsp }; let mut err = self.ecx.struct_span_err(sp, &msg[..]); if capture_feature_enabled && !self.is_literal { err.note(&format!( "did you intend to capture a variable `{}` from \ the surrounding scope?", name )); err.note( "to avoid ambiguity, `format_args!` cannot capture variables \ when the format string is expanded from a macro", ); } else if self.ecx.parse_sess().unstable_features.is_nightly_build() { err.help(&format!( "if you intended to capture `{}` from the surrounding scope, add \ `#![feature(format_args_capture)]` to the crate attributes", name )); } err.emit(); } } } } } } /// Builds the mapping between format placeholders and argument objects. fn build_index_map(&mut self) { // NOTE: Keep the ordering the same as `into_expr`'s expansion would do! let args_len = self.args.len(); self.arg_index_map.reserve(args_len); let mut sofar = 0usize; // Map the arguments for i in 0..args_len { let arg_types = &self.arg_types[i]; let arg_offsets = arg_types.iter().map(|offset| sofar + *offset).collect::>(); self.arg_index_map.push(arg_offsets); sofar += self.arg_unique_types[i].len(); } // Record starting index for counts, which appear just after arguments self.count_args_index_offset = sofar; } fn rtpath(ecx: &ExtCtxt<'_>, s: &str) -> Vec { ecx.std_path(&[sym::fmt, sym::rt, sym::v1, Symbol::intern(s)]) } fn build_count(&self, c: parse::Count) -> P { let sp = self.macsp; let count = |c, arg| { let mut path = Context::rtpath(self.ecx, "Count"); path.push(self.ecx.ident_of(c, sp)); match arg { Some(arg) => self.ecx.expr_call_global(sp, path, vec![arg]), None => self.ecx.expr_path(self.ecx.path_global(sp, path)), } }; match c { parse::CountIs(i) => count("Is", Some(self.ecx.expr_usize(sp, i))), parse::CountIsParam(i) => { // This needs mapping too, as `i` is referring to a macro // argument. If `i` is not found in `count_positions` then // the error had already been emitted elsewhere. let i = self.count_positions.get(&i).cloned().unwrap_or(0) + self.count_args_index_offset; count("Param", Some(self.ecx.expr_usize(sp, i))) } parse::CountImplied => count("Implied", None), // should never be the case, names are already resolved parse::CountIsName(_) => panic!("should never happen"), } } /// Build a literal expression from the accumulated string literals fn build_literal_string(&mut self) -> P { let sp = self.fmtsp; let s = Symbol::intern(&self.literal); self.literal.clear(); self.ecx.expr_str(sp, s) } /// Builds a static `rt::Argument` from a `parse::Piece` or append /// to the `literal` string. fn build_piece( &mut self, piece: &parse::Piece<'a>, arg_index_consumed: &mut Vec, ) -> Option> { let sp = self.macsp; match *piece { parse::String(s) => { self.literal.push_str(s); None } parse::NextArgument(ref arg) => { // Build the position let pos = { match arg.position { parse::ArgumentIs(i) | parse::ArgumentImplicitlyIs(i) => { // Map to index in final generated argument array // in case of multiple types specified let arg_idx = match arg_index_consumed.get_mut(i) { None => 0, // error already emitted elsewhere Some(offset) => { let idx_map = &self.arg_index_map[i]; // unwrap_or branch: error already emitted elsewhere let arg_idx = *idx_map.get(*offset).unwrap_or(&0); *offset += 1; arg_idx } }; self.ecx.expr_usize(sp, arg_idx) } // should never be the case, because names are already // resolved. parse::ArgumentNamed(_) => panic!("should never happen"), } }; let simple_arg = parse::Argument { position: { // We don't have ArgumentNext any more, so we have to // track the current argument ourselves. let i = self.curarg; self.curarg += 1; parse::ArgumentIs(i) }, format: parse::FormatSpec { fill: arg.format.fill, align: parse::AlignUnknown, flags: 0, precision: parse::CountImplied, precision_span: None, width: parse::CountImplied, width_span: None, ty: arg.format.ty, ty_span: arg.format.ty_span, }, }; let fill = arg.format.fill.unwrap_or(' '); let pos_simple = arg.position.index() == simple_arg.position.index(); if arg.format.precision_span.is_some() || arg.format.width_span.is_some() { self.arg_with_formatting.push(arg.format); } if !pos_simple || arg.format != simple_arg.format || fill != ' ' { self.all_pieces_simple = false; } // Build the format let fill = self.ecx.expr_lit(sp, ast::LitKind::Char(fill)); let align = |name| { let mut p = Context::rtpath(self.ecx, "Alignment"); p.push(self.ecx.ident_of(name, sp)); self.ecx.path_global(sp, p) }; let align = match arg.format.align { parse::AlignLeft => align("Left"), parse::AlignRight => align("Right"), parse::AlignCenter => align("Center"), parse::AlignUnknown => align("Unknown"), }; let align = self.ecx.expr_path(align); let flags = self.ecx.expr_u32(sp, arg.format.flags); let prec = self.build_count(arg.format.precision); let width = self.build_count(arg.format.width); let path = self.ecx.path_global(sp, Context::rtpath(self.ecx, "FormatSpec")); let fmt = self.ecx.expr_struct( sp, path, vec![ self.ecx.field_imm(sp, self.ecx.ident_of("fill", sp), fill), self.ecx.field_imm(sp, self.ecx.ident_of("align", sp), align), self.ecx.field_imm(sp, self.ecx.ident_of("flags", sp), flags), self.ecx.field_imm(sp, self.ecx.ident_of("precision", sp), prec), self.ecx.field_imm(sp, self.ecx.ident_of("width", sp), width), ], ); let path = self.ecx.path_global(sp, Context::rtpath(self.ecx, "Argument")); Some(self.ecx.expr_struct( sp, path, vec![ self.ecx.field_imm(sp, self.ecx.ident_of("position", sp), pos), self.ecx.field_imm(sp, self.ecx.ident_of("format", sp), fmt), ], )) } } } /// Actually builds the expression which the format_args! block will be /// expanded to. fn into_expr(self) -> P { let mut locals = Vec::with_capacity((0..self.args.len()).map(|i| self.arg_unique_types[i].len()).sum()); let mut counts = Vec::with_capacity(self.count_args.len()); let mut pats = Vec::with_capacity(self.args.len()); let mut heads = Vec::with_capacity(self.args.len()); let names_pos: Vec<_> = (0..self.args.len()) .map(|i| self.ecx.ident_of(&format!("arg{}", i), self.macsp)) .collect(); // First, build up the static array which will become our precompiled // format "string" let pieces = self.ecx.expr_vec_slice(self.fmtsp, self.str_pieces); // Before consuming the expressions, we have to remember spans for // count arguments as they are now generated separate from other // arguments, hence have no access to the `P`'s. let spans_pos: Vec<_> = self.args.iter().map(|e| e.span).collect(); // Right now there is a bug such that for the expression: // foo(bar(&1)) // the lifetime of `1` doesn't outlast the call to `bar`, so it's not // valid for the call to `foo`. To work around this all arguments to the // format! string are shoved into locals. Furthermore, we shove the address // of each variable because we don't want to move out of the arguments // passed to this function. for (i, e) in self.args.into_iter().enumerate() { let name = names_pos[i]; let span = self.ecx.with_def_site_ctxt(e.span); pats.push(self.ecx.pat_ident(span, name)); for arg_ty in self.arg_unique_types[i].iter() { locals.push(Context::format_arg(self.ecx, self.macsp, e.span, arg_ty, name)); } heads.push(self.ecx.expr_addr_of(e.span, e)); } for pos in self.count_args { let index = match pos { Exact(i) => i, _ => panic!("should never happen"), }; let name = names_pos[index]; let span = spans_pos[index]; counts.push(Context::format_arg(self.ecx, self.macsp, span, &Count, name)); } // Now create a vector containing all the arguments let args = locals.into_iter().chain(counts.into_iter()); let args_array = self.ecx.expr_vec(self.macsp, args.collect()); // Constructs an AST equivalent to: // // match (&arg0, &arg1) { // (tmp0, tmp1) => args_array // } // // It was: // // let tmp0 = &arg0; // let tmp1 = &arg1; // args_array // // Because of #11585 the new temporary lifetime rule, the enclosing // statements for these temporaries become the let's themselves. // If one or more of them are RefCell's, RefCell borrow() will also // end there; they don't last long enough for args_array to use them. // The match expression solves the scope problem. // // Note, it may also very well be transformed to: // // match arg0 { // ref tmp0 => { // match arg1 => { // ref tmp1 => args_array } } } // // But the nested match expression is proved to perform not as well // as series of let's; the first approach does. let pat = self.ecx.pat_tuple(self.macsp, pats); let arm = self.ecx.arm(self.macsp, pat, args_array); let head = self.ecx.expr(self.macsp, ast::ExprKind::Tup(heads)); let result = self.ecx.expr_match(self.macsp, head, vec![arm]); let args_slice = self.ecx.expr_addr_of(self.macsp, result); // Now create the fmt::Arguments struct with all our locals we created. let (fn_name, fn_args) = if self.all_pieces_simple { ("new_v1", vec![pieces, args_slice]) } else { // Build up the static array which will store our precompiled // nonstandard placeholders, if there are any. let fmt = self.ecx.expr_vec_slice(self.macsp, self.pieces); ("new_v1_formatted", vec![pieces, args_slice, fmt]) }; let path = self.ecx.std_path(&[sym::fmt, sym::Arguments, Symbol::intern(fn_name)]); self.ecx.expr_call_global(self.macsp, path, fn_args) } fn format_arg( ecx: &ExtCtxt<'_>, macsp: Span, mut sp: Span, ty: &ArgumentType, arg: Ident, ) -> P { sp = ecx.with_def_site_ctxt(sp); let arg = ecx.expr_ident(sp, arg); let trait_ = match *ty { Placeholder(trait_) if trait_ == "" => return DummyResult::raw_expr(sp, true), Placeholder(trait_) => trait_, Count => { let path = ecx.std_path(&[sym::fmt, sym::ArgumentV1, sym::from_usize]); return ecx.expr_call_global(macsp, path, vec![arg]); } }; let path = ecx.std_path(&[sym::fmt, Symbol::intern(trait_), sym::fmt]); let format_fn = ecx.path_global(sp, path); let path = ecx.std_path(&[sym::fmt, sym::ArgumentV1, sym::new]); ecx.expr_call_global(macsp, path, vec![arg, ecx.expr_path(format_fn)]) } } fn expand_format_args_impl<'cx>( ecx: &'cx mut ExtCtxt<'_>, mut sp: Span, tts: TokenStream, nl: bool, ) -> Box { sp = ecx.with_def_site_ctxt(sp); match parse_args(ecx, sp, tts) { Ok((efmt, args, names)) => { MacEager::expr(expand_preparsed_format_args(ecx, sp, efmt, args, names, nl)) } Err(mut err) => { err.emit(); DummyResult::any(sp) } } } pub fn expand_format_args<'cx>( ecx: &'cx mut ExtCtxt<'_>, sp: Span, tts: TokenStream, ) -> Box { expand_format_args_impl(ecx, sp, tts, false) } pub fn expand_format_args_nl<'cx>( ecx: &'cx mut ExtCtxt<'_>, sp: Span, tts: TokenStream, ) -> Box { expand_format_args_impl(ecx, sp, tts, true) } /// Take the various parts of `format_args!(efmt, args..., name=names...)` /// and construct the appropriate formatting expression. pub fn expand_preparsed_format_args( ecx: &mut ExtCtxt<'_>, sp: Span, efmt: P, args: Vec>, names: FxHashMap, append_newline: bool, ) -> P { // NOTE: this verbose way of initializing `Vec>` is because // `ArgumentType` does not derive `Clone`. let arg_types: Vec<_> = (0..args.len()).map(|_| Vec::new()).collect(); let arg_unique_types: Vec<_> = (0..args.len()).map(|_| Vec::new()).collect(); let mut macsp = ecx.call_site(); macsp = ecx.with_def_site_ctxt(macsp); let msg = "format argument must be a string literal"; let fmt_sp = efmt.span; let (fmt_str, fmt_style, fmt_span) = match expr_to_spanned_string(ecx, efmt, msg) { Ok(mut fmt) if append_newline => { fmt.0 = Symbol::intern(&format!("{}\n", fmt.0)); fmt } Ok(fmt) => fmt, Err(err) => { if let Some(mut err) = err { let sugg_fmt = match args.len() { 0 => "{}".to_string(), _ => format!("{}{{}}", "{} ".repeat(args.len())), }; err.span_suggestion( fmt_sp.shrink_to_lo(), "you might be missing a string literal to format with", format!("\"{}\", ", sugg_fmt), Applicability::MaybeIncorrect, ); err.emit(); } return DummyResult::raw_expr(sp, true); } }; let str_style = match fmt_style { ast::StrStyle::Cooked => None, ast::StrStyle::Raw(raw) => Some(raw as usize), }; let fmt_str = &fmt_str.as_str(); // for the suggestions below let fmt_snippet = ecx.source_map().span_to_snippet(fmt_sp).ok(); let mut parser = parse::Parser::new( fmt_str, str_style, fmt_snippet, append_newline, parse::ParseMode::Format, ); let mut unverified_pieces = Vec::new(); while let Some(piece) = parser.next() { if !parser.errors.is_empty() { break; } else { unverified_pieces.push(piece); } } if !parser.errors.is_empty() { let err = parser.errors.remove(0); let sp = fmt_span.from_inner(err.span); let mut e = ecx.struct_span_err(sp, &format!("invalid format string: {}", err.description)); e.span_label(sp, err.label + " in format string"); if let Some(note) = err.note { e.note(¬e); } if let Some((label, span)) = err.secondary_label { let sp = fmt_span.from_inner(span); e.span_label(sp, label); } e.emit(); return DummyResult::raw_expr(sp, true); } let arg_spans = parser.arg_places.iter().map(|span| fmt_span.from_inner(*span)).collect(); let named_pos: FxHashSet = names.values().cloned().collect(); let mut cx = Context { ecx, args, arg_types, arg_unique_types, names, curarg: 0, curpiece: 0, arg_index_map: Vec::new(), count_args: Vec::new(), count_positions: FxHashMap::default(), count_positions_count: 0, count_args_index_offset: 0, literal: String::new(), pieces: Vec::with_capacity(unverified_pieces.len()), str_pieces: Vec::with_capacity(unverified_pieces.len()), all_pieces_simple: true, macsp, fmtsp: fmt_span, invalid_refs: Vec::new(), arg_spans, arg_with_formatting: Vec::new(), is_literal: parser.is_literal, }; // This needs to happen *after* the Parser has consumed all pieces to create all the spans let pieces = unverified_pieces .into_iter() .map(|mut piece| { cx.verify_piece(&piece); cx.resolve_name_inplace(&mut piece); piece }) .collect::>(); let numbered_position_args = pieces.iter().any(|arg: &parse::Piece<'_>| match *arg { parse::String(_) => false, parse::NextArgument(arg) => match arg.position { parse::Position::ArgumentIs(_) => true, _ => false, }, }); cx.build_index_map(); let mut arg_index_consumed = vec![0usize; cx.arg_index_map.len()]; for piece in pieces { if let Some(piece) = cx.build_piece(&piece, &mut arg_index_consumed) { let s = cx.build_literal_string(); cx.str_pieces.push(s); cx.pieces.push(piece); } } if !cx.literal.is_empty() { let s = cx.build_literal_string(); cx.str_pieces.push(s); } if !cx.invalid_refs.is_empty() { cx.report_invalid_references(numbered_position_args); } // Make sure that all arguments were used and all arguments have types. let errs = cx .arg_types .iter() .enumerate() .filter(|(i, ty)| ty.is_empty() && !cx.count_positions.contains_key(&i)) .map(|(i, _)| { let msg = if named_pos.contains(&i) { // named argument "named argument never used" } else { // positional argument "argument never used" }; (cx.args[i].span, msg) }) .collect::>(); let errs_len = errs.len(); if !errs.is_empty() { let args_used = cx.arg_types.len() - errs_len; let args_unused = errs_len; let mut diag = { if errs_len == 1 { let (sp, msg) = errs.into_iter().next().unwrap(); let mut diag = cx.ecx.struct_span_err(sp, msg); diag.span_label(sp, msg); diag } else { let mut diag = cx.ecx.struct_span_err( errs.iter().map(|&(sp, _)| sp).collect::>(), "multiple unused formatting arguments", ); diag.span_label(cx.fmtsp, "multiple missing formatting specifiers"); for (sp, msg) in errs { diag.span_label(sp, msg); } diag } }; // Used to ensure we only report translations for *one* kind of foreign format. let mut found_foreign = false; // Decide if we want to look for foreign formatting directives. if args_used < args_unused { use super::format_foreign as foreign; // The set of foreign substitutions we've explained. This prevents spamming the user // with `%d should be written as {}` over and over again. let mut explained = FxHashSet::default(); macro_rules! check_foreign { ($kind:ident) => {{ let mut show_doc_note = false; let mut suggestions = vec![]; // account for `"` and account for raw strings `r#` let padding = str_style.map(|i| i + 2).unwrap_or(1); for sub in foreign::$kind::iter_subs(fmt_str, padding) { let trn = match sub.translate() { Some(trn) => trn, // If it has no translation, don't call it out specifically. None => continue, }; let pos = sub.position(); let sub = String::from(sub.as_str()); if explained.contains(&sub) { continue; } explained.insert(sub.clone()); if !found_foreign { found_foreign = true; show_doc_note = true; } if let Some(inner_sp) = pos { let sp = fmt_sp.from_inner(inner_sp); suggestions.push((sp, trn)); } else { diag.help(&format!("`{}` should be written as `{}`", sub, trn)); } } if show_doc_note { diag.note(concat!( stringify!($kind), " formatting not supported; see the documentation for `std::fmt`", )); } if suggestions.len() > 0 { diag.multipart_suggestion( "format specifiers use curly braces", suggestions, Applicability::MachineApplicable, ); } }}; } check_foreign!(printf); if !found_foreign { check_foreign!(shell); } } if !found_foreign && errs_len == 1 { diag.span_label(cx.fmtsp, "formatting specifier missing"); } diag.emit(); } cx.into_expr() }